Skip to content

Training Neural SDEs with Mutating Arrays #785

@Alexio-Phytides

Description

@Alexio-Phytides

I am writing a training function in a similar form to the method of moments one in the neural SDE tutorial in the DiffEqFlux.jl documentation, that requires a loop as my loss is the difference between call prices which I need to calculate for various strikes using a loop. However, this results in a mutating array, how do I get around this?

function predict_neuralsde(p, u = S₀) 
  return Array(Pre_NSDE(u, p)) # Returns an array of stock prices/SDE solutions at each time point. 
end

function loss_neuralsde(p; n = 10000)
u = repeat(reshape(S₀, :, 1), 1, n)
stock = predict_neuralsde(p,u)[1,:,end]

for i = 1:length(K)
NSDE_call[i] = exp(-r*tspan[2]).*mean(maximum([terminal_values .- K[i] zeros(size(terminal_values))], dims = 2))
end 

NSDE_call
    
loss = sum(abs2, NSDE_call - BS_Price')  
 return loss , NSDE_call  
end  

opt = ADAM(0.025)

adtype = Optimization.AutoZygote()
optf = Optimization.OptimizationFunction((x,p) -> loss_neuralsde(x, n=10000), adtype)
optprob = Optimization.OptimizationProblem(optf, Pre_NSDE.p)
result1 = Optimization.solve(optprob, opt, callback = callback, maxiters = 200)  # 200 iterations of training.

The error message is as follows:

Mutating arrays is not supported -- called setindex!(Matrix{Float64}, ...)
This error occurs when you ask Zygote to differentiate operations that change
the elements of arrays in place (e.g. setting values with x .= ...)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions