

Page 1

SData 2.0 Core

Version 1.0

Page 2

Motivation and purpose
A clear and concise definition of SData is one of the primary goals for the 2.0 version.

The SData standard is a comprehensive specification capable of handling even the most complex

business cases that might require synchronization, paging, discoverability, etc. In the past, teams building

SData providers believed they had to implement everything mentioned in the SData 1.x standard, even

features not required by their particular business case. In some instances this lead to the perception that

building an SData provider was more difficult to create than it was really the case.

SData 2.0 can be viewed as a web toolkit consisting of a small set of required core features and many

optional features that solve frequently encountered problems. This document will capture and define

the small number of core features that make up the ‘SData 2.0 core’.

In addition to clarifying and simplifying the standard, this document also introduces JSON as a new

optional format for SData payloads. JSON is ideally suited to some business cases like mobility because

it’s less verbose then ATOM/XML. This document will not provide a complete JSON specification but it

will compare and contrast JSON and ATOM formats defined in SData 2.0.

Aims
This paper designates and describes the central aspects of SData, yielding the ‘core’ of the specification.

The document does not contain the official text of the core itself - it points out the fundamentals, leaving

the global community presentation of the topics open for future work.

This document will:

 Identify the SData 2.0 fundamental aspects and establish the relation to their counterparts in the 1.x

version of the standard

 Re-define compliance levels(MUST/SHOULD/MAY) on core aspects

 Deprecate outdated features or solutions

Fundamental SData aspects
SData 2.0 ensures that version 1.x compliant implementations are equally compliant with the

new version of the standard. This is achieved by:

 Relaxing existing compliance levels thus making even more aspect optional

 Adding new, optional features

 Deprecation of features where better technological answers have emerged in the meantime

The SData core identifies the aspects essential to the philosophy of the standard. An essential aspect

does not imply that its components must be implemented in their entirety to achieve compliance; the

degree of choice is indicated by the (MUST/SHOULD/MAY) qualifiers; these may be tightened further by

underlying contracts.

Page 3

The SData fundamental aspects are recognized to be:

 SData URL
 SData payload formatting
 Requesting content formats
 Operations
 Authorization
 Status and error conditions

These are discussed in turn in the following chapters of this document. Unless specifically stated, the

definitions in the SData 1.x standard maintain their validity in the SData 2.0 standard.

SData URL
The SData URL is responsible for resource addressing and represents the tie-in with the REST

architectural style. The current specification (Chapter 2: Anatomy of an SData URL) is fairly restrictive

due to the initial, more normative approach adopted at the time.

The proposals presented in the upcoming sub-sections remove a number of current rules and

restrictions. The intended effect is increased simplicity coupled with lending applications the ability to

construct URLs that fit better with their natural structure and underlying technologies.

Liberalization of the URL structure up to the query component

In SData 2.0 the URL structure prior to the Query component is freely definable by the

provider. This applies specifically to the existence and structure of the following URI Path1sub-

components as defined by SData in the Resource Collection URL section:

 Virtual directory:

 MAY be 'sdata', which is preferred

 MAY be a set of several sub-segments

 Contract name:

 MAY be omitted if it is the only contract to be exposed by the provider

 MAY comprise several sub-segments. A meaningful sub-segment is the contract version that an

application MAY expose

 Application name:

 MAY be provided. It is recommended that the application name be a part of the URL.

 Dataset:

 MAY be omitted if only one dataset is supported by the provider

 MAY contain several sub-segments reflecting a hierarchical dataset selection structure

 The composition formalism described in 1.x standard remains valid

The requirements imposed by version 1.x (Section 2.1 Resource Collection URL) become guidelines2 in

SData 2.0, meaning that implementations are encouraged (but not forced) to act accordingly.

