


Note :

Ribbon is a client-side load balancer that gives you a lot of control over
the behaviour of HTTP and TCP clients. Feign already uses Ribbon, so, if
you use @FeignClient, this section also applies.

A central concept in Ribbon is that of the named client. Each load
balancer is part of an ensemble of components that work together to
contact a remote server on demand, and the ensemble has a name
that you give it as an application developer (for example, by using the
@FeignClient annotation). On demand, Spring Cloud creates a new
ensemble as an ApplicationContext for each named client by using
RibbonClientConfiguration. This contains (amongst other things) an
ILoadBalancer, a RestClient, and a ServerListFilter.

To include Ribbon in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-
netflix-ribbon.

z

A load balanced RestTemplate can be configured to retry failed requests. By default this
logic is disabled, you can enable it by adding Spring Retry to your application's class-path.
The load balanced RestTemplate will honour some of the Ribbon configuration values
related to retrying failed requests. Multiple resources can access our micro-services so
better to annotate with @LoadBalanced



Running Multiple Instances Of Eureka Client Simultaneously

Step 1 : Select Run/Debug Configuration
Step 2 : Using the plus icon , select Spring Boot option
Step 3 : Using Modify Options , select Environment variables and add server.port=8081
there
Step 4 : Repeat above steps for port(s) 8082 and 8083



Load Balancing Using Spring Cloud Ribbon

We can observe here that Ribbon internally handles the load for 3
instances of payment service and one instance of shopping service. 

Shopping service can make use of various instances of Payment service
randomly.

Note: 
Spring Cloud also lets us take full control of the ribbon client by declaring additional
configuration (on top of the RibbonClientConfiguration) using @RibbonClient


