

RISC-V SoC-Based Human Presence
Detection using CrossLink-NX VVML Board

Reference Design

FPGA-RD-02230-1.0

June 2021

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02230-1.0

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 3

Contents
Acronyms in This Document ... 6
1. Introduction .. 7

1.1. Design Process Overview .. 7
2. Setting up the Basic Environment .. 8

2.1. Software and Hardware Requirements ... 8
2.1.1. Software ... 8
2.1.2. Hardware .. 8

2.2. Setting Up the Linux Environment for Machine Training .. 9
2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU 9
2.2.2. Setting Up the Environment for Training and Model Freezing Scripts ... 11
2.2.3. Installing TensorFlow version 1.14 ... 12
2.2.4. Installing the Python Package .. 13

2.3. Creating the TensorFlow Lite Conversion Environment. ... 14
3. Preparing the Dataset ... 15

3.1. Downloading the Dataset .. 15
3.2. Visualizing and Tuning/Cleaning Up the Dataset .. 17
3.3. Data Augmentation ... 18

3.3.1. Running the Augmentation .. 18
4. Training the Machine .. 20

4.1. Training Code Directory Structure .. 20
4.2. Neural Network Architecture .. 21

4.2.1. Neural Network Architecture ... 21
4.2.2. Human Presence Detection Network Output .. 23
4.2.3. Training Code Overview ... 25

4.3. Training from Scratch and/or Transfer Learning ... 32
5. Creating Frozen File and Generating C Array ... 35

5.1. Generating the Frozen .pbtxt File ... 35
5.2. Generating the .pb, .tflite, and .cc Files from Checkpoints ... 36

6. Generating the Firmware ... 37
7. Hardware Implementation ... 40

7.1. Top Level Information ... 40
7.1.1. Block Diagram ... 40
7.1.2. Operational Flow .. 40
7.1.3. Core Customization .. 41
7.1.4. Pre-processing CNN .. 41
7.1.5. Camera Controller Register Bank with AHB Lite Slave ... 42

7.2. SoC Design Information ... 44
7.2.1. Opening the SoC Project .. 45
7.2.2. Generating RTL File from SoC ... 45
7.2.3. Initializing Memory in SoC Design .. 45

8. Creating FPGA Bitstream file .. 47
8.1. Generating the Bitstream File ... 47
8.2. IP Installation in Lattice Radiant or Lattice Propel Software ... 50

9. Programming the Demo ... 51
9.1. Erasing the CrossLink-NX VVML Contents Prior to Reprogramming ... 51
9.2. Programming the CrossLink-NX VVML Board ... 53

9.2.1. Programming the Generated Bitstream File .. 53
9.2.2. Programming the sensAI Firmware BIN File ... 54

10. Observing UART Output on Lattice Propel SDK .. 56
References .. 58
Technical Support Assistance ... 59
Revision History .. 60

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02230-1.0

Figures
Figure 2.1. CrossLink-NX Voice and Vision Machine Learning Board .. 8
Figure 2.2. CUDA Repo Download .. 9
Figure 2.3. CUDA Repo Installation ... 9
Figure 2.4. Fetch Keys ... 9
Figure 2.5. Updated Ubuntu Packages Repositories ... 10
Figure 2.6. CUDA Installation Completed ... 10
Figure 2.7. cuDNN Library Installation .. 10
Figure 2.8. Anaconda Installation ... 11
Figure 2.9. License Terms Acceptance .. 11
Figure 2.10. Installation Location .. 11
Figure 2.11. Launch/Initialization of Anaconda Environment .. 11
Figure 2.12. Anaconda Environment Activation ... 12
Figure 2.13. TensorFlow Installation ... 12
Figure 2.14. TensorFlow Installation Confirmation .. 12
Figure 2.15.TensorFlow Installation Completed ... 12
Figure 2.16. Easydict Installation .. 13
Figure 2.17. Joblib Installation .. 13
Figure 2.18. Keras Installation .. 13
Figure 2.19. OpenCV Installation .. 14
Figure 2.20. Pillow Installation .. 14
Figure 3.1. Open Source Dataset Repository Cloning ... 15
Figure 3.2. OIDv4_Toolkit Directory Structure ... 15
Figure 3.3. Dataset Script Option/Help ... 16
Figure 3.4. Dataset Downloading Logs.. 16
Figure 3.5. Downloaded Dataset Directory Structure... 16
Figure 3.6. OIDv4 Label to KITTI Format Conversion .. 16
Figure 3.7. Toolkit Visualizer ... 17
Figure 3.8. Manual Annotation Tool – Cloning ... 17
Figure 3.9. Manual Annotation Tool – Directory Structure .. 17
Figure 3.10. Manual Annotation Tool – Launch .. 18
Figure 3.11. Augmentation Directory Structure ... 18
Figure 3.12. Running the Augmentation ... 18
Figure 4.1. Training Code Directory Structure .. 20
Figure 4.2. Model Layer Dimensions .. 22
Figure 4.3. Model Output Format ... 24
Figure 4.4. Training Code Flow Diagram ... 25
Figure 4.5. Code Snippet: Input Image Size Configuration ... 26
Figure 4.6. Code Snippet: Input Image Size Configuration (Grid Sizes) .. 26
Figure 4.7. Code Snippet: Batch Image Size Configuration ... 26
Figure 4.8. Code Snippet: Anchors Per Grid Configuration #1 .. 26
Figure 4.9. Code Snippet: Anchors Per Grid Configuration #2 .. 26
Figure 4.10. Code Snippet: Anchors Per Grid Configuration #3 .. 27
Figure 4.11. Code Snippet: Training Parameters .. 27
Figure 4.12. Code Snippet: Forward Graph Fire Layers .. 28
Figure 4.13. Code Snippet: Forward Graph Last Convolution Layer ... 28
Figure 4.14. Code Snippet: Quantization Layer (Disabled) ... 29
Figure 4.15. Code Snippet: Interpret Output Graph ... 30
Figure 4.16. Code Snippet: Class Loss ... 31
Figure 4.17. Code Snippet: Bbox Loss ... 31
Figure 4.18. Code Snippet: Confidence loss .. 32
Figure 4.19. Training Code Snippet for Mean and Scale ... 32

