-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLedMatrixBaseCode.ino
221 lines (214 loc) · 6.09 KB
/
LedMatrixBaseCode.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
A Software to control a 10x10 RGB LED Matrix with 4 Bit BAM (Brightness).
@author Tom Stein & Ferenc Stockbrink
@version 0.2.1
@date 16.march.2017
*/
/*
=====Classes=====
*/
class LED {
public:
uint16_t rgb;
LED(uint8_t _r = 0, uint8_t _g = 0, uint8_t _b = 0) {
setRGB(_r, _g, _b);
}
void setRGB(uint8_t _r = 0, uint8_t _g = 0, uint8_t _b = 0) {
_r = _r >> 4;
_g = _g >> 4;
_b = _b >> 4;
rgb = (_r << 8) | (_g << 4) | _b;
}
bool getBit(uint16_t mask) {
return rgb & mask;
}
};
/*
=====Methods=====
*/
constexpr uint8_t COLS = 10;
constexpr uint8_t ROWS = COLS;
#define latchPin 2
#define dataPin 3
#define clockPin 4
#define speedPinAni A9
#define speedPinMultiplex A8
LED leds[100];
unsigned long lngMsLoopstart;
unsigned long lngWhileUptime = 42000;
/*
=====Methodes=====
*/
void setup() {
//set pins to output so you can control the shift register
pinMode(dataPin, OUTPUT);
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(speedPinAni, INPUT);
pinMode(speedPinMultiplex, INPUT);
pinMode(13, OUTPUT);
digitalWrite(dataPin, LOW);
digitalWrite(latchPin, LOW);
digitalWrite(clockPin, LOW);
digitalWrite(13, HIGH);
Serial.begin(1000000);
}
void loop() {
lngMsLoopstart = micros();
lngWhileUptime = analogRead(speedPinAni) * 100; //lngWhileUptime = 42000;
while (micros() < lngMsLoopstart + lngWhileUptime) {
leds[0].setRGB(0, 0, 0);
leds[1].setRGB(0, 0, 0);
leds[2].setRGB(0, 0, 0);
leds[3].setRGB(0, 0, 0);
leds[4].setRGB(0, 0, 0);
leds[5].setRGB(0, 0, 0);
leds[6].setRGB(0, 0, 0);
leds[7].setRGB(0, 0, 0);
leds[8].setRGB(0, 0, 0);
leds[9].setRGB(0, 0, 0);
leds[10].setRGB(255, 142, 0);
leds[11].setRGB(0, 0, 0);
leds[12].setRGB(0, 0, 0);
leds[13].setRGB(0, 0, 0);
leds[14].setRGB(0, 0, 0);
leds[15].setRGB(255, 142, 0);
leds[16].setRGB(0, 0, 0);
leds[17].setRGB(255, 142, 0);
leds[18].setRGB(255, 142, 0);
leds[19].setRGB(255, 142, 0);
leds[20].setRGB(255, 142, 0);
leds[21].setRGB(0, 0, 0);
leds[22].setRGB(0, 0, 0);
leds[23].setRGB(0, 0, 0);
leds[24].setRGB(0, 0, 0);
leds[25].setRGB(255, 142, 0);
leds[26].setRGB(0, 0, 0);
leds[27].setRGB(255, 142, 0);
leds[28].setRGB(0, 0, 0);
leds[29].setRGB(255, 142, 0);
leds[30].setRGB(255, 142, 0);
leds[31].setRGB(0, 0, 0);
leds[32].setRGB(0, 0, 0);
leds[33].setRGB(0, 0, 0);
leds[34].setRGB(0, 0, 0);
leds[35].setRGB(255, 142, 0);
leds[36].setRGB(0, 0, 0);
leds[37].setRGB(255, 142, 0);
leds[38].setRGB(0, 0, 0);
leds[39].setRGB(255, 142, 0);
leds[40].setRGB(0, 0, 0);
leds[41].setRGB(255, 142, 0);
leds[42].setRGB(0, 0, 0);
leds[43].setRGB(0, 0, 0);
leds[44].setRGB(255, 142, 0);
leds[45].setRGB(0, 0, 0);
leds[46].setRGB(0, 0, 0);
leds[47].setRGB(255, 142, 0);
leds[48].setRGB(255, 142, 0);