1
 URI Path as defined in section 3 of RFC 3986

http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataURL.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataURL/ResourceCollectionURL.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataURL/ResourceCollectionURL.html
http://tools.ietf.org/html/rfc3986#section-3

Page 4

Reserved segments at the application level

In SData 2.0, none of the segments mentioned below are required – these MAY be present if

required by the underlying contract:

 $schema: amendment to the 1.x version that required the presence of the segment

 $service: clarification to the 1.x version

 $queries: clarification to the 1.x version

 $batch: amendment to the 1.x version where the $batch segment was tied exclusively to a

resource kind URL

The corresponding SData 1.x definitions are found under:

 2.4 Service Operation URL

 2.5 Named Query URL

 2.6 Template resource URL

 2.7 Resource schema URL

 2.9 Intermediate URLs

 13.1 Batch URL

Schema requirement

In SData 2.0 the presence of the schema is optional. This applies equally to application-wide and

resource kind schemas.

SData 1.x required a schema to be present (see 2.7 Resource Schema URL). While it is recognized that

schemas are a meaningful component in application-to-application scenarios, providing and maintaining

a schema in most other scenarios is difficult and costly. SData 2.0 lifts the existing requirement and

leaves it up to the contract to require the presence of a schema.

SData payload elements
The structure SData content is aligned with the ATOM specification, according to the initial direction we

took. ATOM divides the payload in three levels (a division maintained in the JSON format):

 The feed: envelops a set of resources

 An entry: envelops a single resource

 A property: is an individual information carrier in the context of a resource

The following sub-sections present the upcoming SData 2.0 changes for each level.

2 This is a 'lesson learned' from the practical experiences with implementations of the standard. It was recognized

that the objective needs of products and contracts, in combination with the underlying development tools, do not

easily conform to the 1.x requirements. The relaxation reduces the implementation and maintenance effort of

delivery teams.

http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataURL/ServiceOperationURL.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataURL/597-DSY.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataURL/211-DSY.html
http://interop.sage.com/daisy/sdata/165-DSY/166-DSY.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataURL/ResourceSchemaURL.html

Page 5

Feed level

The following subsections discuss feed-level aspects of the SData 2.0 standard, namely:

 Namespaces

 Protocol-defined elements

 Links

 Categories

Namespaces

Namespaces are relevant only for the atom+xml format. The table below shows namespaces and their

compliance level for SData 2.0:

Namespace Compliance level

Http MUST

Atom MUST

SData MUST

Xsi MAY (meaningful only when schemas
are involved)

Opensearch MAY; meaningful only when paging is
implemented

Sle MAY; meaningful in a very reduced
number of cases

Non-essential namespaces (sle, xsi, and others) should be used as dictated by the individual necessities

of a scenario.

Protocol-defined elements

SData 2.0 recognizes two payload formats: atom+xml and json.

ATOM elements3 are dictated by the ATOM specification and SData, being ATOM conformant, MUST

require the presence of these elements in the atom+xml format. As only moderate benefits are derived

in the SData from ATOM elements, the support is kept at a minimum. The SData 1.x definitions are found

in section 3.2 Feed Elements.

In the JSON format, not being attached to a standard, SData keeps a free hand. Most of the ATOM

elements deemed meaningful for JSON maintain similar names - these are preceded by a $ (example:

title in atom becomes $title in JSON).

The following table presents the SData 2.0 feed-level elements:

 SData
1.x

SData
2.0

SData
2.0 JSON

Notes

3
 These elements are hardly any use to us in practical terms

http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataFeed/FeedElements.html

Page 6

ATOM

id MUST MUST NO

In JSON, this information is carried by the $url object
(see below)

title MUST MUST MAY

Just as a matter of good practice, encourage people to
fill this

updated MUST MUST MAY

Meaningful for syndication context but with little value
for SData. In practice, we will not compute on every
GET the updated value for the whole feed.

author SHOULD MAY NO A relaxation to the 1.x standard
summary MAY MAY NO To be specified only if value can be derived from the

element
category SHOULD NO NO This is a candidate for deprecation
xml:base NO SHOULD NO Allows specification of relative URLs, thus greatly

reducing the size of the payloads (see XMLbase

specification)
$resources NO NO MUST The JSON object that envelopes individual resources
$baseUrl NO NO MAY The JSON pendant to the xml:base attribute
$url NO NO MAY The JSON pendant to the ID and Self ATOM links
$links NO NO MAY The JSON object encompassing the link elements of a

feed
$diagnosis NO NO MAY The JSON pendant to the ATOM diagnosis element

(see: sdata.xsd, and 3.10 Error Payload)

Links

Links are used to point to resources (data, services, etc.) related to an object. In the atom+xml format,

links have a standardized format (see section 4.2.7 of the ATOM syndication format). In JSON, links are

represented as sub-objects of the $links object mentioned previously.

