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Abstract 

Methods for the free-form determination of size dis- 
tributions for systems with hard-sphere interactions are 
described. An approximation, called the local monodis- 
perse approximation, is introduced. Model calculations 
show that this approximation gives relatively small er- 
rors even at relatively high polydispersities and large 
volume fractions. The size distributions are determined 
by least-squares methods with smoothness and non- 
negativity constraints. The local monodisperse approx- 
imation leads to normal equations that are linear in 
the amplitude of the size distribution. This is used 
when solving the least-squares problem: only the two 
effective parameters describing the interference effects 
are treated as nonlinear parameters in an external op- 
timization routine. The parameters describing the size 
distribution are determined by a linear least-squares 
method. The size distribution is also determined using 
the nonlinear equations from the calculation of the 
scattering intensity in the Percus-Yevick approximation. 
For this, a nonlinear least-squares routine with a smooth- 
ness contstraint and a non-negativity constraint is used. 
Both approaches are tested by analysis of simulated 
examples calculated by the analytical expressions in the 
Percus-Yevick approximation. Finally, the methods are 
applied to two sets of experimental data from silica 
particles and from 5' precipitates in an AI-Li alloy. For 
the simulated examples, good agreement is found with 
the input distributions. For the experimental examples, 
the results agree with the expected and known properties 
of the samples. 

1. Introduction 

Free-form determination of size distributions from small- 
angle scattering data can be carried out using, for ex- 
ample, various regularization techniques (Glatter, 1980; 
Svergun, Semenyuk & Feigin, 1988; Potton, Daniell & 
Rainford, 1988). In the application of these methods, it is 
assumed that the volume fraction of the particles is small 
and that interactions between the particles are negligible. 
However, for many systems these assumptions are not 
fulfilled. This is the case for most colloidal suspensions 
with a volume fraction larger than a few percent and also 
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for colloidal suspensions of charged particles [see, for 
example, Kaler (1988) and Ottewill (1991)]. For these 
systems, the particle configurations give rise to interfer- 
ence effects in the small-angle scattering data. Another 
type of system for which interparticle interference effects 
are important is that of precipitates in metallic alloys 
[see, for example, Kostorz (199 !) and Fratzi (1991)1. 
In these systems, the positions of the precipitates are 
correlated as the formation of the precipitates leads to 
depleted zones around the particles. No other precipitates 
form in these zones and this gives rise to an effective 
repulsion between the particles and strong interference 
effects in the small-angle scattering data. It has recently 
been shown (Pedersen, 1993a) that the small-angle scat- 
tering data from spherical 6' particles in AI-Li alloys 
can be analysed in terms of a polydisperse hard-sphere 
model. Owing to the depleted zones, the effective hard- 
sphere interaction radius is larger than the actual radius 
of the particles. Correlations between the precipitating 
particles can also be caused by elastic interactions. 

Analytical calculations of the small-angle scatter- 
ing intensity for systems with interactions and polydis- 
persity have only been done for particles with hard- 
sphere interactions (Vrij, 1979; Blum & Stell, 1979; 
Salacuse & Stell, 1982). These calculations are done 
within the Percus-Yevick approximation. The equations 
for the intensity are quite involved, which is probably 
the reason for the frequent use of approximations rather 
than the analytical solutions when experimental data 
are analysed. The most well known approximation is 
the 'decoupling approximation', which was introduced 
by Kotlarchyk & Chen (1983). In this approach, it is 
assumed that the positions of the particles are indepen- 
dent of their sizes. Furthermore, the interference effects 
are described by an effective structure factor calculated 
for the average size of the particles. This structure 
factor is modified by a term that takes into account 
the influence of the polydispersity effects on the particle 
form factors. This approach gives reasonable results for 
small polydispersities but for larger values it gives large 
systematic deviations from the analytical results. 

In §2.2 of this paper, a new approximation, the 
local monodisperse approximation, is introduced. It is 
assumed that the positions of the particles are com- 
pletely correlated with their sizes. That is, the system 
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is approximated by many subsystems in which the 
particles are monodisperse. The total scattering is then 
calculated as the sum of the scattering from the subsys- 
tems weighted according to the size distribution of the 
system. This approach gives a more realistic smearing 
of the interference effects due to the (approximate) 
inclusion of the polydispersity of the interaction radius 
and therefore works better for large polydispersities. 
In §3, the results from the decoupling approximation 
and the local monodisperse approximation are compared 
with the analytical results for the hard-sphere model. 
The local monodisperse approximation has the further 
advantage that it gives rise to equations for the scattering 
intensity that are linearly dependent on the amplitude of 
the size distribution. It is therefore straightforward to de- 
termine a free-form solution for the size distribution by 
employing regularization methods with a non-negativity 
constraint. This approach is described in §2.1. 

The analytical solution for the scattering intensity 
for the polydisperse hard-sphere model depends (Vrij, 
1979; Blum & Stell, 1979; Salacuse & Stell, 1982) 
in a highly nonlinear way on the amplitude of the 
size distribution. In §2.3, an approach is described in 
which the size distribution obtained from the local 
monodisperse approximation is used as a first estimate in 
a nonlinear least-squares optimization of the analytical 
model. A regularization procedure and a non-negativity 
constraint are also applied in this approach. 

In §4, the two methods are tested by application to 
several simulated examples. Applications to experimen- 
tal data are described in §5. 

in general, six neighbouring functions, which makes the 
condition a,~ >_ 0 a much stronger condition than is 
needed for making the distribution non-negative. Linear 
spline functions are therefore used in the present work. 
They are given by 

f 1 - I x -  n I B . ( x )  = 
k 0 

for I x -  n I _< 1 (2) 
elsewhere. 

