NETFLIX
RIBBON



Ribbon is a client-side load balancer that gives you a lot of control over
the behaviour of HTTP and TCP clients. Feign already uses Ribbon, so, if
you use @FeignClient, this section also applies.

A central concept in Ribbon is that of the named client. Each load
balancer is part of an ensemble of components that work together to
contact a remote server on demand, and the ensemble has a name
that you give it as an application developer (for example, by using the
@°FeignClient annotation). On demand, Spring Cloud creates a new
ensemble as an ApplicationContext for each named client by using
RibbonClientConfiguration. This contains (amongst other things) an
ILoadBalancer, a RestClient, and a ServerlistFilter.

To include Ribbon in your project, usé the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-
netflix-ribbon.

Note :

@LoadBalanced
[@Bean
public RestTemplate getTemplate() { return new RestTemplate(); }

A load balanced RestTemplate can be configured to retry failed requests. By default this
logic is disabled, you can enable it by adding Spring Retry to your application’s class-path.
The load balanced RestTemplate will honour some of the Ribbon configuration values
related to retrying failed requests. Multiple resources can access our micro-services so
better to annotate with @LoadBalanced



Running Multiple Instances Of Eureka Client Simultaneously
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Step 1: Select Run/Debug Configuration

Step 2: Using the plus icon, select Spring Boot option

Step 3 : Using Modify Options , select Environment variables and add
there

Step 4 : Repeat above steps for port(s) 8082 and 8083
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Load Balancing Using Spring Cloud Ribbon
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We can observe here that Ribbon internally handles the load for 3
instances of payment service and one instance of shopping service.

Shopping service can make use of various instances of Payment service
randomly.

Note:
Spring Cloud also lets us take full control of the ribbon client by declaring additional
configuration (on top of the RibbonClientConfiguration) using @RibbonClient



