

Voluntary Project

SyArm Mk1

A simple robotic arm

By

Samuel Nösslböck

Started

April 2022

Project description SyArm Mk1 2022

Page 2 of 21

Credits

At this point I personally want to express my thanks to all people who made this thing possible. As a

lot of time and effort of this project was spent during school, I want to thank all teachers who

supported me actively or did not force me to fully participate in their lessons.

Special thanks belong to my teacher for machine elements Mr. Dipl.-Ing. Manuel Leibetseder, Mr.

Dipl.-Ing. Gottfried Preuer and Mr. Dipl.-Ing. Peter Rachinger. First mentioned even answered calls

on the weekend, even though he had more important things to take care about and always had good

advice for most of my problems.

Second, I want to mention my incredible friends, they always listen to my personal problems coming

along with such a project. Some of them even tried to listen to some details and always showed

interest.

Again, I want to point out a few people: First Tobias Niedermayr, a very talented young man who is

way smarter he wants to admit he is. He always showed a high interest in my projects and gave me the

motivation the continue when it was more than low.

Second there is my best friend Fabio Muratore. He just knows how to make me laugh, have a good

time and really get my head out of my projects from time to time, which is a very important thing as I

learned in the process.

When working on a voluntary project, motivation is the key for progress. Problem is, such a

motivation is not always easy to keep up all the time. Therefore, special thanks belong to Samuel

Klancnik, a brilliant and very creative artist who inspired me in the way he does his things and who

also cared very much about me. He has become a very special person to this project and me in the

process.

Finally, my dear friend Rene Schwarz, sitting right next to me in school. He is the one who always

cheers me up and who makes school much more bearable. I have the honour to work on a project with

him in the near future, making use of his great abilities with AI.

Project description SyArm Mk1 2022

Page 3 of 21

Abstract

Many manufacturing tasks require a series of complex work or transport processes, which can be

difficult to build a machine for. Robotic arms are a very flexible type of robots that can perform a lot

of those complex tasks and can be re-programmed for every new application needed.

The SyArm is a simple and compact version of such a robot, not built for heavy loads or accuracy, but

for speed and the basic concept. Its materials are cheap, simple and were mainly chosen by the factor

of how easy it is to acquire them.

The whole project can be seen as a kind of learning process, that is the reason why you will find

version numbers of three and above. Many of the hand-drawn sketches have very only concepts

drawn onto them.

This project description focuses a lot on the theoretical aspects, especially of the software, that have

been worked out in the process. Therefore, a lot of formulas and other can be found in the following

pages.

Project description SyArm Mk1 2022

Page 4 of 21

Contents

Credits ... 2

Abstract ... 3

1. Introduction ... 5

1.1. Motivation ... 5

1.2. Goals ... 5

1.3. Structure .. 5

2. Construction .. 6

2.1. Base ... 6

2.2. Arm ... 7

2.2.1. First Segment .. 7

2.2.2. Second Segment .. 8

2.3. Tool-Joint .. 8

2.4. Tools ... 8

2.5. Cylinders ... 9

2.6. Simple Frame .. 9

3. Electronics ... 10

3.1. Controller .. 10

3.1.1. Stepper motor connections .. 10

3.1.2. Raspberry PI connection ... 10

3.1.3. Power Supply .. 10

3.2. Measurements ... 11

3.3. Tool supplies ... 11

4. Software .. 12

4.1. Stepper library ... 12

4.1.1. Movements and actions ... 12

 .. 13

4.1.2. Incremental measurement ... 14

4.1.3. Asynchronous movements .. 14

4.1.4. Limits and failsafe ... 15

4.1.5. Component System ... 15

4.2. SyBot Library .. 15

4.2.1. Modelling .. 15

4.2.2. Collective movements ... 17

4.2.3. Data and constants .. 18

Project description SyArm Mk1 2022

Page 5 of 21

4.2.4. G-Code interpreter .. 18

5. Conclusion .. 19

6. Appendix ... 20

6.1. Technical drawings ... 20

6.2. Articles and other self-made references .. 20

6.3. Sketches and drawings .. 20

6.4. GitHub-Repositories ... 20

7. Sources, references, and figures .. 21

7.1. Figures... 21

1. Introduction

1.1. Motivation

Robots always fascinated me in many ways: The way they are built, the way the software is made or

simply the enormous tasks they can complete nowadays. As I had almost no lessons in school

attending robotics and other related topics, so I have decided to learn it myself by building one.