These functions overlap only with two neighbours and 
for x - n the value of the distribution is determined 
only by the function with index n. Therefore, the bi- 
implication [Bn(R) _> 0] ¢~ (an > 0) holds. These 
functions give the best resolution for the smallest number 
of functions in regions where the distribution goes to 
zero. The small-angle scattering cross section da(q)/dJ2 
is given by 

oo 

~--aD(q ) = Ap 2 f N(R)O(q,R)2dR, (3) 
0 

where Ap is the excess scattering-length density of the 
particles. The modulus of the scattering vector is q = 
47r sin 0/A0, where 0 is half the scattering angle and A0 
is the wavelength of the radiation. In (3), ~(q, R) is the 
form factor of the particle with size R. For spherical 
particles, it is 

• (q,R) = 3Vo[sin(qR)-qRcos(qR)]/(qR) a, (4) 

where Vo is the volume of a sphere with radius R. 
Expression (1) for the size distribution is inserted in 

(3) and the coefficients can be determined by a least- 
squares method. One minimizes 

2. Models 

2.1..Infinitely dilute systems 

In this section, the basic equations and methods for 
the linear least-squares problem are introduced. For 
simplicity, systems at infinite dilution are considered 
first, but the descriptions are also valid for systems 
with higher concentrations when treated in the local 
monodisperse approximation. In the indirect method of 
Glatter (1977, 1980), the distribution to be determined is 
parameterized as a linear combination of a set of basis 
functions. The number-density size distribution N(R) is 
written as 

N 

N(R) = ~ anBn(R), (1) 
n = l  

where an are coefficients and B,~(R) are the basis func- 
tions, which are usually taken as cubic spline functions. 
As N(R) is a number-density distribution, it fulfils 
N(R) >_ O, and this condition should be incorporated 
in the solution. The cubic spline functions overlap with, 

P 
X 2 E[Imea.s(qi) /m,,d _ ,12/_2 = - (~j j  / ,~ ,  (5) 

i = 1  

where P is the number of points in the measured data 
set, Im"~(qi) are the measured intensities, ai are the 
standard errors and ImOd(q,) are the model intensities 
given by the cross section (3), smeared by instrumental 
resolution if necessary [see, for example, Glatter (1977) 
and Pedersen, Posselt & Mortensen (1990)], 

According to the sampling theorem, the resolution in 
real space is AR ~_ 7r/qmax, where qmax is the largest 
scattering vector probed in the experiment. The resolu- 
tion of the spline functions describing the distribution 
is AR ~_ Rn,ax/N, where Rmax is the upper limit 
of the support of N(R). From these two expressions 
for AR, one obtains N ~_ R,,,~,q,n~x/Tr. This gives, 
typically, N - 10-40. However, occasionally N has 
to be larger than the value given by the sampling 
theorem in order to resolve abrupt changes in N(R) 
and prevent 'ringing' in the solution. In general, the 
number of parameters to be determined is so large that 
the normal equations for the least-squares problem are 
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ill-conditioned. Therefore, a regularization in terms of 
a constraint or a stabilizing function has to be used. In 
the present work, a constraint similar to the smoothness 
constraint introduced by Glatter (1977, 1980) was used: 

N - 1  
N o =  E ( a , ~ + , - a n )  2 + a  2 + a  2.  (6) 

n----1 

This constraint is a measure of the total length of the 
curve describing the distribution. It has low values for 
smooth bell-shaped distributions. The expression that has 
to be minimized is X 2 + A Nc, where A is a Lagrangian 
multiplier, which in the present work was determined 
by the point-of-inflection method suggested by Glatter 
(1977). The modified normal equations that have to be 
solved are similar to those given by Glatter (1977). 

Non-negativity of the coefficients was imposed on the 
solution using the procedure given by Lawson & Hanson 
(1974) for a linear least-squares problem with linear in- 
equality constraints. During the procedure, the restricted 
normal equations were solved by the Gauss-Jordan 
elimination procedure. The procedure given by Lawson 
& Hanson (1974) has also been applied in the program 
package of Provencher (1982) and by Schnablegger & 
Glatter (1991) for determining size distributions from 
light scattering data. 

When the size distribution is determined, a series of 
characteristic parameters can be calculated. These are 
most conveniently expressed by the moments R n of the 
distribution 

OC 

R n = f RnN(R)dR. (7) 
o 

One has the following characteristic parameters for 
the size distribution: 

(R) = R1/R °, (8) 

O(3 

or(R) 2 = f ( R -  (R))2N(R)dR/R ° (9) 
0 

and 
2 aRS/R6 (10) Rgy  r - -  70 

which are, respectively, the average radius of the par- 
ticles, the variance of the distribution and the radius 
of gyration. One can also directly calculate the volume 
fraction r /o f  the particles and the specific surface area 
S: 

77 = (47r/3)R 3 (11) 

and 
S = 47rR 2. (1 2) 

Errors in all these parameters can be obtained by 
standard error analysis using the covariance matrix or 
by a Monte Carlo procedure as described by Svergun 

& Pedersen (1994). Both of these procedures are imple- 
mented in the computer programs and give, for most 
applications, similar results. The parameters that are 
fixed at zero by the non-negativity constraint during the 
fitting procedure are not included in the error calculation. 

