Auto Parallel Parking car

Team 2

Name ID
Alaa Amer Mohammed 20200090
Sama Hussien Abo-Elala 20200232
Marwa Shaaban Eid 20200516
Mina Makram Fathy 20210603

Under the supervision of

Dr/Mustafa Shiple

Abstract

The purpose of this project is to create a simple prototype parking system capable of
parallel parking on its own. This system would consist of a number of proximity
sensors as well as a main processing unit (micro controller) that would operate the
vehicle. The project is separated into two parts: the hardware (vehicle itself) and the
software that operates it. Parking is handled with the help of three distance sensors
and is located utilizing a Wi-Fi module. The automatic parking system gathers
information about available parking spaces, processes it, and then places the
automobile in a certain location. It is unavoidable for people to keep up with
evolving technology, and in general, people are having difficulty parking their
vehicles in parking spaces. An Arduino microprocessor, which is attached to these
sensors, receives the output voltages from the sensors. The car then travels in
accordance with the sensor values, and it is directed by its two front wheels.The
wheels of the car are powered by a simple electric motor with a driver (H-bridge) .
The H-bridge allows the motor to change direction and rotate at different
speeds.Finally, the automatic car parking locates the nearest parking place for our
user. This paper has provided a viable solution to the parking issue.

Background
Materials:

Arduino Uno

L298N to Motor driver

3Ultra sonic sensors

Breadboard 400 points

Battery Case Holder 4 cells

ON/OFF Switch 2 Pins Dim: 17x11mm

4Rechargeable Li-ion Battery 18650 (3.7V, 2400mAh) Full Charge 4.2V
2 wheels car with their DC-motors

10”Wires 20 Cm*“ Male To Male Pins
10”Wires 20 Cm*“ Male to Female Pins
10”Wires 20 Cm*“ Female To Female Pins

Arduino Uno

Microprocessor board operates as the 'brain' of this project. The board is made up of
the following components: a little chip, an ATmega328 microprocessor—wired in a
small circuit that connects it to a USB port for uploading sketches, a battery port for
receiving power, and input/output pins. The board in this project receives data from
the range finders and uses pulse width modulation to operate each of the car's two
wheels. THE MENLO ROUNDTABLE 61 The Arduino microprocessor is powered by a
Processing language sketch written in the free and open source "Integrated
Development Environment." When the sketch is downloaded to the Arduino board,
it is translated into C and sent to the avr-gcc compiler, a piece of software that does
the final translation into the language understood by the micro controller. The UNO
board has 14 digital input/output pins (numbered 0 through 13) that can be used for
both input and output, including pulse width modulation. The board is powered by a
USB connection to a computer or an external power supply. It can be powered by an
external power supply ranging from 6 to 20 volts; however, more than 7 volts is
preferred for a consistent 5V supply from the 5V pin. The front of the Arduino UNO is
shown in Figure 1.

Figure 1

L298N to Motor driver

H-Bridge Integrated Circuit

A basic H-Bridge is made up of four switches that allow electricity to be applied in
both directions across a load. These switches are frequently two PNP and two NPN,
as illustrated in the diagram below.

vee

I

TRANSISTOR1

D1

DC MOTOR

TRANSISTOR3

TRANSISTOR2

D2

n@:!
HUAH

TRANSISTOR4

I

Figure 2: A transistorized H-bridge

The L298N H-Bridge chip in this project regulates both the direction and speed of
the automobile engine. The H-Bridge requires a minimum of 12V and can function at
voltages as high as 55V. The motor's direction is controlled by setting a digital pin on
the Arduino to high or low. The motor's speed is controlled by pulse width motion.

Ultra sonic sensor

The purpose of an ultrasonic sensor is to detect the distance of a target object by
producing ultrasonic sound waves and translating the reflected sound into an
electrical signal. Ultrasonic waves travel at a faster rate than audible sound. The two
basic components of ultrasonic sensors are the transmitter, which generates sound
using piezoelectric crystals, and the receiver, which encounters the sound after it has

traveled to and from the target.

Figured:Ultrasonic Sensors

Ultrasonic sensors work by generating a sound wave at a frequency that is higher
than the human hearing range. The sensor's transducer acts as a microphone to
receive and transmit ultrasonic sound. Our ultrasonic sensors, like many others, use
a single transducer to send a pulse and receive the echo. By measuring the time
interval between delivering and receiving the ultrasonic pulse, the sensor estimates
the distance to a target. The operation of this module is simple. It releases a 40kHz
ultrasonic pulse that passes through the air and bounces back to the sensor if it finds
a barrier or object.You may calculate the distance by multiplying the trip time by the
speed of sound.The ultrasonic sensor is shown in Figure 5.

Those are our main hardware components we'll be using through our project the
arduino is micro controller , H-bridge to control the wheels direction and speed and
the ultrasonic sensors to detect obstacles, parking slot and help park properly.

Proposed Idea

First Prototype The first prototype of the car was built as a first attempt to wire
motors with transistors and control them with an Arduino. It was also a first attempt
to code motors to respond according to range finder data. First prototype of model
car is the schematic of each of the model car’s two wheels wired to the Arduino. And
we have a switch, to control when car moves. The precise turns that a car needs to
make to parallel park successfully depends largely on its own dimensions. Since
parking algorithm will work in a small prototype car. The algorithm will be tailored

to it, but this does not mean that it will not work on cars with other dimensions; this
only means that it will be most precise for this car size. The mechanism which
control the basic motor rotation is move on wheel forward and the other wheel
backward. This mechanism only allowed the wheels to turn to the most extreme left
and right positions, whereas a car that can parallel park would need to have wheels
that could rotate to various precise degrees. To solve this problem,we used a delay
by trial and error to get a suitable delay considering the car speed.The sensor
placement is shown in Figure 6.

Figure6

Each sensor is connected to its own analog pin on the Arduino, so that each pin can
read in specific outputs from their corresponding sensors. The rotation speed and
direction of the wheels are controlled by an H-Bridge. The final circuit diagram is
shown in Figure 7.

LFAN0 connsctad 1o Wih-nele

Figure |: Sehersatie Diagears of the Peonvpe

Figure7

Once each of these elements was installed on the car, many tests were performed to
ensure that the car was responding correctly to various external conditions picked
up by the proximity sensors. For example, one piece of test code was written so that

if two sensors picked up distance readings greater than a certain distance, the
wheels would spin one direction, and if this condition was not met, the wheels
would spin the other direction. Powering both the H-Bridge and the Arduino with
batteries turned out to be the biggest challenge. The H-Bridge requires a minimum
of 12V and draws anywhere from 0.23A to 0.51A. The Arduino powers the sensors
required 0.45A of current. The first attempt to power the H-Bridge was with a single
12V battery with about a 55mAh capacity. There was no effect. The second attempt
was connecting several 12V batteries in parallel to increase the amount of current
they provided. Again, no effect was observed. Finally, two 12V batteries were wired
in series to create the effect of 24V shown in Figure 8.

Figure 8:2 wheels car with 4 batteries holder

And then several of these 24V pairs were wired in parallel to provide enough current.
Though this setup was successful in powering, it was very inconsistent. Powering
both the Arduino and H-bridge with power supplies is a much more reliable method.
Finally, once the car was responding appropriately to various external conditions, the
parallel parking sketch was written and then uploaded onto the Arduino. The
algorithm is as follows.

Motion 1: Finding a Parking Space

a) Pre-condition:

- The car begins on the right side of both the parked cars and is parallel to the
curb. The front of the parking car is between both parked cars.
b) Execution:

- The code initiates the car to move straight forward. When both the right sensor
(‘trigPin2’, "echoPin2") and front right sensor ('trigPin3", "echoPin3’) register
distances less than 10 cm, the car stops.

c) Post-condition:
- The car is stopped next to the front car.

Motion 2: Reversing Toward Curb
a) Pre-condition:

- Post-condition of Motion 1.
b) Execution:

- The front wheels turn all the way to the right. The car reverses at this angle
until the rear-right corner is within 15 cm of the curb.
c) Post-condition:

- The car is stopped at an angle with the rear-right corner close to the curb.

Motion 3: Straightening Out
a) Pre-condition:

- Post-condition of Motion 2.
b) Execution:

- The front wheels turn all the way to the left. The car reverses at this angle until
the rear sensor (‘trigPin1’, ‘echoPinl’) is within 5 cm of the car parked in the rear.
c) Post-condition:

- The car is stopped parallel to the curb and 5cm away from the rear car.

Conclusion in 3 main motions:-

1. Motion 1: Finding a Parking Space:

The existing code in the ‘loop()’ function already includes a section where the car
moves forward and checks for a suitable parking space using the "Check()" function.
You may want to adjust the distance condition in the "Check()" function to match the
specified 9cm requirement.

2. Motion 2: Reversing Toward Curb:

After Motion 1, you can add a new function or modify the existing code to
implement the turning of the front wheels to the right and reversing until the rear-
right corner is within 10 cm of the curb.

3. Motion 3: Straightening Out:

Following Motion 2, you can integrate code to turn the front wheels to the left and
reverse until the rear sensor is within 5cm of the car parked in the rear.

Software

We programmed our car using (arduino c) programming language on an arduino
IDE. Our algorithm to park a car works on a certain steps these steps as follow:

1)Initial Move Forward:
The car starts moving forward for a specified duration (300 ms in this case).

2)Check for Suitable Parking Space:

The Check() function is called to check if there is a suitable parking space available. It
does this by moving forward until it detects an obstacle at a distance less than 10
units (trial and error value). The variable space is incremented during this movement
to keep track of the potential parking space width.

3)Park if Suitable Space Found:

If a suitable parking space is found (Check() returns 1) and the slot found is suitable
to the car size space counter=27 (trial and error value), the car stops, waits for a
short duration (1 second), and then initiates the parking sequence by calling the
Park() function.