I personally believe automation and especially robots are one of the most effective ways to fight

poverty. When used right, they can get people out of jobs with miserable working conditions and

accelerate technical development especially in low-wage countries.

Building this robot was kind of a first step towards helping people with the field of research I love.

1.2. Goals

The goal is to build a fully functional robotic arm (see section “Construction”) that can equip multiple

different tools for tasks like drawing, lifting things around and so on. Other things a high value was

put on are the stability against oscillations that will cause an inaccuracy in all movements and paths.

Flexibility is the overall term this construction was designed for, in terms of hardware and software as

well. The software has been packed into libraries and separated from this specific robot as much as

possible, so it can be used of other types of robots too.

1.3. Structure

The naming and versioning system with “Mk X” makes it easy to differentiate complete reworks of

the same idea from each other with its basic principle being the same as for other versioning systems.

Version: X.Y.Z => Mk X, Version Y.Z

The GitHub repository contains all data used for this project. Notice that the software projects have

been included as submodules, for further information, read the “Appendix” section.

Project description SyArm Mk1 2022

Page 6 of 21

2. Construction

The whole construction is separated into five main parts listed in the following chapters.

2.1. Base

The base is the most important part of the construction when it comes to stability. Small inaccuracies

in the bearings can lead to huge oscillations and imprecisions. Therefore, the base uses a combination

of two bearings to grant stability even when the arm reaches far out. Between these two bearings, a

worm gear transmits the rotation and torque created by the motor. Though to the high transmission

ratio, a high accuracy in angles can be accessed.

Project description SyArm Mk1 2022

Page 7 of 21

2.2. Arm

The arm consists of two segments connected by a cylinder, which together determine the distance the

robot can reach out. The first segment is the lower one on the picture above, the second segment the

upper one it is connected to.

The cylinder connecting these two segments is often referred to as “second cylinder” as the “first

cylinder” connects the base and the arm with the aluminium segment on the far left, that is attached to

the first segment.

2.2.1. First Segment

Project description SyArm Mk1 2022

Page 8 of 21

The first segment is connected to the Base with a pin and a cylinder, allowing the controls to adjust

the angle. Both segments use the same type of 3D-printed connector. As the friction is low and the

robot produces high torques at the pins, no additional lube must be used to guarantee correct

functionality.

Furthermore, both segments use the same basis frame built up of aluminium segments, called “Simple

Frame”.

2.2.2. Second Segment

The second segment is equipped with the motor to control the last axis

and mount for the second cylinder, shown on the right.

It consists, just like the first segment, of a “Simple Frame” with four

3D-printed connectors on the edges. Onto one of them, the mount for

the last stepper motor is mounted as shown in the picture above.

2.3. Tool-Joint

The tool joint is the last axis, that would theoretically not be required,

but it allows the robot to pick up objects from a desired angle. The

flange at the end has multiple threaded holes, where many different

tools can be mounted.

2.4. Tools

To cover the widespread uses of a robotic arm, different tools at various

sizes can be used. Some tools even allow to mount yet another tool, for

example the axial bearing. It allows the robot to use a simple fifth axis

for rotating a tool. In combination with tongs or a screwdriver this

could even be used to assemble basic parts in future, more stable and

accurate versions.

Project description SyArm Mk1 2022

Page 9 of 21

2.5. Cylinders

The cylinders used for the robot consist of a few simple parts: A static part, where the stepper motor is

mounted, a moveable part where all the rods are passed through, two rods and a spindle, the latter

being mounted to the motor through a jaw coupling, to compensate assembly inaccuracies.

The two rods guarantee a consistent and stable extension of the cylinder, while the spindle is between

them, extending or shortening the cylinder.

2.6. Simple Frame

The simple frame is made out of four aluminium segments, that create a stable basis for the arm

segments together.

Project description SyArm Mk1 2022

Page 10 of 21

3. Electronics

3.1. Controller

3.1.1. Stepper motor connections

As all stepper motors used are bipolar stepper motors with two coils, four wires need to be managed

for each motor. The cables are attached to plugs that can be easily disconnected if required for

transportation. Each stepper motor is connected to its own stepper controller, turning the four wires,

that commonly would need to be supplied with voltage in different cycles to get different directions

and movements, into two ones, that can both be controlled with simple low voltage logical signals.

The first one requiring pulses, one for each step to be taken, the other being a directional switch.

3.1.2. Raspberry PI connection

The Raspberry PI controlling the robot is also connected to the controls with a few plugs, enabling

easy repairs and reconfiguration. All the GPIO pins are defined as constants that can be modified in

the setup process. So, if any other pin layout is desired, one can change it easily.