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 5

Figure 4.20. Training Code Snippet for Dataset Path ... 32
Figure 4.21. Training Input Parameter .. 33
Figure 4.22. Execute Run Script .. 33
Figure 4.23. TensorBoard ... 34
Figure 4.24. Example of Checkpoint Data Files at Log Folder ... 34
Figure 5.1. pb File Generation from Checkpoint .. 35
Figure 5.2. Frozen .pbtxt File .. 35
Figure 5.3. ckpt_to_cc.sh File ... 36
Figure 5.4. Running ckpt_to_cc.sh .. 36
Figure 5.5. Generated Files ... 36
Figure 6.1. Lattice Propel Main Window .. 37
Figure 6.2. Propel Import Project ... 37
Figure 6.3. Open Makefile Project .. 38
Figure 6.4. Browse Project .. 38
Figure 6.5. Clean Project ... 39
Figure 6.6. Build Project .. 39
Figure 7.1. Top Level Design Block Diagram ... 40
Figure 7.2.Masking ... 41
Figure 7.3. Downscaling .. 42
Figure 7.4. SoC Design Top Block Diagram ... 44
Figure 7.5. Open SoC Project .. 45
Figure 7.6. Initialize Memory File in SoC Design ... 46
Figure 8.1. Lattice Radiant Start Page ... 47
Figure 8.2. Lattice Radiant – Open Project ... 48
Figure 8.3. Lattice Radiant – Design Load Check after Opening Project File .. 48
Figure 8.4. Lattice Radiant –Bitstream Generation Button .. 49
Figure 8.5. Lattice Radiant – Bit File Generation Report Window .. 49
Figure 8.6. Lattice Radiant or Lattice Propel – Uninstall Existing IP ... 50
Figure 8.7. Lattice Radiant or Lattice Propel – Installing New IP .. 50
Figure 9.1. Lattice Radiant Programmer – Default Screen ... 51
Figure 9.2. Radiant Programmer – Device Selection .. 51
Figure 9.3. Lattice Radiant Programmer – Erase Previous Content .. 52
Figure 9.4. CrossLink-NX VVML Board – SW5 and SW4 Buttons .. 52
Figure 9.5. Lattice Radiant Programmer – Device Properties to Flash Bit File ... 53
Figure 9.6. Lattice Radiant Programmer – Output Console .. 54
Figure 9.7. Lattice Radiant Programmer – Device Properties to Flash Bin File ... 54
Figure 10.1. Opening a Terminal in Propel SDK .. 56
Figure 10.2. Lattice Propel Launch UART Terminal .. 57

Tables
Table 4.1. Convolution Network Configuration of Human Presence Detection Design ... 21
Table 7.2. Top Design Parameters .. 41
Table 7.3. Camera Controller Registers .. 43
Table 7.4. IP used in Lattice Builder SoC Design ... 44

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02230-1.0

 Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

AHB Advanced High performance Bus

CKPT Checkpoint

CNN Convolutional Neural Network

CSI Camera Serial Interface

cuDNN CUDA® Deep Neural Network

EVDK Embedded Vision Development Kit

FPGA Field-Programmable Gate Array

GPIO General Purpose Input output

GPU Graphics Processing Unit

I2C Inter-Integrated Circuit

IP Intellectual Property

LED Light-emitting diode

MIPI Mobile Industry Processor Interface

ML Machine Learning

MLE Machine Learning Engine

NN Neural Network

NNC Neural Network Compiler

RAM Random Access Memory

RD Reference Design

RISC Reduced Instruction Set Computers

RW Read and Write

SD Secure Digital

SDHC Secure Digital High Capacity

SDXC Secure Digital eXtended Capacity

SoC System on Chip

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VIP Video Interface Platform

VVML Voice and Vision Machine Learning Board

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 7

1. Introduction
This document describes the Lattice Semiconductor RISC-V SoC-based human presence detection design and process
using the CrossLink™-NX Voice and Vision Machine Learning (VVML) Board platform.

1.1. Design Process Overview
The design process involves the following steps:

1. Training the model

 Setting up the basic environment

 Preparing the dataset

 Preparing the 64 x 64 image

 Labeling dataset of human bounding box

 Training the machine

 Training the machine and creating the checkpoint data

 Creating the frozen file (*.pb)

2. Compiling Neural Network to TensorFlow Lite and C array

3. Generating the .bin file using C/C++ Lattice Propel™ project

4. FPGA design

 Creating the FPGA bitstream file

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02230-1.0

2. Setting up the Basic Environment
This section describes the required tools and environment setup for training and model freezing.

2.1. Software and Hardware Requirements

2.1.1. Software
 Lattice Propel version 2.0

Refer to http://www.latticesemi.com/LatticePropel

 Lattice Radiant version 2.2
Refer to http://www.latticesemi.com/latticeradiant

2.1.2. Hardware

CrossLink-NX Voice and Vision Machine Learning (VVML) Board

Refer to https://www.latticesemi.com/products/developmentboardsandkits/crosslink-nxvoiceandvisionmachinelearning.

Figure 2.1. CrossLink-NX Voice and Vision Machine Learning Board

http://www.latticesemi.com/legal
http://www.latticesemi.com/LatticePropel
http://www.latticesemi.com/latticeradiant
https://www.latticesemi.com/products/developmentboardsandkits/crosslink-nxvoiceandvisionmachinelearning

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 9

2.2. Setting Up the Linux Environment for Machine Training
This section describes the steps for NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS.

Note: The NVIDIA library and the TensorFlow versions are dependent on the PC and the Ubuntu/Windows version.

2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU

2.2.1.1. Installing the NVIDIA CUDA Toolkit

To install the NVIDIA CUDA toolkit, run the commands below:

1. Download the NVIDIA CUDA toolkit.
$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu

da-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.2. CUDA Repo Download

2. Install the deb package.
$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.3. CUDA Repo Installation

3. Proceed with the installation.
$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa

2af80.pub

Figure 2.4. Fetch Keys

http://www.latticesemi.com/legal
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02230-1.0

$sudo apt-get update

Figure 2.5. Updated Ubuntu Packages Repositories

$ sudo apt-get install cuda-9-0

Figure 2.6. CUDA Installation Completed

2.2.1.2. Installing the cuDNN

To install the cuDNN:

1. Create your Nvidia developer account in https://developer.nvidia.com.

2. Download cuDNN library from https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1.

3. Execute the commands below to install cuDNN.

$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

Figure 2.7. cuDNN Library Installation

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 11

2.2.2. Setting Up the Environment for Training and Model Freezing Scripts

This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu
16.04. Anaconda provides one of the easiest ways to perform machine learning development and training on Linux.

2.2.2.1. Installing the Anaconda Python

To install the Anaconda Python 3:

1. Go to https://www.anaconda.com/products/individual#download.

2. Download the Python3 version of Anaconda for Linux.

3. Run the command below to install the Anaconda environment:

$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release

Figure 2.8. Anaconda Installation

4. Accept the license.

Figure 2.9. License Terms Acceptance

5. Confirm the installation path. Follow the instruction onscreen if you want to change the default path.

Figure 2.10. Installation Location

6. After installation, enter No as shown in Figure 2.11.

Figure 2.11. Launch/Initialization of Anaconda Environment

http://www.latticesemi.com/legal
https://www.anaconda.com/products/individual%23download-section

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02230-1.0

2.2.3. Installing TensorFlow version 1.14

To install TensorFlow version 1.14, run the commands below:

1. Activate the conda environment.

$ source <conda directory>/bin/activate

Figure 2.12. Anaconda Environment Activation

2. Install TensorFlow.

$ conda install tensorflow-gpu==1.14.0

Figure 2.13. TensorFlow Installation

3. After installation, enter Y as shown in Figure 2.14.

Figure 2.14. TensorFlow Installation Confirmation

Figure 2.15 shows that the TensorFlow installation is completed.

