NETFLIX
RIBBON

Ribbon is a client-side load balancer that gives you a lot of control over
the behaviour of HTTP and TCP clients. Feign already uses Ribbon, so, if
you use @FeignClient, this section also applies.

A central concept in Ribbon is that of the named client. Each load
balancer is part of an ensemble of components that work together to
contact a remote server on demand, and the ensemble has a name
that you give it as an application developer (for example, by using the
@°FeignClient annotation). On demand, Spring Cloud creates a new
ensemble as an ApplicationContext for each named client by using
RibbonClientConfiguration. This contains (amongst other things) an
ILoadBalancer, a RestClient, and a ServerlistFilter.

To include Ribbon in your project, usé the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-
netflix-ribbon.

Note :

@LoadBalanced
[@Bean
public RestTemplate getTemplate() { return new RestTemplate(); }

A load balanced RestTemplate can be configured to retry failed requests. By default this
logic is disabled, you can enable it by adding Spring Retry to your application’s class-path.
The load balanced RestTemplate will honour some of the Ribbon configuration values
related to retrying failed requests. Multiple resources can access our micro-services so
better to annotate with @LoadBalanced

Running Multiple Instances Of Eureka Client Simultaneously

@ cunia x &
payment =-
¥ @ localnost o * » 0@ ‘
i
@ spring Eureka HOME LAST 1000 SINCE STARTUP -
System Status : ntep://localhost:8761/eureka/
: ocatnost
test PR 2-13T00:13:52
default) 8 5 }:$4:
eve
et PAYMENT-SERVICE + — B B

~ 4 Spring Baot
G PaymeniserviceApal ca
& Contig?
“oContigz

DS Replicas

Instances currently registered with Eureka

Application AM: ;v:‘hmw Stan 3 ATA +
tior s Zones - f ¥ 6 Spring Boot

UP(3)- 4 i 2 — .
PAYMENT- a MER ol - Lo e
SERVICE (- : o : R

» Configz
" & Docke
& Docker2

General Info & Dockerd

total-avail-memaory

12

current-memory-usage 83mb (64%)

Step 1: Select Run/Debug Configuration

Step 2: Using the plus icon, select Spring Boot option

Step 3 : Using Modify Options , select Environment variables and add
there

Step 4 : Repeat above steps for port(s) 8082 and 8083

54

RunfDebug Canfigurations
Mams: | Canfigz

Runon: | # Local machine

Build andrun
Java 17

com. paymentservice. paymentaervice. PaymentSt
Active prolies:
Envifonment varisbies: | S8FVeR . por =602

Gpen runjdeug 100l window when startod

Add dependencies with “provided scope to classpath

Backpround compllation enablad

Gancel

server.port=8081

Load Balancing Using Spring Cloud Ribbon

ment-servics ~ PaymentControlier java
N » . eee pay e 2

Opmpion B+ A (o | G EGCG-M AOW
@ tocainost o 7 » 0@ ,

Instances currently registered with Eureka

s

Availability g

Application AMIs Zones Status H

UP(3) - ¥

SERVICE z

SHOPPING- n/a
SERVICE (1)

General Info

total-avail-memory
num
current-

server-uptime

15TP9:12:12,263+95:30
15769:12:12.263485:30
15T09:12:12.264+85:30
13TB9:12:12.276+85:30
18T69:12; 08:30
15789:12, 05:3
15T09:12:12,293+85:30
1578 85:30

¢ Open “1 general - Tekion - 1 new em - Slack” |
~ T

We can observe here that Ribbon internally handles the load for 3
instances of payment service and one instance of shopping service.

Shopping service can make use of various instances of Payment service
randomly.

Note:
Spring Cloud also lets us take full control of the ribbon client by declaring additional
configuration (on top of the RibbonClientConfiguration) using @RibbonClient