4)Parking Sequence (Park() function):

The car first moves backward for 300 milliseconds (MoveBack() function).

It then stops for 1 second.

The car turns left for 450 milliseconds (Moveleft() function).

The car stops again for 1 second.

While the right ultrasonic sensor (trigPin1, echoPin1) detects an obstacle within a
certain distance (greater than 10 units), the car keeps moving backward.

The car stops for 1 second.

The car then turns right for 350 milliseconds (MoveRight() function).

After stopping for a short duration (400 milliseconds), the car moves forward for 500
milliseconds (MoveForward() function).

Finally, the car stops for 1 second.

5)Exit Program:
After successfully parking, the program exits (exit(0)).

The ultrasonic sensors (UFun() function) are used to measure distances from
obstacles during the various movements. The specific distances and duration for
movements have been determined through trial and error for the given application.
Adjustments to these values may be needed depending on the environment.

The provided code is demonstrate these steps

void loop() {

delay(3000);
MoveForward();
delay(300);

if (Check()==18& space>27){

space=0;
Stop();
delay(1000);
Park();
exit(0);
}
else {
if(UFun(trigPinl,echoPinl)>4&&UFun(trigPin3,echoPin3)>4)
{

MoveForward();

¥

else{
Stop();
¥

}

}
void Park(){//Parking algorithm

MoveBack();
delay(300);
Stop();
delay(1000);
MovelLeft();
delay(450);
Stop();
delay(1000);
while(UFun(trigPinl,echoPin1)>10){
MoveBack();
}
Stop();
delay(1000);
MoveRight();
delay(350);
Stop();
delay(400);
MoveForward();
delay(500);
Stop();
delay(1000);
//the delay after each instruction varies depending on our car speed

}
int Check(){//Chicking the sutable parking space for the car width
int Flag =0;

while(UFun(trigPin2,echoPin2)>10){
MoveForward();
space++;
Flag =1;
}

return Flag;

}

And as we don’t have a wifi in arduino we used a wifi module to utilize
the localization that wifi module provides so we can know the location

of the car and park it in a certain park slot.

But in case you couldn’t provide a wifi module you could just use your

phone hotspot as a trial .

#include <Arduino.h>

#tifdef ESP32

#include <WiFi.h>

#include <AsyncTCP.h>

#telif defined(ESP8266)
#include <ESP8266WiFi.h>
#include <ESPAsyncTCP.h>
#tendif

#include <ESPAsyncWebServer.h>
#include <ESP32Servo.h>

#include <Math.h>

float al,a2,bl,b2,cl,c2,det;
void trilaterate(float x1, float yl, float dl, float x2, float y2,
float d2, float x3, float y3, float d3) {

al = 2 * (x2 - x1);

bl =2 * (y2 - y1);
cl =dl * dl - d2 * d2 - x1 * x1 + x2 * x2 - yl * yl + y2 * y2;
a2 = 2 * (x3 - x1);
b2 =2 * (y3 - y1);
€2 =dl ¥ dl - d3 *d3 - x1 * x1 + x3 * x3 -yl *¥ yl + y3 * y3;

det = al * b2 - a2 * bi;

float resultX = (cl * b2 - c2 * bl) / det;

float resultY = (al * c2 - a2 * cl) / det;

Serial.println (M- mmmm e ");
Serial.print("Estimated Coordinates : ");

Serial.print(resultX);

Serial.print(", ");

Serial.println(resultY);

}

void setup() {
Serial.begin(9600);
}
const char* ssidArray[] = {"carl", "car2", "car3"};
float point[3][2] = {{e, @}, {0, 10}, {5, 5}};
int arraySize = sizeof(ssidArray) / sizeof(ssidArray[0]);

void localization()
{
double distance[3];
int numNetworks = WiFi.scanNetworks();
Serial.println(M----------m e ")
for (int i = @; i < numNetworks; i++)

// Serial.println(WiFi.SSID(i) + " | RSSI: " + String(WiFi.RSSI(i)));
for (int j = ©; j < arraySize; j++) {
if(String(WiFi.SSID(i)) == String(ssidArray[j]))
{
double s = (-59 - WiFi.RSSI(i)) / (10.0 * 3);
distance[j] = pow(10.0, s);
// Serial.println("Whole Term: " + String(s));
Serial.println(String(ssidArray[j]) + " with RSSI = " +
String(WiFi.RSSI(i)));
Serial.println("has distance of =
"\n");
}
}
}

+ String(distance[j]) +

trilaterate(point[@][@],point[@][1],distance[@],point[1][@],point[1][1]
,distance[1],point[2][@],point[2][1],distance[2]);
}

int flag=1;

void loop() {
// Do other tasks if needed
if(flag)localization();
flag=0;

}

The provided code is for mathematical localization using esp32

Application

As we used esp32 at first we used a html page to control our car. But for our arduino
implementation we didn’t use an application to control the car.