2.2. The local monodisperse approximation 
For a given configuration of the particle, one can write 

the scattering cross section using the Debye equation, 
which takes into account the interference of the radiation 
scattered from different particles. The cross section is 
written as discrete summations over the particles in the 
sample 

do" 
dS? (q) = Ap2 -~. {qb(q, Ri)4)(q, Rj) 

z,3 

x [sin (qrij)/qrij]}, (13) 

where Ri and Rj are the radii of the particles with 
indices i and j ,  respectively, and rij is their separation. 
The expression can be rewritten as 

d o  

dr2 (q) 

+ ~ {~(q, Ri)~(q, Rj)[sin(qvij)/qrij]}) 
i,j,i•j 

~__ z~p2~-~(qS(q, Ri)2{1 + ~ [sin(qrij)/qrij]}), 
i j , j ¢ i  

(14) 

where, in the last line, the form factor of the j th particle 
has been replaced by that of the ith. The term inside 
the curly brackets in the last line is approximated by 
the structure factor S(q, Rns(Ri)) of the monodisperse 
hard-sphere model. The interaction radius Rlis should 
be a known function of the radius R. For particles in- 
teracting with their actual radius one has Rus = R. The 
expressions for S(q, RHs) are within the Percus-Yevick 
approximation (see, for example, Kinning & Thomas, 
1984): 

S(q, RHs) = [1 + 24rhisG(Rusq)/(RHsq)] -1. (15) 

In this equation, r/Hs is the volume fraction of the hard 
spheres and 

G(A) = a(sin A - A cos A)/A 2 
+/312A sin A + (2 - A2) cos A - 2]/A 3 
+ 7 { - A  4 cos A + 4[(3A 2 - 6) cos A 

+(A3-6A)s inA+6]} /A  5, (16) 
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where 

a = (1 + 2r/as)2/(1 - r/r~s) 4 

/3 = -6~ts(1  + r/MS/2)2/(1 -- r/HS) 2 

")' = r/HSa/2. 

(17) 

By a change to the continuous variables, (14) can be 
written as 

o o  

d~(q) = Ap2 f ~(q,R)eS[q, Rrts(R)]N(R)dR. (18) 
0 

From this equation, it can be seen that the scattering 
intensity in the present approximation is given as the 
incoherent sum of the scattering intensities of monodis- 
perse subsystems weighted with the size distribution. 
Alternatively, one can regard the intensity as originating 
from a system in which the size of the particles varies 
slowly with the position in the system so that every parti- 
cle is surrounded by particles of the same size. Therefore, 
this approximation is called the local monodisperse 
approximation. It is based on the assumption that the 
position and the size of the particles are completely 
correlated. This is opposite to the assumption used in 
the decoupling approximation, in which the position 
and the size are assumed to be independent. The local 
monodisperse approximation gives rise to a smearing of 
the interparticle interference effects by the polydisper- 
sity. Such a smearing is not included in the decoupling 
approximation, for which the interference effects are 
described by a monodisperse structure factor calculated 
for the average-size particles. This is further discussed 
in {}{}3 and 6. It should also be mentioned that the local 
monodisperse approximation can be expected to give a 
good description of some real systems for which the 
particle size is correlated with position. This is the case 
for precipitates in materials near dislocations in AI-Li 
alloys (Mahalingam, Gu, Liedl & Sanders, 1987) and gas 
bubbles near dislocations and grain boundaries in metals 
(Li, Kesternich, Schroeder, Schwahn & Ullmaier, 1990). 

When the volume fraction of the hard spheres r/Hs and 
the function Rns(R) are specified, the intensity given 
by (18) is linear in the parameters a,~ describing the 
size distribution. Therefore, the methods described in the 
previous section can be used to obtain a non-negative 
solution for N(R). In real applications, the data might 
contain residual background. In the computer program, 
an additional independent parameter can be included 
to describe this. Small-angle scattering data from pre- 
cipitates in metallic alloys often contain a power-law 
(q-~) contribution at small q, which originates from large 
impurities or precipitates. The prefactor of this power- 
law contribution is also an independent fitting parameter, 
which can be included in the fitting procedure. 

The intensity (18) depends nonlinearly on rims and 
R. For precipitates in metallic alloys, local conservation 

of the precipitating material suggests that the volume 
of the depletion zone around a precipitate should be 
proportional to the volume of the precipitates (see, for 
example, Pedersen, 1993a). Therefore, RHs = CR, 
where C is a constant. This gives two nonlinear par- 
ameters: ~THS and C. In other systems, the interaction 
radius RHS is given as RHS = R + AR, where AR is a 
constant independent of R. This is the case for colloidal 
particles surrounded by shells of constant thickness with 
vanishing scattering contrast. In the computer program, 
the two parameters describing the interference effects 
(T]HS/C or r/Hs/AR) can be optimized by a grid or a 
gradient search (Bevington, 1969) in an external routine. 
For each value of r/}is and C (or AR), the linear 
parameters are determined by the procedure described 
in {}2.1. 

The procedure for analysing a data set is as follows. 
First guesses of ~{s and C (or AR) are given. For these 
values, the weight of the smoothness constraint A is 
determined by the point-of-inflection method. Then, the 
values of r/MS and C (AR) are determined using the value 
obtained for A. If the values of r/ns and C (AR) change 
significantly, a new optimum value of A is determined 
and r/ns and C (AR) are optimized again. This procedure 
is continued until A, r/MS and C (,&R) no longer change 
significantly. In most applications, the correct value of A 
is determined already by the first guess for the values for 
r/ns and C (AR). Note that, for systems with an actual 
hard-sphere interaction, r/its and C (AR) are not real 
physical parameters but should be considered as effective 
parameters describing the interference effects. 

Errors in the size distribution and the parameters that 
are derived from the size distribution are calculated 
as described in the previous section, neglecting the 
variances and covariance connected with the parameters 
r/Hs and C (or AR). 

2.3. The analytical model 
The scattering cross section for the polydisperse col- 

lection of hard spheres has been calculated for an ar- 
bitrary size distribution by Vrij (1979), Blum & Stell 
(1979) and Salacuse & Stell (1982). In the present work, 
the solution given by Vrij was used. The intensity is 
obtained by calculating averages of various parameters 
and functions weighted by the size distribution, i.e. 
moments of R, averages of form factors etc. 