Figure 2.15.TensorFlow Installation Completed

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 13

2.2.4. Installing the Python Package

To install the Python package, run the commands below:

1. Install Easydict.

$ conda install –c conda-forge easydict

Figure 2.16. Easydict Installation

2. Install Joblib.

$ conda install joblib

Figure 2.17. Joblib Installation

3. Install Keras.

$ conda install keras

Figure 2.18. Keras Installation

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02230-1.0

4. Install OpenCV.

$ conda install opencv

Figure 2.19. OpenCV Installation

5. Install Pillow.

$ conda install pillow

Figure 2.20. Pillow Installation

2.3. Creating the TensorFlow Lite Conversion Environment.
To create a new Anaconda environment and install TensorFlow version 2.2.0, run the commands below:

1. Create a new Anaconda environment.

$ conda create -n <New Environment Name> python=3.6

2. Activate the new Anaconda environment.

$ conda activate <New Environment Name>

3. Install TensorFlow version 2.2.0.

$ conda install tensorflow=2.2.0

Note: Output difference between TensorFlow (2.2.0) and TensorFlow-GPU (2.2.0) in terms of TensorFlow Lite size is
observed. It is therefore recommended that TensorFlow (2.2.0) is used.

4. Install opencv.

$conda install opencv

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 15

3. Preparing the Dataset
This chapter describes how to create a dataset using examples from Google Open Image Dataset.

The Google Open Image Dataset version 4 (https://storage.googleapis.com/openimages/web/index.html) features
more than 600 classes of images. The Person class of images include human annotated and machine annotated labels
and bounding box. Annotations are licensed by Google Inc. under CC BY 4.0 and images are licensed under CC BY 2.0.

3.1. Downloading the Dataset
To download the dataset:

1. Clone the OIDv4_Toolkit repository by running the command below.

$ git clone https://github.com/EscVM/OIDv4_ToolKit.git

$ cd OIDv4_ToolKit

Figure 3.1. Open Source Dataset Repository Cloning

Figure 3.2 shows the OIDv4 directory structure.

Figure 3.2. OIDv4_Toolkit Directory Structure

View the OIDv4 Toolkit Help menu by running the command below.

$ python3 main.py -h

http://www.latticesemi.com/legal
https://storage.googleapis.com/openimages/web/index.html

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02230-1.0

Figure 3.3. Dataset Script Option/Help

2. Use the OIDv4 Toolkit to download dataset. Download Person class images by running the command below.

$ python3 main.py downloader --classes Person --type_csv validation

Figure 3.4. Dataset Downloading Logs

Figure 3.5 shows the downloaded dataset directory structure.

Figure 3.5. Downloaded Dataset Directory Structure

3. Lattice training code uses KITTI (.txt) format. The downloaded dataset is not in the required KITTI format. Convert
the annotation to KITTI format.

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/validation/Person/Label/*

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/train/Person/Label/*

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/test/Person/Label/*

Figure 3.6. OIDv4 Label to KITTI Format Conversion

Note: KITTI Format: Person 0 0 0 324.61 69.90 814.56 681.90. It has class ID followed by truncated, occluded,
alpha, Xmin, Ymin, Xmax, Ymax. The code converts Xmin, Ymin, Xmax, Ymax into x, y, w, h while training as
bounding box rectangle coordinates.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 17

3.2. Visualizing and Tuning/Cleaning Up the Dataset
To visualize and annotate the dataset, run the commands below:

1. Visualize the labelled images.

$ python3 main.py visualizer

Figure 3.7. Toolkit Visualizer

2. Clone the manual annotation tool from the GitHub repository.

$ git clone https://github.com/SaiPrajwal95/annotate-to-KITTI.git

Figure 3.8. Manual Annotation Tool – Cloning

3. Go to the annotate-to-KITTI directory.

$ cd annotate-to-KITTI

$ ls

Figure 3.9. Manual Annotation Tool – Directory Structure

4. Install the dependencies (OpenCV 2.4).

$ sudo apt-get install python-opencv

5. Launch the utility.

$ python3 annotate-folder.py

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02230-1.0

6. Set the dataset path and default object label.

Figure 3.10. Manual Annotation Tool – Launch

7. For annotation, run the script provided in the website below.

https://github.com/SaiPrajwal95/annotate-to-KITTI

3.3. Data Augmentation
Deep networks need a large amount of training data to achieve good performance. To train a neural network using
minimal training data, image augmentation is usually required to boost the performance. Image augmentation creates
training images through different processes such as random rotation, shifts, shears and flips, and others. Combinations
of multiple processes may also be used.

Figure 3.11. Augmentation Directory Structure

 Data_to_qvga.py: This file is the augmentation operations script.

3.3.1. Running the Augmentation

Run the augmentation using the following command:

$ python data_to_hpd.py --input <input_dataset_path> --output <output_dataset_path> --canvas_shift --brightness -
-contrast

Figure 3.12. Running the Augmentation

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 19

The data_to_hpd,py file contains additional optional flags as described below.

 --input – Input Dataset Path

 --output – Output Dataset Path

 --canvas_shift – Flag to add Canvas shifting augmentation

 --brightness – Flag to add brightness augmentation

 --contrast – Flag to add contrast augmentation

 --pixel_shift – Number of pixel shift in canvas shift augmentation

 --type – (kitti/pascal) type of input dataset (default kitti)

 --output_dimension – Expected output dimension in form of x, y (Default 64, 64)

 --visualize – Flag that saves images in /tmp/visualize with drawn box (Optional)

 --canvas_shift_percentage – Percentage of dataset to apply canvas shift augmentation

 --brightness_percentage – Percentage of dataset to apply brightness augmentation

 --contrast_percentage – Percentage of dataset to apply contrast augmentation

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02230-1.0

4. Training the Machine

4.1. Training Code Directory Structure

Figure 4.1. Training Code Directory Structure

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 21

4.2. Neural Network Architecture

4.2.1. Neural Network Architecture

This section provides information on the Convolution Network Configuration of the Human Presence Detection design.
The Neural Network model of the Human Presence Detection design uses VGG NN base model and the detection layer
of SqueezeDet model.

Table 4.1. Convolution Network Configuration of Human Presence Detection Design

Image Input (64 x 64 x 1)

Fire 1 Conv3 - 16 Conv3 - # where:

 Conv3 – 3 × 3 Convolution filter Kernel size

 # - The number of filter

For example, Conv3 - 16 = 16 3 × 3 convolution filter

BN – Batch Normalization

FC - # where:

 FC – Fully connected layer

 # - The number of output

BN

Relu

Maxpool

Fire 2 Conv3 - 16

BN

Relu

Fire 3 Conv3 – 32

BN

Relu

Maxpool

Fire 4 Conv3 – 32

BN

Relu

Fire 5 Conv3 – 32

BN

Relu

Maxpool

Fire 6 Conv3 – 44

BN

Relu

Fire 7 Conv3 – 48

BN

Relu

Maxpool

Conv12 Conv3 – 42

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02230-1.0

Figure 4.2. Model Layer Dimensions

 Human detection network structure consists of seven fire layers followed by one convolution layer. A fire layer
contains convolution, batch normalization, and relu layers. Pooling layers are present only in fire 1, fire 3, fire 5,
and fire 7. Layers fire 2, fire 4, and fire 6 do not contain pooling.

 Table 4.1 details the contents of the fire layers: convolution (conv), batch normalization (bn), and relu.

 Figure 4.2 shows the dimensions of each layer of the network.

