diff --git a/docs/src/examples/kepler_problem.md b/docs/src/examples/kepler_problem.md index e24992832..edefaf7b9 100644 --- a/docs/src/examples/kepler_problem.md +++ b/docs/src/examples/kepler_problem.md @@ -1,13 +1,22 @@ # The Kepler Problem -The Hamiltonian $\mathcal {H}$ and the angular momentum $L$ for the Kepler problem are +The (non-dimensional) Hamiltonian $\mathcal {H}$ and the angular momentum $L$ for the Kepler problem are -$$\mathcal {H} = \frac{1}{2}(\dot{q}^2_1+\dot{q}^2_2)-\frac{1}{\sqrt{q^2_1+q^2_2}},\quad -L = q_1\dot{q_2} - \dot{q_1}q_2$$ +```math +\begin{align*} +\mathcal{H}(q_1, p_1, q_2, p_2) &= \frac{1}{2}(p^2_1+p^2_2)-\frac{1}{\sqrt{q^2_1+q^2_2}}, \\ +L &= q_1 p_2 - p_1 q_2 +\end{align*} +``` Also, we know that -$${\displaystyle {\frac {\mathrm {d} {\boldsymbol {p}}}{\mathrm {d} t}}=-{\frac {\partial {\mathcal {H}}}{\partial {\boldsymbol {q}}}}\quad ,\quad {\frac {\mathrm {d} {\boldsymbol {q}}}{\mathrm {d} t}}=+{\frac {\partial {\mathcal {H}}}{\partial {\boldsymbol {p}}}}}$$ +```math +\begin{align*} +\frac{\mathrm{d} \boldsymbol{p}}{\mathrm{d} t} &= - \frac {\partial \mathcal{H}}{\partial \boldsymbol{q}} , \\ +\frac{\mathrm{d} \boldsymbol{q}}{\mathrm{d} t} &= + \frac {\partial \mathcal{H}}{\partial \boldsymbol{p}} +\end{align*} +``` ```@example kepler import OrdinaryDiffEq as ODE, LinearAlgebra, ForwardDiff, NonlinearSolve as NLS, Plots