The different types of pins are always grouped together to one single plug, for example all the

directional control pins, all the step pulse pins, all the input switches are each grouped to their own

plug.

3.1.3. Power Supply

The controls use two different power supplies, one capable of producing up to 42 Volts, used for the

movements and high-energy tools, the producing 3.3, 5 and 12 Volts, all being used by the controls

and again voltage supplies for the tools.

Ignoring the power required by the tool, the maximum power consumption is calculated as following

𝑃𝑀 = 𝑈𝑆 ∑𝐼𝑆𝑖

𝑖

+ 𝑃𝐶

With 𝑃𝑀 being the total power, 𝑈𝑆 the stepper motor supply voltage, 𝐼𝑆𝑖 the individual supply current

for each stepper motor (indexed with 𝑖) and 𝑃𝐶 the power required by the controls. Summing up to

about 300 Watts of power consumption.

Project description SyArm Mk1 2022

Page 11 of 21

3.2. Measurements

As the SyArm is a considerably basic prototype of a robotic arm, a simple method of measurement is

used. When measuring, the control drives the motors into the negative direction until they close a

switch connected to the Raspberry PI. The motors then immediately stop driving and set the minimum

endpoint at the current direction.

As the robot uses only stepper motors for positioning, no additional measurements are required,

though they would be useful in assuring the correct positioning of the robot. If any movement of the

segments, that is not caused by the controls, occurs, then the robot must be remeasured again.

Each input is connected to the raspberry with a pull-down resistor and equipped with a status-led that

lightens up once closed.

3.3. Tool supplies

As previously stated, the tools require different

supply voltages for different actions. Also, input

pins must be provided to correctly position or

maintain the tools.

Therefore, a plug has been designed that can

supply many different types of tools and

applications in use. If more complex

measurements or other sensor data is required,

the connection must be made manually.

For example, take a pencil tool for drawing

figures onto paper, the tool itself would not

require any additional motors, but a kind of

switch for recognising how far the pencil is

above the ground. The easiest approach would

be to just mount a switch parallel onto the same

plane as the pencil points too.

The sensor can now be connected to the input

pin of the plug, enabling the input to be read by

the controls.

Each tool must be put into the configuration file

first and linked to a type in the library. If a

completely new type of tool is required, not just

an old one with new dimensions, then the

software must be adjusted.

When selecting the required tool via the index in

the configuration list in the GCode-interpreter,

all the pins and motors required are

automatically setup.

Project description SyArm Mk1 2022

Page 12 of 21

4. Software

4.1. Stepper library

4.1.1. Movements and actions

The movements of the robot can be divided into different layers and kinds:

This flowchart shows the general library structure, which features the shown actions and movements

that get more and more complex the farther one goes to the bottom. Each action will now be described

in detail.

Figure 4.2.2.1

Project description SyArm Mk1 2022

Page 13 of 21

Single step

A single step with a single motor, defined by the steptime 𝑇. The

control keeps the signal up for half the desired steptime,

therefore it is low the other half of said time.

The direction is changed by inverting the directional pin of the

control, not by modifying the step pulse itself.

Multiple steps (with curves)

Moves a stepper motor multiple steps into the defined direction with proper acceleration and

deceleration considering the inertia of the construction and motor torque. A full explanation of

acceleration curves and different methods can be found in the appendix1.

The two relevant functions are then defining a series, which look like the following:

𝑓0 = √
α𝑚𝑎𝑥𝑛𝑆

4π
 𝑓𝑛 = 𝑓0√𝑛

The motors then accelerate until the certain speed is reached or half the steps are travelled, after this

distance, the control will mirror the curve at half the steps travelled.

Consistent drive (Used for cylinders or geared joints)

The consistent drive mode converts an angle into the right direction and steps that need to be

travelled, using a predefined gear ratio or spindle pitch.

Inconsistent drive (Used for “cylinder triangles”)

The inconsistent drive is used to keep a certain omega up when a cylinder

is built in a triangular construction like the one displayed on the right. The

law of cosines gives an angle or the cylinder length if either one of the

variables is given.