leds[49].setRGB(255, 142, 0);
leds[50].setRGB(0, 0, 0);
leds[51].setRGB(255, 142, 0);
leds[52].setRGB(0, 0, 0);
leds[53].setRGB(0, 0, 0);
leds[54].setRGB(255, 142, 0);
leds[55].setRGB(0, 0, 0);
leds[56].setRGB(0, 0, 0);
leds[57].setRGB(255, 142, 0);
leds[58].setRGB(0, 0, 0);
leds[59].setRGB(0, 0, 0);
leds[60].setRGB(0, 0, 0);
leds[61].setRGB(255, 142, 0);
leds[62].setRGB(0, 0, 0);
leds[63].setRGB(0, 0, 0);
leds[64].setRGB(255, 142, 0);
leds[65].setRGB(0, 0, 0);
leds[66].setRGB(0, 0, 0);
leds[67].setRGB(255, 142, 0);
leds[68].setRGB(0, 0, 0);
leds[69].setRGB(0, 0, 0);
leds[70].setRGB(0, 0, 0);
leds[71].setRGB(0, 0, 0);
leds[72].setRGB(255, 142, 0);
leds[73].setRGB(255, 142, 0);
leds[74].setRGB(0, 0, 0);
leds[75].setRGB(0, 0, 0);
leds[76].setRGB(0, 0, 0);
leds[77].setRGB(255, 142, 0);
leds[78].setRGB(0, 0, 0);
leds[79].setRGB(0, 0, 0);
leds[80].setRGB(0, 0, 0);
leds[81].setRGB(0, 0, 0);
leds[82].setRGB(255, 142, 0);
leds[83].setRGB(255, 142, 0);
leds[84].setRGB(0, 0, 0);
leds[85].setRGB(0, 0, 0);
leds[86].setRGB(0, 0, 0);
leds[87].setRGB(255, 142, 0);
leds[88].setRGB(0, 0, 0);
leds[89].setRGB(0, 0, 0);
leds[90].setRGB(0, 0, 0);
leds[91].setRGB(0, 0, 0);
leds[92].setRGB(0, 0, 0);
leds[93].setRGB(0, 0, 0);
leds[94].setRGB(0, 0, 0);
leds[95].setRGB(0, 0, 0);
leds[96].setRGB(0, 0, 0);
leds[97].setRGB(0, 0, 0);
leds[98].setRGB(0, 0, 0);
leds[99].setRGB(0, 0, 0);
BAM();
}
}
void BAM() {
uint8_t timeMicros = 0;
uint16_t bitmask_r = 0;
uint16_t bitmask_g = 0;
uint16_t bitmask_b = 0;
for (uint8_t mag = 1; mag < 16; mag++) {
long startMicros = micros();
for (byte row = 0; row < ROWS; ++row) {
if ((mag & (mag - 1)) == 0) { // Is it power of two? Change bitmask
bitmask_r = mag;
bitmask_g = bitmask_r << 4;
bitmask_b = bitmask_g << 4;
}
GPIOA_PCOR = (1 << 12); // Datapin low
GPIOA_PCOR = (1 << 13); // Clockpin low
GPIOD_PSOR = (1); //latch low
for (int8_t cnt = ROWS - 1; cnt >= 0; --cnt) {
shift1bit(cnt == row); //Shift Layer
}
for (int8_t col = COLS - 1; col >= 0; --col) {
shift1bit(leds[row * ROWS + col].getBit(bitmask_r));
}
for (int8_t col = COLS - 1; col >= 0; --col) {
shift1bit(leds[row * ROWS + col].getBit(bitmask_g));
}
for (int8_t col = COLS - 1; col >= 0; --col) {
shift1bit(leds[row * ROWS + col].getBit(bitmask_b));
}
GPIOA_PCOR = (1 << 12); // Datapin low
GPIOA_PCOR = (1 << 13); // Clockpin low
GPIOD_PCOR = (1); //latch HIGH
}
timeMicros += micros() - startMicros;
}
//timeMicros /= 15;
Serial.println("########");
Serial.print("BAM: ");
Serial.println(timeMicros);
Serial.println("########");
}
void shift1bit (bool b) {
if (b) {
GPIOA_PSOR = (1 << 12); // Datapin high
} else {
GPIOA_PCOR = (1 << 12); // Datapin low
}
// clock pulse
GPIOA_PSOR = (1 << 13); // Clockpin high
__asm__ __volatile__ ("nop\n\t");
__asm__ __volatile__ ("nop\n\t");
GPIOA_PCOR = (1 << 13); // Clockpin low
}