The size distribution is expressed by (1). The intensity 
depends strongly nonlinearly on the coefficients and a 
nonlinear least-squares method has to be applied. Ad- 
ditional (possible) fitting parameters are: a background, 
a prefactor for a q-4 power law, C (or AR) and the 
scattering contrast squared, Ap z . The values of the size 
distribution on an absolute scale determine the shape 
of the scattering curve, whereas Ap 2 determines the 
intensity values on an absolute scale. 
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The smoothness constraint (6) was included in the 
nonlinear least-squares optimization. This gives the fol- 
lowing modified normal equations for the change Aa~, 
in the parameter a~, (Pedersen, 1992): 

Np 
E (c~.~. + AKu~,)Aa~, = ~u - ALt`, 

# = 1 , 2 , . . . , N p ,  (19) 

w h e r e  

OIm,,,l 0I' ..... l (qi)___O__~au (qi)/cr 2 
o~t`u = ~ Oat, 

and 

P )] OI ...... i 
/3t` = Z [ I " X p ( q i ) -  I""'a(qi --~a (qi)/cr2. 

i=1  

(20) 

When the first N of the Np parameters are taken to 
be those describing the size distribution, one has 

2 

Kt`. = - 1 
- 1  

0 

for # = u and u = 1 , . . . , N  
for # = u -  1 and u = 2 , . . . , N  
f o r p = u + l a n d u =  1 , . . . , N - 1  
elsewhere 

(21) 

and 

L~ 

2au - au+l  

= 2 a u  au+l  - a u - 1  

2au a u - 1  

0 

f o r u =  1 
f o r 2 < u < N - 1  
f o r u =  N 
elsewhere. 

(22) 

The normal equations have to be solved iteratively. 
In order to solve the normal equations the first time, a 
set of starting values for the parameters is required. In 
the applications, these were taken from the fit using the 
local monodisperse model. In addition, an estimate of 
the scattering contrast has to be given. The equations 
are solved using the method of Marquardt (1963). This 
method combines a gradient search with a linearization 
of the fitting functions. The iteration procedure is contin- 
ued until the absolute values of the changes are smaller 
than a specified limit. The computer code was based on 
the algorithm given by Press, Flannery, Teukolsky & 
Vetterling (1989). The non-negativity constraint on the 
parameters describing the size distribution was included 
in the search procedure. Parameters that became negative 
when changed by the amount A a ,  were instead divided 
by 10. In combination with the damped search in the 
Marquardt algorithm, this procedure was found to work 
reliably. 

The procedure to analyse a data set is as follows. First, 
the size distribution and the additional parameters are 

determined using the local monodisperse approximation. 
These values, together with an estimate of the scattering 
contrast, are used as starting values for fitting the analyti- 
cal model. First, only the parameter C = RHs/R or AR 
is fitted, the remaining parameters being kept fixed. This 
gives reasonable values for this parameter, which allows 
the rest of parameters to be fitted and the variation of A 
to be performed. In most applications, the value of A is 
equal to the one obtained for the solution from the local 
monodisperse approximation. 

Errors in the size distribution and the parameters 
that are derived from the size distribution can be ob- 
tained by standard error analysis using the covariance 
matrix. However, the influence of the non-negativity 
constraint is neglected in this error calculation and 
it might give rise to values that are too large. For 
comparison, a Monte Carlo procedure similar to the 
one described by Svergun & Pedersen (1994) was also 
applied. When the fit to the data is determined, a 
large number (typically 50) of simulated data sets are 
generated around the original data set. This is done by 
adding a Gaussian-distributed random error of the same 
size as the original error of each data point. The changes 
in the parameters are determined by solution of (19). 
The left-hand side of the equation is calculated using 
the values determined by the fit to the original data and 
is kept fixed. The equations can be solved for all the 
simulated data sets simultaneously using a Gauss-Jordan 
elimination procedure. The changes in the parameters 
are limited so that only positive values are obtained 
for the parameters. The variance of the changes in the 
parameters and the variance of the parameters derived 
from the size distribution are easily obtained and give 
directly the standard errors in the parameters and the size 
distribution. In general, the parameters obtained by the 
Monte Carlo procedure are smaller than those obtained 
from the covariance matrix. 

3. Comparisons of approximations 

In this section, results from the local monodisperse ap- 
proximation are compared with those from the analytical 
solution of Vrij (1979) and those from the decoupling 
approximation of Kotlarchyk & C h e n  (1983). In this 
latter approximation, the scattering cross section is given 
by 

da  
d.(2 (q) = Ap2(~(q,R)2)S,~fr(q), (23) 

where 

with 

S,4r(q) = 1 +/3(q)[S(q, <R~is) t/a) - 1] (24) 

,O(q) = <~(q,R))e/<~(q,R)2),  (25) 

where () means the first moment with respect to the 
size distribution and S(q, Rits) is given by (15), (16) 
and (17). 
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The model size distribution was chosen as a Gaussian 
function with centre at Rc and with full width at half- 
maximum (FWHM) W.  (The Gaussians were truncated 
at R - 0.) The scattering intensities were calculated 
for a series of  different examples using the three dif- 
ferent approaches. Also, effective structure factors were 
calculated according to 

d o "  
S,,fr( q) = - ~  ( q ) l[ Ap2 (Cp( q, R )2) ]. (26) 

The scattering contrast was arbitrarily set to Ap  2 = 20 
× l020 cm - 4  in all the calculations. Figs. 1 and 2 show, 
respectively, the dependence of  the scattering intensity 
and of the effective structure factor for fixed values 
of  the volume fraction r/ = 0.3, C = RHs/R = l, 
A R  = 0 and Rc = 100 ~ at different values of  W (see 
figure captions). One sees in Figs. 1 and 2 that the local 
monodisperse approximation is significantly better than 
the decoupling approximation at high polydispersities. 
It gives a smoother effective structure factor and much 
better agreement with the analytical results at small 
scattering vectors. However,  significant deviations are 
present for W = 100 ,~. 