𝑐2 = 𝑙𝑎
2 + 𝑙𝑏

2 − 2𝑙𝑎𝑙𝑏 𝑐𝑜𝑠(γ)

Considering the change in the cylinder extent is non-linear proportional to the

angle γ and γ depending on the time 𝑡 the following differential emerges:

c(γ), γ(𝑡) → 𝑣𝑐(𝑡) =
𝑑𝑐

𝑑γ
(γ(𝑡)) ⋅ ω(𝑡)

1 Article “Stepper Motors”

Figure 5.2.2.2

Project description SyArm Mk1 2022

Page 14 of 21

When now a constant angular velocity is desired, the angular acceleration ends up at being zero,

which makes the second derivative simpler.

𝑎𝐶(𝑡) =
𝑑2𝑐

𝑑𝑡2
=

𝑑2𝑐

𝑑γ2 (γ(𝑡)) ⋅ ω2(𝑡) +
𝑑𝑐

𝑑γ
(γ(𝑡)) ⋅ α(𝑡)

α(𝑡) = 0 → 𝑎𝐶(𝑡) =
𝑑2𝑐

𝑑γ2 (γ(𝑡)) ⋅ ω2(𝑡)

With the formular displayed above the velocity correction of the cylinder can be calculated, which

leads to a consistent angular velocity.

Moving to a specific angle (with or without constant speed)

The certain movements then are made by taking the current position ϕ𝐶 and calculating the difference

Δϕ to the desired angle ϕ.

Δϕ(ϕ) = ϕ − ϕ𝐶

4.1.2. Incremental measurement

The robot should always know it’s exact position, which is why a combination of stepper motors, and

an initial incremental measurement system are used. When running this measurement operation, the

motors move into the defined direction until the controls recognize a HIGH signal on the defined

measurement input pin (one for each motor). The positional value is then set to another predefined

value, the initial position value.

Additionally, the controls set a limit in the direction on the initial position value, as it would

overextend and damage the construction.

4.1.3. Asynchronous movements

Moving only one motor at a time results in an unbearable low efficiency, which quickly leads to the

concept of asynchronous movements.

To perform such movements, the control must be structured very differently as when using normal

synchronous ones. To understand the following descriptions in full detail, it is recommended to first

read the part of the language documentations of rust dealing with their approach on sharing memory

safely between threads.

The control creates a thread for each motor attached to the controls, running in the background, and

equipped with a channel to transfer data with the main thread. If the thread receives a message with

the data required for the movement, it will wake up and perform this movement.

Project description SyArm Mk1 2022

Page 15 of 21

If the thread receives a message without data in it, a rust none-value of an option, it will break the

loop and kill itself without sending a message back to the main thread.

The main driver class is stored in a so called mutex, a structure that prevents multiple processes from

writing to the same block of data at the same, which could end in memory safety issues. The mutex

forces each process to first put a lock on the structure, preventing all other instances to write to the

locked data until said process is not in need of the mutable access anymore, dropping the data and the

lock afterwards.

4.1.4. Limits and failsafe

The library provides a protection against force overloads and movements out of the allowed range of a

component, which can be set at any time. Before the robot executes any movements, it will check for

said cases and inform the user that an invalid move would be executed.

4.1.5. Component System

Every motor, every gear, every cylinder is categorized as a Component in the stepper library.

Components can consist of a motor and optionally and kind of mechanical structure that transforms

the movement. The only condition is that only one motor is in use, if multiple motors are required, as

it is the case in most robots, a Component-Group has to be used. It makes coordinating and storing

data of multiple motors easier. The stepper library includes some of the basic components like a

geared bearing, a cylinder and so on. When requiring more complex components, simply create a new

structure and implement the SyncComp provided by the crate.

4.2. SyBot Library

The SyBot Library is the main part of the controls. It manages all the motors using a vector model of

the robot. In the further sections a clear overview of the mathematical procedures will be provided and

explained.

The library is, just like the stepper library, written in Rust using cargo as package manager. The

libraries, which have been used, can be seen either in the GitHub repository or at the sources section.

4.2.1. Modelling

The main purpose of modelling is calculating loads and inertias for the motor to calculate the right

acceleration curves. If the model results in giving incorrect values to the controls this could lead to

motors moving too slow, not in the right direction or not at all. On the other hand, it could lead to a

low efficiency due to the motors not using their full potential.

Project description SyArm Mk1 2022

Page 16 of 21

Inertia

To keep things simple, every part of the robot can be seen as a rod,

represented by a certain mass 𝑚, a positional vector 𝑎𝑃⃗⃗ ⃗⃗ and a representing

vector 𝑎𝑙⃗⃗ ⃗. The inertia of a single rod can now be calculated using the

standard inertia of a rod and considering centre distance of the rot and

rotation centre.

