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1 Expected value

Let X be a random variable. Intuitively, the expected value of X (denoted E(X))
is the value you get if you could compute the average (X̄) over an infinite number of
realizations of X. It is also referred as the theoretical mean or first order moment.

We can express the expected value in two different way according to the case :

• Finite case (X can only take a finite number of values) :

E(X) =
K∑
k=1

xk ∗ pk (1)

where the xk are the finite values taken by X with probabilities pk.

• Continuous case, with f(x) the density probability of X :

E(X) =

∫
R
xf(x)dx (2)

In both cases, you can see the expected value as weighted average of the different
values that X can take, each value being weighted according its probability to occur.
In the continuous case these probabilities are the f(x) ∗ dx, which is the probability
associated to the event {X ∈ [x;x + dx]}

Taking a concrete example, the following figure is an illustration of a fair coin
toss where you win 1 if ”heads” (X(”heads”) = 1) and loose 1 if ”tails” (X(”tails”)
= -1) at each draw. Imagine that we repeat the experiment n times and we de-
fine Xi as the random variable giving the outcome of the ith draw. Then, the
Law of large numbers states that the sample average X̄n converges1 from the ex-
pected value, which here is 0.

Formalizing we have :

X̄n =
1

n
∗

n∑
i=1

Xi −→
n→∞

E(X) = 1/2 ∗ 1 + 1/2 ∗ (−1) = 0

1We won’t go into the details of what ”converges” exactly means here, you can just keep in mind that the sample
average is becoming closer and closer from the actual expected value as n increases
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Figure 1: Law of large numbers

2 Conditional expectation

Definition We now focus on the expected value of a particular random variable
(Y ) but conditioning on another random variable (X). For example, you can
think about the number of cars’ accidents in a day conditioning on the weather, the
life expectancy given the gender, ... Conceptually, the conditional expectation of
Y with respect to X is itself a random variable and it will be denoted E(Y/X). In
other words, it means that E(Y/X) is a function of X : the Conditional Expecta-
tion Function. This is actually the function of X that best approximates Y , where
”best” means it minimize the mean square error.2. In concrete examples, you may
be interested in computing the CEF at a given value of X : X = x.

As the expected value, the conditional expectation is a theoretical object. In par-
ticular, when thinking of common variables of interest in social sciences like income,
education, employment status or life expectancy, this is a population concept.
However most of the time, we only have access to a sample of this population. We
thus compute a conditional mean which is the empirical counterpart of the
conditional expected value, and is expected to give a proper approximation of the
underlying population value. Conditional mean is a very standard object in every
day life : every time you make a breakdown of a given quantitative variable by an-
other variable you compute the associated conditional mean for each category. The
figure 2 gives the CEF of the log of income by educational level. Each black dot is
equal to the sample analog of E(Y/X = x). For certain values of education (X =
4, 8, 12, 16), the distribution of income among the people is represented in shaded
area.

2E(Y − f(X))2 reaches is minimum for f = E(Y/X).
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Figure 2: Mean income by educational level
(The sample includes white men aged 40-49 in the 1980 IPUMS 5 percent file)

(Source : Angrist, J., & Pischke, J. S. (2009))

Link with regression framework The conditional expectation function is also
closely linked to the regression framework in econometrics. Actually, the standard
OLS (Ordinary Least Squares) predictor provides the best linear approximation of
the CEF (this is the blue dotted line added on the figure 2). To sum up, the CEF gives
you the best unrestricted approximation of your dependent variable Y depending on
X and the OLS estimator will give you the best linear approximation of this CEF.

3 Some useful properties

Ensure you can make an intuitive interpretation of these properties and think to con-
crete examples.

∀a, b ∈ R, X, Y and Z random variables (defined on the same probability space)
:

• Expected value of a constant : E(a) = a

• Linearity :

– E(aX + bY ) = aE(X) +bE(Y )

– E(aY + bZ/X) = aE(Y/X) +bE(Z/X)

• Law of total expectation : E(Y ) = E(E(Y/X)
↪→ Example (finite case) : Y = Income and X = Gender
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E(Y ) = E(Y/”X = woman”) ∗ P(”X = woman”) +E(Y/”X = man”) ∗ P(”X = man”) =
E(E(Y/X)

• If X and Y are independent : E(Y/X) = E(Y ). The realization of Y is not
affected by the realization of X, so conditioning on X does not change the
expected value of Y.

4 References

• For formal definition and concepts :

– Knight, Keith (2000): Mathematical Statistics. Chapman & Hall/CRC,
Boca Raton, FL.

– Lecture notes of Gordan Žitković

• For application to econometric framework :

– Angrist, J., & Pischke, J. S. (2009). Mostly harmless econometrics: an
empiricist’s guide. (see Ch 1.; 2.; 3.1 and 3.2)
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