Figs. 3 and 4 show comparisons for different values 
of 77. The rest of  the parameters were fixed: Rc = 
100/~,, W = 100 A, C = 1 and A R  = 0. The local 
monodisperse approximation gives a better agreement 
with the analytical results for these examples also. It 
reproduces reasonably the maxima in the scattering 
intensities and in the structure factor, but at small 
scattering vectors the values are underestimated. This 
effect increases as the volume fraction increases. 

The last comparison concerns the variation of  the 
volume fraction of  the hard spheres r/MS for constant 
volume fraction r/. The fixed parameters are: r/ = 0.1, 
R~ = 100/~,, W = 100/~, and A R  = 0. The plots (a), 
(b), (c) and (d) in Figs. 5 and 6 correspond to r/HS = 0. l, 
0.2, 0.3 and 0.4, respectively. The corresponding values 
of C are l, 1.2599, 1.4422 and 1.5874, respectively. 
The local monodisperse approximation gives for this 
comparison also the best agreement with the analytical 
results. The agreement gets worse as r/MS is increased. 

4. A n a l y s i s  o f  s i m u l a t e d  e x a m p l e s  

In this section, the methods described in §2 for deter- 
mining size distributions using the local monodisperse 
and the analytical models are examined. The scattering 
data were generated using the expressions given by 
Vrij (1979). Random Gaussian-distributed noise of  3% 
was added to the data. The data were generated for 40 
equidistant values of  q between 0.003 and 0.06 A, -  1 and 
40 equidistant values between 0.03 and 0 . 3 , ~ - I .  This 
corresponds roughly to two instrumental settings of  a 
small-angle neutron scattering instrument. 
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Fig. 1. Comparison of the scattering intensity for a Gaussian size 
distribution with Rc = 100,~. The FWHM values are (a) 10, 
(b) 25, (c) 50 and (d) 100/~,. 7-/ = 0.3, C = l and AR = 0. 
Full lines: analytical calculation. Broken lines: local monodisperse 
approximation. Dotted lines: decoupling approximation. In (a), the 
broken line and the full line coincide. 
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Fig. 2. Comparison of  the effective structure factors for the examples  
shown in Fig. 1. The line styles are the same as in Fig. 1. 
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Table 1. Results from the analysis of simulated scattering 
data for the example shown in Fig. 7(a) 

Parameters Original Local monodisperse Analytical 

(/~) 75.00 68.7 (9) 68.3 (19) 
o-(R) (/~,) 30.79 33.6 (3) 33.9 (4) 
Rgyr (/~) 95.39 95.6 (7) 95.8 (9) 
r/ 0.0001000 0.001008 (4) 0.001013 (17) 
S (cm - l  ) 3070.06 3109 (9) 3118 (26) 

In order to test the linear and nonlinear methods 
without taking into account the particle interference 
effects, an example was generated with a low volume 
fraction: r/ - 0.001, C -- 1 and A R  -- 0. Also, in 
the examples in this section the contrast was fixed at 
Z~p 2 - -  20 x 1020 c m  - 4 .  The original size distribution 
(the full curve in Fig. 7a) was chosen in order to check 
the resolution capability of the methods. It consisted of 
two Gaussians, one with Rc -- 50 ,~ and W - 25 ,~ 
and another with Rc = 100/~ and W -- 50A. The 
amplitudes of the two functions were chosen so that they 
contained the same number of particles. 

The data were analysed as described in §2. The 
number of spline functions was 20 and the maximum 
radius R.,~x was 175 ,~. The restored size distributions 
are shown in Fig. 7(a). For the local monodisperse 
approximation, r/l~S was fixed at zero. As expected, the 
two methods give identical results for this example. The 
distributions agree well with the original one for R > 
70 A but show significant deviations at smaller R values. 
The small particles give a very small contribution to 
the scattering intensity owing to the weighting by the 
volume squared through the form factor [(3) and (4)]. 
The smoothness constraint influences the solution in the 
low-R region and gives a smearing of the peak around 
50 A. The parameters derived from the size distributions 
are displayed in Table 1, where the errors estimated by 
Monte Carlo simulations are also given. The parameters 
Rgyr,  r/and S are recovered nearly within the estimated 
errors. The parameters R and a(R) are, respectively, 
underestimated and overestimated owing to the influence 
of the constraint at small R values. 

For the next example (Fig. 7b), the size distribution 
is broad and monomodal, R~ = 100/~, and W -- 100/~,, 
with a volume fraction of 0.3 and C = I. Owing to 
the large polydispersity and the relatively high volume 
fraction, this is an example that is relatively difficult 
to analyse. For these conditions, the local monodisperse 
approximation is not expected to give perfect results (see 
Fig. l d). The number of splines used in the analysis 
was 20 and Rmax = 250 ~. The distribution determined 
by the local monodisperse approximation has significant 
deviations from the original one. It is higher at low R 
values (R < 140]k) and lower at higher values. The 
distribution determined by the analytical model agrees 
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Table 2. Results from the analysis of simulated scattering 
data for the example shown in Fig. 7(b) 

The parameters describing the interference effects in the local monodis- 
perse approximation are, after optimization, C = 1.00 and r/as = 
0.182. 

Parameters Original Local monodisperse Analytical 

(A) 101.03 85.1 (7) 99.4 (16) 

tr(R) (A) 29.60 36.1 (2) 41.3 (7) 

R.gyr (/~) 131.56 107.8 (5) 131.3 (30) 
r/ 0.300 0.258 (1) 0.301 (4) 

S (cm - ]  ) 690002 693900 (2300) 696000 (3800) 
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Table 3. Results from the analysis of simulated scattering 
data for the example shown in Fig. 7(c) 

The parameters describing the interference effects in the local monodis- 
perse approximation are, after optimization, C = 0.944 and rtns = 
0.238. 