In the SData 2.0 specification of any specific link is optional. Specific links may be required by a

contract, the standard however does not impose any such requirements.

SData 2.0 recommends that the URL components of a link object (with the exception of the ATOM id

element) be defined relatively. This is achieved by using:

 the xml:base attribute in the atom+xml format

 the $baseUrl name-value pair in JSON

The names of links are not standardized in the 1.x version of the SData standard. Although no

standardization effort is undertaken by the SData 2.0 version, it is recommended that the IANA Link

relations be consulted prior to defining a new link name. The following is a list of links as they emerged in

examples of the 1.x version and their handling in the 2.0 version:

 SData 1.x SData
2.0

Notes

self MUST MAY It seems a little odd to include this at all as it is the same almost

http://www.w3.org/TR/xmlbase/#XMLNS
http://www.w3.org/TR/xmlbase/#XMLNS
http://interop.sage.com/daisy/sdata/g1/207-DSY.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataFeed/ErrorPayload.html
http://www.ietf.org/rfc/rfc4287
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml

Page 7

always identical to the ATOM ID element. However, existing
implementations may rely upon its presence

first MAY MAY Only in conjunction with a paged feed
next " " "
prev " " "
last " " "
schema MUST (XML) MAY Points to schema location of a resource kind
template MAY MAY Points to template of a resource kind
post MAY MAY Points to location of POST operation for a resource kind
queries MAY MAY Points to location of relevant queries of a resource kind
service MAY MAY Points to location of relevant services of a resource kind
batch MAY MAY Points to location of relevant batching services of a resource

kind

Categories

The Categories feature is a candidate for deprecation. Anyone with reasons to request support for this

feature in SData 2.0 should do so on the corresponding Open team.

Entry level

The following subsections discuss Entry-level aspects of the SData 2.0 standard, namely:

 Protocol-defined elements

 Links

Protocol-defined elements

As mentioned in the corresponding section of the Feed Level chapter, for the atom+xml format the

existence and nature of protocol defined elements results from the ATOM syndication definition.

In the JSON format the ATOM element names are prefixed by a $ (example: author becomes $author).

Additionally, as JSON had no attributes support, these are represented by objects or name-value pairs

(see for example $key in the table).

The corresponding SData 1.x definitions are found in section 3.7 Typical Feed Entry. The following table

presents the SData 2.0 entry-level elements:

 Element

SData
1.x

SData
2.0
ATOM

SData 2.0
Json

Notes

id

MUST MUST NO $url is the JSON counterpart

title

MUST MUST MAY

http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataFeed/TypicalFeedEntry

Page 8

updated

MUST MUST MAY This is an alternate version recognition mechanism to
the etag.

author

SHOULD MAY MAY

summary

MAY MAY MAY

category

SHOULD NO NO This is a deprecation candidate

content SHOULD MAY NO

payload MUST MUST NO

etag MAY MAY MAY

$url NO NO MAY $url points to the entry. It is the JSON counterpart to
the ATOM ID.

$key NO NO MAY $key contains the value of the primary key of an
entry. It is the JSON representation of the property-
level attribute key

$properties NO NO MAY Container for metadata associated with the entry

$links NO NO MAY Object containing links that present functional aspects
of the resource (example: edit, lookup, create). They
are to be understood as hypermedia controls

$diagnosis NO NO MAY The JSON pendant to the ATOM diagnoses element
(see: sdata.xsd and 3.10 Error Payload)

Links

In the SData 2.0 specification of any specific link is optional.

The discussion on feed-level links holds true for entry-level links as well. A more comprehensive

standardization on links is currently under consideration.

Property level
There are several xml attributes defined in the sdata.xsd document that may annotate a resource's

properties; these remain valid in SData 2.0.