 Layer information:

 Convolutional Layer
In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels) which convolves with input layer/image and generates activation map (such as
feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of these
filters can be thought of as feature identifiers, like straight edges, simple colors, curves, and other high-level
features. For example, the filters on the first layer convolve around the input image and activate (or compute
high values) when the specific feature (such as curve) it is looking for is in the input volume.

 Relu (Activation layer)
After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward.
The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear
operations during the conv layers (just element wise multiplications and summations).In the past, nonlinear
functions like tanh and sigmoid were used, but researchers found out that ReLU layers work far better because
the network is able to train a lot faster (because of the computational efficiency) without making a significant
difference to the accuracy. The ReLU layer applies the function f(x) = max (0, x) to all of the values in the input
volume. In basic terms, this layer just changes all the negative activations to 0.This layer increases the
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv
layer.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 23

 Pooling Layer
After some ReLU layers, programmers may choose to apply a pooling layer. It is also referred to as a down
sampling layer. In this category, there are also several layer options, with maxpooling being the most popular.
This basically takes a filter (normally of size 2 × 2) and a stride of the same length. It then applies it to the input
volume and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once we know that a specific feature is in the original input
volume (there will be a high activation value), its exact location is not as important as its relative location to
the other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost. The second is that it
will control over fitting. This term refers to when a model is so tuned to the training examples that it is not able
to generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100%
or 99% on the training set, but only 50% on the test data.

 BatchNorm
Batch normalization layer reduces the internal covariance shift. In order to train a neural network, we do some
preprocessing to the input data. For example, we could normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of
non-linear activation functions like the sigmoid function, assuring that all input data is in the same range of
values, and others.

But the problem appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt
themselves to a new distribution in every training step. This problem is known as internal covariate shift.
Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following below process during training time:

 Calculate the mean and variance of the layers input.

 Normalize the layer inputs using the previously calculated batch statistics.

 Scale Layer scales and shifts in order to obtain the output of the layer.
This makes the learning of layers in the network more independent of each other and allows you to be care
free about weight initialization, works as regularization in place of dropout and other regularization
techniques.

The above architecture provide nonlinearities and preservation of dimension that helps to improve the robustness of the
network and control over fitting.

4.2.2. Human Presence Detection Network Output

From the input image model first extracts feature maps, overlays them with a W × H grid and at each cell computes K
pre-computed bounding boxes called anchors. Each bounding box has the following:

 Four scalars (x, y, w, h)

 A confidence score (Pr(Object) ×IOU)

 C conditional class probability

 The current model architecture has a fixed output of W×H×K(4+1+C). Where,

 W, H = Grid Size

 K = Number of Anchor boxes

 C = Number of classes for which we want detection

 The model has total 672 output values. It is derived from following:

 4 × 4 grid with 7 anchor boxes per grid an 6 values per anchor box. It consists of:

 4 bounding box coordinates (x, y, w, h)

 1 class probability

 1 confidence score

In total, 4 × 4 × 7 × 6 = 672 output values.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02230-1.0

Figure 4.3. Model Output Format

4.2.2.1. Model Output Format on Hardware

 On hardware, human presence detection demo works based on confidence score. So, other output values like class
probability and bbox coordinates are byproduct which are not used at all.

 If the last layer in the network is Convolution, CNN IP supports partial output processing based on given filter
range. The sensAI tool provides option to specify the required filter range from the convolution layer output. This
will also result in hardware performance improvement.

 In Human Presence demo, last convolution layer has 42 filters as described in the Neural Network Architecture
section. Out of 42, first seven filters provides class probability values, the next seven are for confidence score, and
rest for bbox coordinates.

 By configuring output depth range as shown in Figure 4.4, CNN only provides 112 confidence values as output.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 25

4.2.3. Training Code Overview

Figure 4.4. Training Code Flow Diagram

Training code can be divided into below parts:

 Model config

 Model building

 Model freezing

 Data preparation

 Training for overall execution flow.

Details of each can be found in subsequent sections.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02230-1.0

4.2.3.1. Model Configuration

Demo uses Kitti dataset and SqueezeDet model. kitti_squeezeDet_config.py maintains all the configurable parameters
for the model. Below is summary of configurable parameters:

 Image size

 Change mc.IMAGE_WIDTH and mc.IMAGE_HEIGHT to configure Image size (width and height) in
src/config/kitti_squeezeDet_config.py

Figure 4.5. Code Snippet: Input Image Size Configuration

 Since there are four pooling layers, grid dimension would be H = mc.IMAGE_WIDTH/(2 ^ 4) and W =
mc.IMAGE_HEIGHT/(2 ^ 4). Update grid size anchors per grid in set_anchors() in
src/config/kitti_squeezeDet_config.py..

For example,. if Image size is 128 x 128, H = 128 / 16 = 8 and W = H = 128 / 16 = 8

Figure 4.6. Code Snippet: Input Image Size Configuration (Grid Sizes)

 Batch size

 Change mc.BATCH_SIZE in src/config/kitti_squeezeDet_config.py to configure batch size.

Figure 4.7. Code Snippet: Batch Image Size Configuration

 Anchors per grid

 Change mc.ANCHOR_PER_GRID in src/config/kitti_squeezeDet_config.py to configure anchors per grid.

Figure 4.8. Code Snippet: Anchors Per Grid Configuration #1

 Change hard coded anchors per grid in set_anchors() in src/config/kitti_squeezeDet_config.py. Here B (value 7)
indicates anchors per grid.

Figure 4.9. Code Snippet: Anchors Per Grid Configuration #2

 anchor_shapes variable of set_anchors() in src/config/kitti_squeezeDet_config.py indicates anchors width and
heights. Update it based on anchors per grid size changes.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 27

Figure 4.10. Code Snippet: Anchors Per Grid Configuration #3

 Training parameters

 Other training related parameters like learning rate, loss parameters and different thresholds can be
configured from src/config/kitti_squeezeDet_config.py.

Figure 4.11. Code Snippet: Training Parameters

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02230-1.0

4.2.3.2. Model Building

SqueezeDet class constructor builds model which can be divided in below sections:

 Forward graph

 Interpretation graph

 Loss graph

 Train graph

 Visualization graph

Forward graph

 Forward graph consists of seven fire layers.

 Each fire layers contains a 3 × 3 convolution layer with padding=‘SAME' and stride=1, a batch normalization
layer, ReLU layer and an optional max pool layer. Out of these 3 fire layers, fire 2, fire 4 and fire 6 layers do not
use max pool.

 These seven fire layer is followed by a 3 × 3 convolution layer with padding=‘SAME' and stride=1.

 Filter sizes of each convolutional blocks is mentioned in Table 4.1, which can be configured by changing values of
depth shown in Figure 4.12.

Figure 4.12. Code Snippet: Forward Graph Fire Layers

Figure 4.13. Code Snippet: Forward Graph Last Convolution Layer

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 29

Figure 4.14. Code Snippet: Quantization Layer (Disabled)

Graph interpretation

The Interpretation Graph consists of the following sub-blocks::

 interpret_output
As mentioned in Figure 4.3, model output is 4 × 4 × 42. There are 42 channels in last layers which contain
probability for the class, confidence score and bounding boxes values.

This block interprets output from network and extracts predicted class probability, confidence score and bounding
box values. From training code output value processing perspective, for each grid,

 First N values (0:N-1) contains probabilities. Where N is number of anchor boxes. For N = 7, this ranges from 0
to 6 (including 6).