𝐽 = 𝑚(
|𝑎𝑙⃗⃗ ⃗|2

12
+ |𝑎𝑝⃗⃗ ⃗⃗ |

2
)

|𝑎𝑡⃗⃗ ⃗|2 = (√𝑥𝑡
2 + 𝑦𝑡

2)

2

= 𝑥𝑡
2 + 𝑦𝑡

2

Assuming the robot is described as a sequence of rod segments, the position vector can be calculated

as following

𝑎𝑝𝑖⃗⃗ ⃗⃗ ⃗ =
𝑎𝑙𝑖⃗⃗ ⃗⃗

2
+ ∑𝑎𝑙𝑗⃗⃗⃗⃗ ⃗

𝑖

𝑗=1

Which results in the inertia of that sequence for a coordinate 𝑎, later being x, y or z, as

𝐽𝑎 = ∑𝑚𝑖 (
𝑎𝑖

2

12
+ (∑𝑎𝑗

𝑖−1

𝑗=1

+
𝑎𝑖

2
)

2

)

𝑛

𝑖=1

 𝑱 = [

𝐽𝑦 + 𝐽𝑧 0 0

0 𝐽𝑥 + 𝐽𝑧 0
0 0 𝐽𝑥 + 𝐽𝑦

]

The inertia matrix 𝑱 can be used for all calculations requiring an inertia, for example

M⃗⃗⃗ = 𝑱 ⋅ α⃗⃗

Reduced mass

As the construction includes cylinders with a linear motion, the concept of a reduced mass is used to

calculate inertia for those linear motions.

𝑚𝑟 = |𝑱 ⋅
𝑟 × 𝑎0̂

|𝑟 × 𝑎0̂|
3
|

Where 𝑱 represents the inertia tensor, 𝑟 the distance to the centre point of the inertia and 𝑎0⃗⃗⃗⃗ the

direction of the velocity or acceleration input acting upon 𝑚𝑟.

Load forces

As the robot should be able to carry around weights later, the mathematical model should include

forces and how they act upon the robot, not to speak of its own weight. Every segment is loaded with

a certain force 𝐹 and its own weight 𝐹𝐺
⃗⃗⃗⃗ . Also does every segment cause a force in the joint 𝐹𝐽 it’s

connected to and in the cylinder or gears stabilizing the segment 𝐹𝐶
⃗⃗⃗⃗ .

Each vector got a position vector attached to it called 𝑎 and whatever prefix the force it expresses

has. Also, the unknown forces are expressed with a directional vector called 𝑎̂ and again whatever

prefix the force they express has. So, using the basic mechanical principles of statics

∑𝑀⃗⃗ = 0 ∑𝐹 = 0

the two reaction forces can be calculated.

FC
⃗⃗⃗⃗ = aĈ(M⃗⃗⃗ ⋅ η⃗) 𝑀⃗⃗   = ∑𝑎𝑖⃗⃗ ⃗ × 𝐹𝑖⃗⃗

i

 η⃗ =
𝑎𝐶⃗⃗ ⃗⃗ × 𝑎𝐶̂

|𝑎𝐶⃗⃗ ⃗⃗ × 𝑎𝐶̂|
2

As now only the joint force is left unknown, the second principal can be applied to get the following

equation.

𝐹𝐽
⃗⃗ ⃗ = ∑𝐹𝐴

⃗⃗⃗⃗ − ∑𝐹𝑅
⃗⃗⃗⃗

Where the first sum stands for all action forces onto the segment and the second sum for all the

reaction ones that are already known.

When now a constant angular velocity is desired, the angular acceleration ends up at being zero,

which makes the second derivative simpler.

𝑎𝐶(𝑡) =
𝑑2𝑐

𝑑𝑡2
=

𝑑2𝑐

𝑑γ2 (γ(𝑡)) ⋅ ω2(𝑡) +
𝑑𝑐

𝑑γ
(γ(𝑡)) ⋅ α(𝑡)

α(𝑡) = 0 → 𝑎𝐶(𝑡) =
𝑑2𝑐

𝑑γ2 (γ(𝑡)) ⋅ ω2(𝑡)

With the formular displayed above the velocity correction of the cylinder can be calculated, which

leads to a consistent angular velocity.

4.2.2. Collective movements

Moving to a specific X, Y and Z coordinate point

To move to a specific position in space expressed by a X, Y and Z coordinate, the control must

convert such a point into angles for the motors to move to.