Parameters Original Local monodisperse Analytical 

(A) 75.00 73.3 (11) 71.5 (16) 
tr(R) (A) 30.79 27.7 (6) 32.4 (5) 

P~vr (A) 95.39 87.6 (2) 95.7 (15) 
r/ 0.300 0.295 (1) 0.305 (3) 
S (cm - ] )  921017 956400 (2900) 935500 (5900) 
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Fig. 7. Size distributions from analysing simulated scattering data. Full 
curve: original distribution. Dotted curve: distribution from the local 
monodisperse approximation. Broken curve: distribution from the 
analytical model. The parameters for the original distributions are: 
(a) r/ = 0.001, C = 1. (b) r / =  0.3, C = 1. (c) r / =  0.3, C = I. (d) 
r/ = 0.1, C = 1.4422. For all examples A R  = 0. 

very well with the original one. In Table 2, it can 
also be seen that the parameters derived from the size 
distributions agree within the statistical errors with the 
values derived from the original size distribution. For 
the local monodisperse approximation, the deviations 
are typically 15-20%. After optimization, the effective 
parameters describing the interference effects in the 
local monodisperse approximation are C - 1.00 and 
r~ts - 0.182. The low hard-sphere volume fraction 
reflects the overestimation of the interference effects by 
the approximation for large polydispersities and large 
volume fractions (Fig. ld). 

For the last two examples (Figs. 7c and d), the original 
size distributions have shapes similar to the bimodal one 
in Fig. 7(a). For the example shown in Fig. 7(c), 7/= 0.3 
and C = 1. In the local monodisperse approximation, 
the size distribution has some minor deviations from 
the original one. However, it is clearly seen that the 
distribution is bimodal. The parameters derived from 
the distribution deviate by typically less than 10% from 
the values obtained from the original distribution (Table 
3). After optimization, the parameters describing the 
interference effects are r/HS = 0.238 and C = 0.944. 
The size distribution determined by the analytical model 
agrees very well with the original one except at small 
R values where the sensitivity is low. The deviations of 
the parameters derived from the size distribution have 
the same magnitude as the statistical errors, i.e. a few 
percent (see Table 3). 

For the last example, the volume fraction is 7 /=  0.1 
and C = 1.4422, which gives a hard-sphere volume 
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Table 4. Results from the analysis of simulated scattering 
data for the example shown in Fig. 7(d) 

The parameters describing the interference effects are: for the local 
monodisperse approximation, C = 1.31 and ~ s  = 0.262; for the 
analytical model, C = 1.442 (4). 

Parameters Original Local monodisperse Analytical 

(A) 75.00 69.8 (9) 67.7 (14) 

tr(R) (/~) 30.79 34.5 (3) 34.4 (5) 

Rgyr (]k) 95.39 94.6 (5) 97.1 (14) 

r/ 0.1000 0.1022 (5) 0.1010 (11) 

S (cm - l )  307006 310900 (1200) 310400 (1900) 

fraction of TIH S = 0.3. The size distributions (Fig. 7d) 
are in good agreement with the original one for both the 
local monodisperse and the analytical model, with some 
smearing of the component around 50/~. The parameters 
derived from the size distributions are given in Table 4. 
The values of R~vr, 7? and S have deviations from the 
original values that are of the same size as the statistical 
errors. The values of R and a(R) deviate by about 10% 
from the original values. These deviations are larger 
than the statistical errors due to the smearing of the 
component of the size distribution around 50/~. 

This completes the applications to simulated exam- 
pies. These examples have shown that both the local 
monodisperse and the analytical models can be used to 
obtain information on the size distribution for simulated 
examples for systems with hard-sphere interactions. In 
§5, the approaches are applied to real experimental 
examples taken from the literature. 

5. Analysis of experimental examples 

The first example concerns small-angle neutron scatter- 
ing data for a colloidal suspension of silica particles 
( 'SP23') with a volume fraction T/ ~ 0.5 coated with 
octadecyl chains (de Kruif, Briels, May & Vrij, 1988). 
The scattering data are shown in Fig. 8(a) [note that Figs. 
18 and 19 are interchanged in the paper by de Kruif et 
al. (1988)]. The scattering intensities are not given on 
an absolute scale by de Kruif et al. The data analysis 
requires this and therefore the scattering contrast has 
to be estimated. With the scale for the scattering data 
used in the present work, it was found that a scattering 
contrast of Ap = 2.0 × 10mcm -2  gave a volume 
fraction of about 0.50 for the local monodisperse model 
when the volume fraction was calculated from the size 
distribution using (11). The instrumental smearing of the 
model scattering curve was included in the analysis as 
described by Pedersen, Posselt & Mortensen (1990) and 
by Pedersen (1993b). 

The hard-sphere interaction radius is expected to be 
given by the actual radius R plus a constant AR that 
accounts for a shell describing the grafted octadecyl 

chains (de Kruif et al., 1988). This was included in 
the models in which ZIR is a fitting parameter. The 
size distribution for the local monodisperse model is 
shown in Fig. 8(b). The fit to the data is excellent for 
the following effective parameters for the interference 
effects: AR = - 10.2/~ and r/HS = 0.474. The size 
distribution from electron microscopy is also shown in 
Fig. 8(b). The amplitude has been rescaled arbitrarily 
to agree with the size distributions determined from the 
small-angle scattering data. The parameters derived from 
the size distributions are given in Table 5. There is good 
agreement between the parameters. 