As JSON has no comparable mechanism, xml attributes are represented in JSON as name/value pairs:

atom+xml attribute
name

JSON
name

JSON
Value type

key $key String

url $url String

uuid $uuid String

lookup $lookup String (is a link located in the

$links object)

descriptor $title String

isDeleted $isDeleted Boolean

deleteMissing $deleteMissing Boolean

index $index Reserved

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://interop.sage.com/daisy/sdata/g1/207-DSY.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataFeed/ErrorPayload.html
http://interop.sage.com/daisy/sdata/g1/207-DSY.html

Page 9

Requesting content by means of media type negotiation
SData 1.x relied solely on the atom+xml format. SData 2.0 introduces support of the JSON format on par

with atom+xml, giving applications the freedom to operate in any one or both formats. A consumer can

explicitly request one of the supported formats or alternatively, rely upon the default provider response.

Explicit request
The explicit request for a format is achieved by specifying the media type "atom+xml" or "json" within

the Accept header of the request or as a query parameter as shown below:

Accept header Atom Accept: application/atom+xml;vnd.sage=sdata

JSON Accept: application/json;vnd.sage=sdata

Format URL
parameter

Atom …?format=application/atom+xml;vnd.sage=sdata

JSON …?format=application/json;vnd.sage=sdata

Default/implicit request
A contract can (and should) specify the default format it operates on. The default is chosen to service the

majority of the incoming requests without additional specification from the consumer. The following

defaults are suggested:

Media type Defaults to
Application/json Application/json;vnd.sage=sdata

Application/xml Application/atom+xml

No media type specified Use the contract specified default

Contracts not explicitly naming a default format are assumed to have the application/atom+xml

default. This ensures consistency with the current SData 1.x implementations.

Operations
The SData 1.x. specification describes the following logical operations:

 7 Read Operation

 6 Queries

 8 Create Operation

 9 Update Operation

 10 Delete Operation

SData 2.0 logical operations are implemented through HTTP verbs as shown in the table below:

SData operation HTTP Verb Compliance level

Read GET SHOULD

http://interop.sage.com/daisy/sdata/ReadOperation.html
http://interop.sage.com/daisy/sdata/ReadOperation.html
http://interop.sage.com/daisy/sdata/Queries.html
http://interop.sage.com/daisy/sdata/CreateOperation.html
http://interop.sage.com/daisy/sdata/UpdateOperation.html
http://interop.sage.com/daisy/sdata/DeleteOperation.html

 Page
10

Update – full contents PUT MAY

Update – partial contents PATCH MAY

Create operation POST MAY

Delete operation DELETE MAY

Queries GET SHOULD: support of the basic query set.
Properties usable in queries are at least:

 sdata:key property if one is defined

 sdata:uuid property if one is defined
MAY for other properties

The PATCH support is a new addition to SData; it supplants the PUT verb usage for partial payloads. The

usage of PUT for partial updates is deprecated with SData 2.0. Existing implementations may still use

PUT, but should consider switching to PATCH in upcoming releases.

Authorization
SData 1.x discusses authorization aspects in the security section (5 Security) of the standard. These

remain valid in SData 2.0.

SData 2.0 will provide means to integrate with SageID and will specify the needed support for single sign

on. The relevant documents are currently under development.

Status and error codes
SData 1.x presents in section 3.10 Error payload the information exchange from provider to consumer.

These remain valid in SData 2.0.

The JSON object structure for the diagnoses and diagnosis xml elements are described in the JSON

documentation.

http://tools.ietf.org/html/rfc5789
http://interop.sage.com/daisy/sdata/UpdateOperation/199-DSY.html
http://interop.sage.com/daisy/sdata/Security.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataFeed/ErrorPayload.html

	Motivation and purpose
	Aims
	Fundamental SData aspects
	SData URL
	Liberalization of the URL structure up to the query component
	Reserved segments at the application level
	Schema requirement

	SData payload elements
	Feed level
	Namespaces
	Protocol-defined elements
	Links
	Categories

	Entry level
	Protocol-defined elements
	Links

	Property level

	Requesting content by means of media type negotiation
	Explicit request
	Default/implicit request

	Operations
	Authorization
	Status and error codes