𝐶(𝑋, 𝑌, 𝑍) → ϕ𝐵, ϕ1, ϕ2, ϕ3

The base angle ϕ𝐵 can be determined with ease as it is the only angle that performs a rotation around

the Z-Axis. Looking at the robot from top down can be used to calculate the base angle as following:

ϕ𝐵 = tan (
𝑌

𝑋
) −

π

2

The base angle is shifted by ninety degrees as the base arm is orientated along the Y-axis to perform

correct rotation operations around the X-axis. This base angle can now be used to rotate the point onto

the Y-Z plane.

𝑃𝑅 = 𝑅𝑍(ϕ𝐵) ⋅ 𝑃; 𝑃 = (𝑋, 𝑌, 𝑍)

Now the decoration vector can be subtracted without applying the rotation matrix to it. To finally

simplify the point into a triangle that is fully defined, the base vector must be subtracted from the

rotated point 𝑃𝑅 as well.

PT = PR − aB⃗⃗⃗⃗ − RB(ϕD) ⋅ aD⃗⃗ ⃗⃗

This point now stands for the distance the first two arm segments must reach. Their exact angles are

calculated as following:

ϕℎ1 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
|𝑃𝑇|

2 + 𝑙𝐴1
2 − 𝑙𝐴2

2

2|𝑃𝑇|𝑙𝐴2
)

γ2
′ = arccos (

−|PT|
2 + lA1

2   +  lA2
2

2lA1lA2
)

ϕ𝐻 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑃𝑇 ⋅ 𝑗̂

|𝑃𝑇||𝑗̂|
)

ϕ1 = ϕℎ1 + ϕ𝐻

ϕ2 = π − γ2
′

ϕ3 = ϕ𝐷 − (ϕ1 − ϕ2)

As displayed in the formula, ϕ3 can be expressed as the difference between the decoration angle and

the angle left by the first two segments when moving to the required point 𝑃𝑇.

4.2.3. Data and constants

To retrieve all the data required for the controls like component mass, allowed angle ranges and

speeds. All this information is packed into a single JSON-file, the JsonConf (“.conf.json” file

extension). The file is structed, so that every robot built into the framework can be defined and parsed

by this file.

The file is parsed into a Machine Configuration during runtime, if any of the syntax or values are

incorrect, the program will inform the user.

4.2.4. G-Code interpreter

The robot uses the common GCode standard to dynamically describe its movements. For this robot, a

GCode-interpreter binary is provided in the sybot library repository. This interpreter can also handle

files, examples are also provided in the repository.

For each command the interpreter returns a JSON-Value informing about the result or success of the

given instruction.

The library also contains a HTTP Webserver equipped with multiple ways to gather information or

control the robot. The webserver is hosted a public network interface and port configured via an

environment variable.

The easiest way to control the robot is via the websocket interpreter interface, where GCode can be

streamed directly to the robot. Of course, there are other options then the webserver for executing

operations. The application has more executables and commands that can help handle the different

application fields required in automation.

Project description SyArm Mk1 2022

Page 19 of 21

5. Conclusion

This robot gives a lot of insight into basic robotics and showed me what concepts to keep and what to

improve further. The versioning with “Mk 1”, has a purpose, as I am planning to build improved

versions with more stability and one or even two more axes.

It is a great experiment for testing and improving the control libraries in rust, a programming language

that I was not able to work in at the start of this project. The language showed me its qualifications for

serving high level communication as hardware programming all in one.

Many of the work done for this project, especially mentioned libraries, will be reused for my next

project that I am working on right now as I am writing this (diploma project DrAI)

https://github.com/SamuelNoesslboeck/DrAI

Project description SyArm Mk1 2022

Page 20 of 21

6. Appendix

The whole project can be found on a public GitHub repository, either search the name

(“SamuelNoesslboeck/SyArm_Mk1”) or the Link:

https://github.com/SamuelNoesslboeck/SyArm_Mk1

6.1. Technical drawings

6.2. Articles and other self-made references

6.3. Sketches and drawings

6.4. GitHub-Repositories

- “SyArm_Mk1” – Main Repo

- “Stepper Library” – Rust Library for controlling stepper motors and components

- “SyBot Library” – Rust Library for controlling complex component groups and robots,

includes many different ways for communication

https://github.com/SamuelNoesslboeck/SyArm_Mk1
https://github.com/SamuelNoesslboeck/SyArm_Mk1
https://github.com/SamuelNoesslboeck/stepper_lib
https://github.com/SamuelNoesslboeck/sybot_lib

Project description SyArm Mk1 2022

Page 21 of 21

7. Sources, references, and figures

7.1. Figures