The size distribution and parameters were used as 
starting values for the fit of the analytical model. 
The scattering contrast changed only slightly to 
Ap = 1.964 (5) x 1010 cm -2. The constant thickness of 
the shell with the octadecyl chains was AR = 3.8 (8)/~,, 
which is much less than the expected 18/~, (de Kruif et 
al., 1988). This could be due to either a large flexibility 
of the chains or the main direction of the chains being 
parallel to the surface of the particles. The fit to the 
data is shown in Fig. 8(a). It is very good but there 
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Fig. 8. (a) Experimental scattering data from de Kruif et al. (1988) for 
silica particles coated with octadecyl chains. The curves are the fits 
of the analytical model. The dotted curve is the ideal nonsmeared 
cross section and the full curves are the cross section smeared by the 
appropriate resolution functions. (Deviations between the two curves 
can be seen in the overlap region of the two instrumental settings.) (b) 
The size distributions. The dotted curve is from the local monodisperse 
model and the broken curve is from the analytical model. The thick 
full curve with circles in (b) is from electron microscopy (de Kruif 
et al., 1988). 
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Table 5. Results from the analysis of  experimental scat- 
tering data shown in Fig. 8 (de Kruif et al., 1 9 8 8 ) f o r  
silica particles ('SP23') coated with octadecyl chains 

The parameters describing the interference effects are: for the local 
monodisperse approximation, AR = -10.2 ,~ and r/ns = 0.474; for 
the analytical model, AR = 3.8 (8)/~. The scattering contrast with 
the normalization used was Ap = 2.0 x 10 I° cm -2 for the local 
monodisperse model and Ap = 1.964 (5) x 10 I° cm -2 for the analytical 
model. The parameters in the last column are based on the electron- 
microscopy results given by de Kruif et al. (1988). 

Local Electron 
Parameters monodisperse Analyt ical  microscopy 

(/~) 231 ( 1 ) 237 (17) 235 
cr(R) (,~) 35 (1) 33 (3) 30 
P~yr (ilk) 196.1 (3) 216 (5) 203 
r/ 0.525 (3) 0.50 (2) - 

S (cm - t  ) 655000 (3600) 602000 (30000) - 

is a tendency for the correlation peak to be broader 
in the data than in the model. The size distribution is 
shown in Fig. 8(b). It is very similar to the distributions 
from the local monodisperse model and from electron 
microscopy. The most important difference is a small tail 
of  the distribution at large R values. This tail gives rise 
to a difference of about 10% for the radius of gyration, 
as can been seen in Table 5. The two other parameters 
R andtr (R)  are similar to the values from the local 
monodisperse model and from electron microscopy. The 
volume fraction is r / =  0.50 (2), in excellent agreement 
with the expected value. 

The second and last example concerns the 6' precipi- 
tates in the metallic alloy AI-Li .  The data are taken from 
Triolo, Caponetti,  Spooner & Boschetti (1989) and are 
for an AI-2 .14  wt%Li alloy aged at 413 K for 4h .  The 
data are shown in Fig. 9(a). The scattering curve shows a 
pronounced peak originating from the correlations of the 
precipitates and a q-4 tail at low q originating from large 
impurities. From electron microscopy (Mahal ingam et 
al., 1987), it is known that the precipitates are nearly 
spherical and that the size distribution is quite broad. 

The strong correlation peak in the scattering curve 
originates from the way the precipitates are formed. 
Each precipitate contains the nonsoluble lithium from 
a zone around it. In this zone, no other precipitates 
can be formed. The resulting spatial distribution of the 
precipitates therefore corresponds to that of  a system 
with repulsion between the particles. In order for there 
to be local conservation of the precipitating material, 
the volume of the depletion zone has to be proportional 
to the volume of the precipitates. When the repulsion 
is described by an effective hard-sphere radius of  the 
particles, this radius has to be proportional to the actual 
radius, as this gives local conservation of  the material. 
Such a hard-sphere model has been shown to be appli- 
cable to small-angle scattering data from A1-Li alloys 
(Pedersen, 1993a). In that work, the size distribution 

was taken to be a Weibull density distribution, as this 
distribution has been shown to give a good description 
of the size distribution in Al-Li  alloys (Mahal ingam et 
al., 1987). 

The size distribution from the local monodisperse 
model is shown in Fig. 9(b), including the statistical 
errors on the distribution. The scattering contrast was set 
to A p  -- 4.00 x 1010 cm - 2 .  The fit to the experimental 
data was good and the distribution agrees reasonably 
with the one determined by Pedersen (1993a). How- 
ever, the large-R part of  the distribution has a tail 
extending beyond 40/~,  which was not found using the 
Weibull distribution. The parameters derived from the 
size distribution are given in Table 6, which also contains 
the results of  applying the model with a Weibull size 
distribution. The derived parameters agree reasonably 
except for the radii of  gyration, which deviate by about 
20% owing to the difference of  the size distributions at 
large R values. 

The fit of  the analytical model to the data is shown 
as the curve in Fig. 9(a). The fit to the data is sat- 
isfactory. The size distribution is shown in Fig. 9(b). 
It deviates somewhat  from the one determined by the 
local monodisperse model and is nearly identical to the 
one obtained using the Weibull distribution (Pedersen, 
1993a). The parameters derived from the distribution 
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Fig. 9. (a) Experimental scattering data from Triolo et al. (1989) for 
Al-2.14 wt%Li. (b) The size distributions. The dotted curve is from 
the local monodisperse approximation and the broken curve is from 
the analytical model. The light full curves show the statistical errors. 
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Table 6. Results from the analysis of the experimental 
scattering data shown in Fig. 9 (Triolo et al., 1989)for 

A1-2.14 wt%Li 

The parameters describing the interference effects are: for the local 
monodisperse approximation, C = 1.23 and r/tts = 0.34; for the 
analytical model, C = 1.53 (1). The scattering contrast was z3p = 
4.0 × 10 I° cm - 2  for the local monodisperse model and A p  = 4.0 (4) 
x 10 l° cm - 2  for the analytical model. The parameters for the Weibull 
distribution (Pedersen, 1993a) are C = 1.49 (3) and z3p = 3.92 (12) 
× 101° cm -2 .  