 Next N values (N:2N – 1) contains confidence score. Where N is number of anchor boxes. For N = 7, this ranges
from 7 to 13 (including 13).

 Last 2N * 4 values contains bounding boxes information. Where N is number of anchor boxes. For N = 7, this
ranges from 14 to 41 (including 41).

The code below shows how output from conv12 layer (4d array of batch size x 4 × 4 × 42) is sliced with proper indexes
to get all values of probability, confidence and coordinates.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02230-1.0

Figure 4.15. Code Snippet: Interpret Output Graph

For confidence score, value should be between 0 and 1, so sigmoid is used.

For predicting the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Applying softmax
makes it a better probability distribution.

 Bbox – This block calculates bounding boxes based on anchor box and predicated bounding boxes.

 IOU – This block calculates Intersection Over Union for detected bounding boxes and actual bounding boxes.

 Probability – This block calculates detection probability and object class.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 31

Loss graph

This block calculates different types of losses which need to be minimized. There are three types of losses which are
considered for calculation:

 Class probability
The class loss function is just cross-entropy loss for classification for each box to do classification (predicted class
vs. actual class), as we would for image classification.

Figure 4.16. Code Snippet: Class Loss

 Bounding box
This loss is regression of the scalars for the anchors

Figure 4.17. Code Snippet: Bbox Loss

 Confidence score
To obtain meaningful confidence score, each box’s predicted value is regressed against the Intersection over Union
of the real and the predicted box. During training, compare the ground truth bounding boxes with all anchors and
assign them to the anchors that have the largest overlap (IOU) with each of them.

The reason being is to select the closest anchor to match the ground truth box such that the transformation
needed is reduced to minimum. Equation evaluates to 1 if the k-th anchor at position-(i, j) has the largest overlap
with a ground truth box, and to 0 if no ground truth is assigned to it. This way, include only the loss generated by
the responsible anchors.

As there can be multiple objects per image, normalize the loss by dividing it by the number of objects
(self.num_objects).

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02230-1.0

Figure 4.18. Code Snippet: Confidence loss

Train graph

This block is responsible for training the model with Momentum optimizer to reduce all losses.

Visualization graph

This provides visualization of detected results.

4.3. Training from Scratch and/or Transfer Learning
To train the machine:

1. Go to the top/root directory of the Lattice training code from command prompt.

The Model works on 64 × 64 input resolution for training.

Current human detection training code uses mean = -128 and scale = 1) in pre-processing step. Mean and scale can
be changed in training code @src/dataset/imdb.py as shown in Figure 4.19.

Figure 4.19. Training Code Snippet for Mean and Scale

The dataset path can be set in the training code @src/dataset/kitti.py and can be used in combination with the --
data_path option while triggering training using train.py to get the desired path. For example, you can have
<data_path>/training/images and <data_path>/training/labels.

Figure 4.20. Training Code Snippet for Dataset Path

2. Modify the training script.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 33

The training script at @scripts/train.sh is used to trigger training. Figure 4.21 shows the input parameters which
can be configured.

Figure 4.21. Training Input Parameter

 $TRAIN_DATA_DIR – dataset directory path. /data/humandet is an example.

 $TRAIN_DIR – log directory where checkpoint files are generated while model is training.

 $GPUID – gpu id. If the system has more than one gpu, it indicates the one to use.

 --summary_step – indicates at which interval loss summary should be dumped.

 --checkpoint_step – indicates at which interval checkpoints will be created.

 --max_steps – indicates the maximum number of steps for which the model is trained.

3. Execute the run command script which starts training.

Figure 4.22. Execute Run Script

4. Start TensorBoard by running the command below.
$ tensorboard –logdir=<log directory of training>

For example: tensorboard –logdir=’./logs/’

5. Open the local host port on your web browser.

6. Check the training status on TensorBoard.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02230-1.0

Figure 4.23. TensorBoard

7. Check if the checkpoint, data, meta, index, and events (if using TensorBoard) files are created at the log directory.
These files are used for creating the frozen file (*.pb).

Figure 4.24. Example of Checkpoint Data Files at Log Folder

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 35

5. Creating Frozen File and Generating C Array
This section describes the procedure for freezing the model, which is aligned with the Lattice sensAI tool. Perform the
steps below to generate the frozen protobuf file:

5.1. Generating the Frozen .pbtxt File
Generate .pb file from latest checkpoint using the command below from the training code’s root directory.
$ python src/genpb.py –ckpt_dir=”<log directory>” --freeze

For example, python src/genpb.py –ckpt_dir ’./logs/humandet/train’ --freeze

Figure 5.1. pb File Generation from Checkpoint

Figure 5.2 shows the generated .pbtxt file.

Figure 5.2. Frozen .pbtxt File

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02230-1.0

5.2. Generating the .pb, .tflite, and .cc Files from Checkpoints
To generate pb, tflite, and carray files from checkpoints:

1. Open @ckpt_to_cc.sh and modify configurations if needed.

You may change the following items:

 TRAIN_DIR

 CHKPOINT_DIR

 CHKPOINT_FILE

Note: If you do not change logdir and model architecture No need to change anything in below file.

Figure 5.3. ckpt_to_cc.sh File

2. Run ckpt_to_cc.sh file using the Bash command.

Important: In this stage, use the environment with TensorFlow 2.2.0 described in the Creating the TensorFlow Lite
Conversion Environment. section.

$ bash ckpt_to_cc.sh

Figure 5.4. Running ckpt_to_cc.sh

After a sucessful run, the.pb, .tflite, and .cc files are created as shown below.

Figure 5.5. Generated Files

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 37

6. Generating the Firmware
This section describes the procedure for generating the firmware using Lattice Propel 2.0.

To generate the firmware:

1. Open Lattice Propel.

Figure 6.1. Lattice Propel Main Window

2. Open a Lattice Propel C/C++ project by clicking File > Import.

Figure 6.2. Propel Import Project

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02230-1.0

3. Select Existing Code as Makefile Project in the Import dialog box and click Next.

Figure 6.3. Open Makefile Project

4. Browse for the Propel project as shown in Figure 6.4.

Figure 6.4. Browse Project

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 39

5. Right-click the project and select Clean Project.

Note:

If an error occurs related to make file, perform the following steps:

a. Go to the project properties.

b. Go to C/C++ Build > Settings.

c. Click Apply and then close the dialog box.

Figure 6.5. Clean Project

6. After related changes (Optional), build the project by right-clicking the project and selecting Build Project.

Figure 6.6. Build Project

The procedure produces intermediate files:

 Sample_Data.mem is used in bitstream generation for memory initialization.

 Risckv-blink.bin is later flashed on hardware along with the bitstream.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02230-1.0

7. Hardware Implementation

7.1. Top Level Information

7.1.1. Block Diagram

HM0360
Camera

cam_controller

I2C Control

Video Path

64 x 64 Image

AHB-L M AHB-L S

Camera
register bank

Crop and
downscale

System
Memory
AHB-L S

AHB Lite
Interconnect

AHB-L M

CNN
Co-processor

RISC-V
CPU

SPI Flash
Command
code

*AHB-L M - AHB Lite Master
*AHB-L S - AHB Lite Slave

Voice and Vision Machine Learning
CrossLink-NX Rev B Board

External
Flash

Human
Presence
Output

RISC-V based
SoC Design

Figure 7.1. Top Level Design Block Diagram

7.1.2. Operational Flow

This section describes the flow of data across the CrossLink-NX Voice and Vision Machine Learning (Revision B) Board.

1. RISC-V based SoC Design is configured with the help of a binary (BIN) file. The BIN file is a command sequence code
which is generated by the Lattice Propel SDK software.

2. Command code is written to SPI Flash controller in SoC Design top before the execution of RISC-V CPU starts.

3. The raw image data is captured using external HM0360 Camera which is configured by I2C Control module and
converted into RAW8 data type by Video path modules present in cam_controller block.

4. This RAW8 image data is further downscaled to 64x64 image resolution by Crop Downscale module. This data is
written into System memory of SoC Design through an AHB Lite interface.

5. After command code and input image data both are available, they are received by RISC-V CPU.

6. Now the RISC-V and the CNN Co-processor collectively work to provide the inference results.

7. The RISC-V further performs post processing on these inference values and indicates human presence.

8. The handshake between external Camera HM0360 and RISC-V CPU present in SoC Design is managed by Camera
controller register bank module with the help of an AHB Lite interface.

9. Moreover, the human presence can be observed by the printed values on the UART terminal using Lattice Propel
SDK Software. The human presence output can also be observed by LED output on the board.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 41

7.1.3. Core Customization

The AHB Lite MASTER & SLAVE interface parameters used in design top hpd_tflite_top.v module are shown below in
Table 7.2. These are constant parameters and not to be modified.

Table 7.2. Top Design Parameters

Constant Default (Decimal) Description

MASTER_HADDR_WIDTH 32 Indicates width of AHB Lite Master Address bus signal.

MASTER_HWDATA_WIDTH 32 Indicates width of AHB Lite Master Data Write bus signal.

MASTER_HRDATA_WIDTH 32 Indicates width of AHB Lite Master Data read bus signal.

MASTER_HBURST 3 Indicates width of AHB Lite Master Burst type signal.

MASTER_HTRANS 2 Indicates width of AHB Lite Master Transfer type signal.

MASTER_HSIZE 3 Indicates width of AHB Lite Master Transfer size signal.

SLAVE_DATA_WIDTH 32 Indicates width of AHB Lite Slave Data Bus.

SLAVE_ADDR_WIDTH 32 Indicates width of AHB Lite Slave Address Bus.

7.1.4. Pre-processing CNN

The pre-processing of image captured by external camera is handled by cam_controller module. The Video path
modules receive the real time camera input data through MIPI DPHY lines.

Output from Video path module is a stream of RAW8 data that reflects the camera image which is given to crop and
downscale module.

The Crop downscale module processes that image data and generates downscaled input of 64x64 image data for CNN
Co-processor. The Pre processing flow is explained below.

RAW8 data values for each pixel are fed serially line by line for an image frame. These values are considered as valid
only when horizontal and vertical masks are inactive. Mask parameters set to mask out boundary area of resolution
640 × 480 are shown below in Figure 7.2.

Left masking = 64 and Right masking = 576 (Obtained as 64+512)

Top masking = 1 and Bottom masking = 480 (Obtained as 1 to 480 lines)

Figure 7.2.Masking

This 512 × 480 frame block is downscaled into 64 × 60 resolution image as shown in Figure 7.3 by accumulating 8 × 8
pixels into a single pixel. For example, 512/8 × 480/8 = 64 × 60).

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02230-1.0

The actual resolution of downscaled image required by CNN is 64x64. So in order to obtain extra 4 vertical lines required
in current 64x60 image, total four more lines are padded to 64x60 image and made to 64x64. Hence upper two lines and
lower two lines are added as all values 8’d0 (i.e; 64 horizontal pixels x extra 4 lines.)

Figure 7.3. Downscaling

This accumulated value is written into Line Buffer. Line Buffer is a True Dual-Port RAM. Accumulated RAW8 pixel values
for 8 × 8 grid are stored in the same memory location.

When Data is read from memory, the RAW8 value is divided by 64 (that is. the area of 8 × 8 grid) to take the average of
8 × 8 grid matrix.

For CNN 64x64 Data is then stored at dedicated Base Address location in System memory present in SoC Design through
AHB Lite MASTER (cam_controller) to AHB Lite SLAVE (sysmem0_inst) interface.

7.1.5. Camera Controller Register Bank with AHB Lite Slave

This module basically looks after the handshake required to maintain a continuous flow of downscaled image data from
Crop downscale to RISC-V CPU present in SoC Design top.

When 64 × 64 downscaled data is received by RISC-V CPU after reading it from System memory, the response from RISCV
has to be informed to Crop downscale module so that it can start operating on image data of next frame and store it
back again in the System memory. This operation will be going on continuously.

This response exchange happens through the AHB Lite MASTER in SoC Design connected with AHB Lite SLAVE interface
present in this module via AHB Lite interconnect.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 43

As shown in Table 7.3, mainly four registers are used for the handshake development in this module.

Table 7.3. Camera Controller Registers

Register
AHB Address
Offset

Access
Type

Bit Description

CAM_CFG_REG 32’h00108000 R/W
[0] –
cam_sign_mode

1’b0 – Unsigned, Input range is [0,255]

1’b1 – Signed, Input range is [-128,127]

CAM_CTRL_REG 32’h00108004 R/W [0] – cnn_rdy

1’b0 – RISC-V Processor is busy

1’b1 – RISC-V Processor is ready, Capture
next frame

CAM_STATUS_REG 32’h00108008 R
[0] –
cam_data_rdy

1’b0 – New frame data absent from
cam_controller.v

1’b1 – New frame data present in
System memory from cam_controller.v

CAM_DATA_ADDR_REG 32’h0010800C R/W
[31:0] –
cam_data_addr

Memory address for storing the 64x64
frame data.

Implemented Handshake Flow

The following describes the handshake flow:

1. RISC-V configures cam_sign_mode and cam_data_addr.

2. RISC-V then asserts cnn_rdy when it is ready to process a new frame.

3. Camera controller captures a new frame and stores it in memory, whose address is specified by cam_data_addr.

4. Camera controller asserts cam_data_rdy.

5. RISC-V clears cnn_rdy bit.

6. Camera Controller clears cam_data_rdy bit

7. Repeat again from step 2.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02230-1.0

7.2. SoC Design Information
The RISC-V based SoC Top level Design is created using software Lattice Propel Builder Version 2.0. The Device Family
used to build the Design is LIFCL – 40 – 8MG289C. The top block diagram is shown below in Figure 7.4.

Figure 7.4. SoC Design Top Block Diagram

The modules and respective IPs used to build this SoC Design are shown below in Table 7.4.