Local 
Parameters monodisperse Analytical Weibull 

(A,) 23.4 (2) 20.4 (7) 21.5 (5) 

~ (R)  (A) 8.3 (1) 7.3 (6) 6.7 (2) 

P~gyr (,/~) 30.6 (1) 23.4 (37) 23.8 (3) 

r/ 0.076 (1) 0.067 (i 1) 0.070 (5) 

S (cm - 1 )  787000 (5000) 803000 (131000) 827000 (51000) 

are given in Table 6. There is good agreement be- 
tween the results from the analytical model and those 
from the Weibull distribution model. Note also that 
the compositions of the aluminium matrix and of the 
precipitates can be calculated from the scattering-length 
density (Pedersen, 1993a). The values agree well with 
the known solubility limit and the expected composition 
of A13Li of the 6' precipitates. 

6. Summary and concluding remarks 

The analysis of small-angle scattering data for polydis- 
perse systems with hard-sphere interactions has been 
discussed. A new approximation for calculating the 
scattering intensity has been introduced. Within this 
approximation, the scattering intensity is given as that 
of a system that is locally monodisperse. Comparisons 
with model calculations using the analytical expressions 
of Vrij (1979) show that the local monodisperse approx- 
imation gives reasonable results for volume fractions 
up to about 0.4 and for large polydispersities. Com- 
parisons with model calculations using the 'decoupling 
approximation' (Kotlarchyk &Chen ,  1983) show that 
the local monodisperse approximation gives results that 
agree much better with the analytical model for high 
volume fractions and large polydispersities. In the local 
monodisperse approximation, the approximations made 
in (14) and the use of (15) for the structure factor 
account reasonably for the effect of polydispersity on the 
effective structure factor. This is because the influence 
of polydispersity of the interaction radius is to a certain 
degree taken into account. In the decoupling approxima- 
tion, the structure factor is approximated by that of a 
monodisperse system multiplied by a factor [/3(q)] that 
takes into account the influence of polydispersity of the 
form factors. This means that the polydispersity of the 
interaction radius is not considered in the decoupling 
procedure. Although this effect is only included in an 

approximation in the local monodisperse approximation, 
it is sufficient to give a much better agreement with the 
analytical results. 

An additional advantage of the local monodisperse 
approximation is that the scattering intensity is linearly 
dependent on the amplitude of the size distribution. For 
free-form determination of the size distribution using 
a spline parameterization of the size distribution and 
a constrained least-squares method, this means that the 
least-squares problem is linear in the parameters describ- 
ing the amplitude of the size distribution. This makes the 
computations reasonably fast. The two parameters de- 
scribing the effective structure factors of the systems are 
optimized in an external nonlinear routine. (For a typical 
data set it takes less than one minute on a workstation.) 
The constraints in the linear least-squares problem are a 
non-negativity constraint and a smoothness constraint. 

The analysis of simulated examples for relatively 
large volume fractions and large polydispersities shows 
that the local monodisperse model gives reasonable 
estimates of the size distribution. Some systematic errors 
are occasionally present at large R values, owing to 
the approximate nature of the structure factor, which 
influences the scattering intensity at small q values. 

Application of the analytical expressions of Vrij 
(1979) gives scattering intensities that are strongly 
nonlinearly dependent on the amplitude of the size 
distribution. With a nonlinear least-squares routine with 
smoothness and non-negativity constraints, the analytical 
expressions were also used for determining free-form 
size distributions expressed as linear combinations of 
spline functions. The input parameters are taken from 
the fit of the local monodisperse model. The typical time 
for a calculation, including the variation of the weight of 
the smoothness constraint, is 5-10 min. The application 
to simulated data shows that the analytical model gives 
very good estimates of the original size distributions. The 
smoothness constraint gives rise to some smearing of the 
size distribution at small R values. The fits are not very 
sensitive to the smaller particles, owing to the weighting 
of the intensity (at q = 0) with the volume squared of 
the particles. For the analytical model, the characteristic 
parameters derived from the size distribution agree to 
typically better than 10% with the original values. 

The application of the models to real experimental 
data showed that useful information on the size distribu- 
tion can be obtained even for samples with a very high 
hard-sphere volume fraction. For the silica particles with 
a relatively low polydispersity, the agreement between 
the two models, as well as with electron microscopy, is 
very good even for a volume fraction as high as 0.5. 
For the A1-Li sample, the size distributions from the 
local monodisperse model and from the analytical model 
deviate significantly. However, the parameters derived 
from the size distribution agree reasonably. 

The models and methods are presently being applied 
tO the scattering data from krypton bubbles in copper 
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(Pedersen, Eldrup & Horsewell,  1994) and from '5" 
precipitates in Ni-Ti  (Vyskocil, Sch6nfeld, Pedersen & 
Kostorz, 1994) and N i - A I - M o  (Calderon & Kostorz, 
1991" Calderon, Pedersen & Kostorz, 1994; Sequeira, 
Calderon, Pedersen & Kostorz, 1994). Comparison with 
electron microscopy shows good agreement for the size 
distributions. 

Stimulating discussions with M. Eldrup, S. Hansen, K. 
Mortensen, A. D. Sequeira, P. Vyskocil, H. Calderon and 
G. Kostorz are gratefully acknowledged. I thank A. N. 
Falc~o, S. Hansen, K. Mortensen and D. I. Svergun tor 
valuable comments  on the manuscript. 
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