Table 7.4. IP used in Lattice Builder SoC Design

Sr No Design Blocks IP IP Version

1 cpu0_inst RISC-V MC v1.1.0

2 cnn_coprocessor CNN_Coprocessor_Unit v1.0.1

3 osc0_inst OSC v1.0.1

4 spi_flash_controller_mx SPI_FLASH_CONTROLLER_MX v1.0.0

5 sysmem0_inst System_Memory v1.0.2

6 ISR_RAM_inst System_Memory v1.0.2

7 gpio0_inst GPIO v1.3.0

8 uart0_inst UART v1.1.0

9 apb0_inst APB Interconnect v1.0.4

10 ahbl0_inst AHB Lite Interconnect v1.1.2

11 ahbl2apb0_inst AHB Lite to APB Bridge v1.0.4

The CNN_Coprocessor_Unit and SPI_FLASH_CONTROLLER_MX IPs are to be added using “Install a user IP” option in
IP Catelog. Other mentioned IPs are available in the Lattice Propel Builder IP Catelog. GPIO, UART and RISC-V IPs have
to be downloaded and installed from “IP on Server”. Refer to the IP Installation in Lattice Radiant or Lattice Propel
Software section for IP installations.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 45

7.2.1. Opening the SoC Project

To open an SoC project:

1. In the Lattice Propel Builder main interface, choose File > Open Design.The Open sbx dialog box is diaplayed.

2. From the SoC project path, as shown in Figure 7.5, select the .sbx file hpd_tflite_nx_vvml /soc / soc_main_system /
soc_main_system.sbx.

Figure 7.5. Open SoC Project

7.2.2. Generating RTL File from SoC

This section provides the steps in creating the RTL file for the SoC design after opening the .sbx project and applying
modifications, if any.
To generate the RTL file:

1. Right-click the Schematic window and choose Relayout.

2. Click the Validate Design button. This starts Design Rule Check (DRC) to see if there are unwanted connections or
overlapping address space. The DRC results is displayed in the Tcl Console window.

3. Click the Generate button. This saves the Propel Builder design and runs the DRC.

4. After the design is generated and validated without any errors, click the Save Design button.

5. The SoC Design RTL file is created in hpd_tflite_nx_vvml /soc / soc_main_system / soc_main_system.v.

7.2.3. Initializing Memory in SoC Design

The memory file basically contains the data section addresses for the firmware (BIN file). This section provides the
steps in initializing the system memory in the SoC Design after opening the .sbx project in Lattice Propel Builder.
Perform this procedure before generating RTL from SoC as discussed in the Generating RTL File from SoC section.

To initialize system memory:

1. Find the memory initialization file in hpd_tflite_nx_vvml /sw/TF_lite_RiscV_Acc/sample_data.mem.

2. In the Schematic window of Lattice Propel Builder, double click the sysmem0_inst module.

3. The System Memory Module/IP Block wizard opens as shown in Figure 7.6.

4. Select the Initialize memory option.

5. In Initialization File, browse and select the sample_data.mem file and generate the IP Block again.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02230-1.0

6. After the system memory IP Block is generated, follow the steps mentioned in the Generating RTL File from SoC
section again, This generates the updated RTL file for the SoC Design.

Figure 7.6. Initialize Memory File in SoC Design

For detailed information on generating SoC Design from scratch by adding components and connections in Lattice
Propel Builder, refer to the Lattice-Propel-Builder-2.0-User-Guide (FPGA-UG-02127).

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53221

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 47

8. Creating FPGA Bitstream file

8.1. Generating the Bitstream File
This section provides the procedure for creating your FPGA bitstream file using Lattice Radiant Software.

To generate the FPGA bitstream file:

1. Open Lattice Radiant Software version 2.2 as shown in Figure 8.1.

Figure 8.1. Lattice Radiant Start Page

2. Click File > Open Project.

3. Open the Lattice Radiant project file soc_main_system.rdf from hpf_tflite_nx folder. As shown in Figure 8.2, you can
also open project by clicking the folder shown in the Open Project dialog box.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-RD-02230-1.0

Figure 8.2. Lattice Radiant – Open Project

4. After opening the project file, verify the items below as shown in Figure 8.3.

 Design loaded with zero errors message shown in the Output pane.

 Check for the information below in the project summary window.

 Part Number : LIFCL-40-8MG289C

 Family : LIFCL

 Device : LIFCL-40

 Package : CSBGA289

Figure 8.3. Lattice Radiant – Design Load Check after Opening Project File

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 49

5. If the design is loaded without errors, click the bitstream generation button as shown in Figure 8.4.

Figure 8.4. Lattice Radiant –Bitstream Generation Button

6. After generating the bitstream, the Lattice Radiant tool displays the Saving bit stream in … message in Reports
window. Generated bitstream can be found in “Implementation – impl1 folder” shown in Figure 8.5.

Figure 8.5. Lattice Radiant – Bit File Generation Report Window

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

50 FPGA-RD-02230-1.0

8.2. IP Installation in Lattice Radiant or Lattice Propel Software
After loading the design without any errors, peform the steps below to uninstall an old IP or install the latest version of
an IP.

To uninstall an existing IP:

1. Click IP Catelog and go to IP > DSP in the IP tree.

2. In the IP tree, go to IP > DSP and select the IP to be uninstalled.

3. Click the Delete button as highlighted in Figure 8.6.

4. In the Uninstall IP prompt, click Yes.

Figure 8.6. Lattice Radiant or Lattice Propel – Uninstall Existing IP

To install a new IP:

1. Select Install a User IP in IP Catelog.

2. In the Select user IP package file to install dialog box, select the IP package (.ipk) to be installed and click Open.

3. In the IP License Agreement window, select Accept.

Figure 8.7. Lattice Radiant or Lattice Propel – Installing New IP

You can also download and install required IPs from IP Catelog > IP on server option. Then click the Refresh button to
see the installed versions in IP on Local space.

After the IP is installed, the bitstream can be generated again by clicking the Bitstream generation button.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 51

9. Programming the Demo

9.1. Erasing the CrossLink-NX VVML Contents Prior to Reprogramming
Follow this procedure to initially erase the old programmed data to CrossLink-NX Voice and Vision ML board before re-
programming the new generated Bit file with required BIN to SPI Flash. Keep the board powered ON when re-
programming the SPI Flash.

To erase the CrossLink-NX VVML Board contents.

1. Launch the Lattice Radiant Programmer with Create a new blank project.

Figure 9.1. Lattice Radiant Programmer – Default Screen

2. Select the Device options as shown in Figure 9.2.

Figure 9.2. Radiant Programmer – Device Selection

4. Right-click on Operations and select Device Properties.

5. Select the options shown in Figure 9.3 to initially erase the previously programmed contents.

6. Click OK to close the Device Properties dialog box.

7. Press and hold the SW5 button on the board and click the Program button to start the erase operation.

8. Release the button after the Operation Successful message is displayed in output console as shown in Figure 9.6.

The SW5 program button and the SW4 reset button on the CrossLink-NX VVML Board are shown in Figure 9.4.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

52 FPGA-RD-02230-1.0

Figure 9.3. Lattice Radiant Programmer – Erase Previous Content

Reset Push Button SW4

Program Push Button SW5

Figure 9.4. CrossLink-NX VVML Board – SW5 and SW4 Buttons

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 53

9.2. Programming the CrossLink-NX VVML Board
This sections provides the steps to program the generated Bitstream file and the firmware BIN file to VVML board.
Ensure that the CrossLink-NX VVML Board is erased before performing the procedure.

9.2.1. Programming the Generated Bitstream File

To program the generated bitstream file to the CrossLink-NX VVML Board.

1. In the Lattice Radiant Programmer main interface, right click on Operation and select Device Properties to open
the Device Properties dialog box.

2. Select the options as shown in Figure 9.5.

3. For Programming File, browse and select the generated Bitstream file soc_main_system_impl_1.bit from “impl1”
folder.

Figure 9.5. Lattice Radiant Programmer – Device Properties to Flash Bit File

4. Click Load from File to update the Data file size (Bytes) value.

5. Ensure that the following addresses are correct and Click OK.

 Start Address (Hex): 0x00000000

 End Address (Hex): 0x000F0000

6. Press the SW5 button on the board and click the Program button to start the Bit Flash operation .

7. Release the button after the Operation Successful message is displayed on the Lattice Radiant log window as
shown in Figure 9.6.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54 FPGA-RD-02230-1.0

Figure 9.6. Lattice Radiant Programmer – Output Console

9.2.2. Programming the sensAI Firmware BIN File

To program the sensAI firmware BIN file to the CrossLink-NX VVML board:

1. In the Lattice Radiant Programmer main interface, right click on Operation and select Device Properties to open
the Device Properties dialog box.

2. Select the options as shown in Figure 9.7.

3. In Programming File, browse and select the firmware BIN file riscv-blink.bin from the prebuilt folder.

Figure 9.7. Lattice Radiant Programmer – Device Properties to Flash Bin File

Note: Do not click on Load from File option.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 55

4. Ensure that the following addresses are correct and click OK.

 Start Address (Hex): 0x00300000

 End Address (Hex): 0x00400000

5. Press the SW5 push button on board and click the Program button to start the Bin Flash operation .

6. Release the button after the Operation Successful message is seen on the Lattice Radiant log window as shown in
Figure 9.6.

Note: After programming the Bit file and Bin file, refer to the Observing UART Output on Lattice Propel SDK section to
observe the UART output. If nothing is printed in the UART terminal, erase the old contents loaded to the board as
detailed in the Programming the Generated Bitstream File section. This time, select Erase,Program,Verify Quad 1
under Device Operation. This option enables the SPI on the board and UART outputs become visible. This option
should be used only once if the UART output is unavailable. Continue with the rest of the steps to load the Bit file.

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

56 FPGA-RD-02230-1.0

10. Observing UART Output on Lattice Propel SDK
This section provides the steps to observe human presence output in the UART Terminal using the Lattice Propel SDK
Software as shown in Figure 10.1.

To observe human presence output:

1. After the Bit and the Bin files are programmed to the CrossLink-NX VVML Board, power OFF the board.

2. Open Lattice Propel SDK version 2.0 Software tool.

3. The Lattice Propel Launcher window opens and prompts for the Workspace location. Launch the tool.

4. Click the Terminal tab as shown in Figure 10.1.

5. If the Terminal window is not visible after opening Lattice Propel SDK Tool, you can open the Terminal from the
Toolbar by selecting Window > Show view > other > Terminal (folder) > Terminal.

Figure 10.1. Opening a Terminal in Propel SDK

6. Click the Launch Terminal button to open a Terminal.

7. The Launch Terminal dialog box is displayed.

8. Power ON the board by connecting to the system

9. Select the settings in the Terminal Dialog Box as shown in Figure 10.2. Always select the highest numbered COM
Port available in Serial Port option. For example if COM1, COM6, COM7 are visible, select COM7.

10. Click OK.

11. Reset the Board using the SW4 button and observe the UART values printed in the COM7 space.

http://www.latticesemi.com/legal

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 57

Figure 10.2. Lattice Propel Launch UART Terminal

http://www.latticesemi.com/legal

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

58 FPGA-RD-02230-1.0

References
 Lattice-Propel-Builder-2.0-User-Guide

 Lattice-Propel-SDK-2.0-User-Guide

 For complete information on Lattice Radiant Project-Based Environment, Design Flow, Implementation Flow,
Tasks, and Simulation Flow, see the Lattice Radiant Software 2.2 User Guide.

 For more information on the CrossLink NX Voice and Vision Machine Learning FPGA Board, visit CrossLink-NX Voice
and Vision Machine Learning Board.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53221
https://www.latticesemi.com/view_document?document_id=53221
https://www.latticesemi.com/view_document?document_id=53222
https://www.latticesemi.com/view_document?document_id=53222
https://www.latticesemi.com/view_document?document_id=53043
https://www.latticesemi.com/products/developmentboardsandkits/crosslink-nxvoiceandvisionmachinelearning
https://www.latticesemi.com/products/developmentboardsandkits/crosslink-nxvoiceandvisionmachinelearning

 RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02230-1.0 59

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

60 FPGA-RD-02230-1.0

Revision History

Revision 1.0, June 2021

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	RISC-V SoC-Based Human Presence Detection using CrossLink-NX VVML Board
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting up the Basic Environment
	2.1. Software and Hardware Requirements
	2.1.1. Software
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	2.2.1.1. Installing the NVIDIA CUDA Toolkit
	2.2.1.2. Installing the cuDNN

	2.2.2. Setting Up the Environment for Training and Model Freezing Scripts
	2.2.2.1. Installing the Anaconda Python

	2.2.3. Installing TensorFlow version 1.14
	2.2.4. Installing the Python Package

	2.3. Creating the TensorFlow Lite Conversion Environment.

	3. Preparing the Dataset
	3.1. Downloading the Dataset
	3.2. Visualizing and Tuning/Cleaning Up the Dataset
	3.3. Data Augmentation
	3.3.1. Running the Augmentation

	4. Training the Machine
	4.1. Training Code Directory Structure
	4.2. Neural Network Architecture
	4.2.1. Neural Network Architecture
	4.2.2. Human Presence Detection Network Output
	4.2.2.1. Model Output Format on Hardware

	4.2.3. Training Code Overview
	4.2.3.1. Model Configuration
	4.2.3.2. Model Building
	Forward graph
	Graph interpretation
	Loss graph
	Train graph
	Visualization graph

	4.3. Training from Scratch and/or Transfer Learning

	5. Creating Frozen File and Generating C Array
	5.1. Generating the Frozen .pbtxt File
	5.2. Generating the .pb, .tflite, and .cc Files from Checkpoints

	6. Generating the Firmware
	7. Hardware Implementation
	7.1. Top Level Information
	7.1.1. Block Diagram
	7.1.2. Operational Flow
	7.1.3. Core Customization
	7.1.4. Pre-processing CNN
	7.1.5. Camera Controller Register Bank with AHB Lite Slave

	7.2. SoC Design Information
	7.2.1. Opening the SoC Project
	7.2.2. Generating RTL File from SoC
	7.2.3. Initializing Memory in SoC Design

	8. Creating FPGA Bitstream file
	8.1. Generating the Bitstream File
	8.2. IP Installation in Lattice Radiant or Lattice Propel Software

	9. Programming the Demo
	9.1. Erasing the CrossLink-NX VVML Contents Prior to Reprogramming
	9.2. Programming the CrossLink-NX VVML Board
	9.2.1. Programming the Generated Bitstream File
	9.2.2. Programming the sensAI Firmware BIN File

	10. Observing UART Output on Lattice Propel SDK
	References
	Technical Support Assistance
	Revision History

