
Extending JumpProcess.jl for fast point process simulation
with time-varying intensities

Guilherme Augusto Zagatti1, Samuel A. Isaacson3, Christopher Rackauckas4, See-Kiong Ng1, 2, and
Stéphane Bressan1, 2

1Institute of Data Science, National University of Singapore, Singapore
2School of Computing, National University of Singapore, Singapore

3Department of Mathematics and Statistics, Boston University
4Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology

ABSTRACT
Point processes model the occurrence of a countable number of
random points over some support. They can model diverse phe-
nomena, such as chemical reactions, stock market transactions and
social interactions. We show that JumpProcesses.jl is a fast,
general-purpose library for simulating point processes. JumpPro-
cesses.jl was first developed for simulating jump processes via
stochastic simulation algorithms (SSAs) (including Doobs method,
Gillespies methods, and Kinetic Monte Carlo methods). Histori-
cally, jump processes have been developed in the context of dynam-
ical systems to describe dynamics with discrete jumps. In contrast,
the development of point processes has been more focused on de-
scribing the occurrence of random events. In this paper, we bridge
the gap between the treatment of point and jump process simula-
tion. The algorithms previously included in JumpProcesses.jl
can be mapped to three general methods developed in statistics
for simulating evolutionary point processes. Our comparative ex-
ercise reveals that the library initially lacked an efficient algo-
rithm for simulating processes with variable intensity rates. We,
therefore, extended JumpProcesses.jl with a new simulation
algorithm, Coevolve, that enables the rapid simulation of pro-
cesses with locally-bounded variable intensity rates. It is now pos-
sible to efficiently simulate any point process on the real line
with a non-negative, left-continuous, history-adapted and locally
bounded intensity rate. This extension significantly improves the
computational performance of JumpProcesses.jl when simu-
lating such processes, enabling it to become one of the few readily
available, fast, general-purpose libraries for simulating evolution-
ary point processes.

1. Introduction
Methods for simulating the trajectory of evolutionary point pro-
cesses can be split into exact and inexact methods. Exact methods
describe the realization of each point in the process chronologi-
cally. Such methods are hard to scale for large populations where
numerous events fire within a short period since every single point
needs to be accounted for. Inexact methods trade accuracy for speed
by simulating the total number of events in successive intervals.
They are common in biochemistry, which often requires the simu-
lation of chemical reactions in large systems.

Previously, most of the focus has been on either univariate
processes with exotic intensities or large systems with condi-
tionally constant intensities, but not on both. As such, there
was no readily available general-purpose software for simu-
lating compound point processes in large systems with time-
dependent rates. We contribute a simulation algorithm Coevolve
to JumpProcesses.jl for efficiently simulating such processes.
The implemented algorithm improves the algorithm described
in [2] from where it borrows its name. Among other improvements,
our algorithm supports any process with locally bounded condi-
tional intensity rates, adapts to intensity rates that do not change
between jumps, and avoids the unnecessary re-computation of ran-
domly generated numbers, as well as the computation of the in-
tensity rate when its lower bound is available. The extension of
JumpProcesses.jl significantly expands the type of models
that can be simulated with the library, including compound inho-
mogeneous Poisson, Hawkes, and stress-release processes — all
described in [1]. Since JumpProcesses.jl is a member of Ju-
lia’s SciML organization, it also becomes easier to incorporate
compound point processes with time-dependent rates in a wide va-
riety of applications.
In this paper, we bridge the gap between simulation methods de-
veloped in statistics and biochemistry, which led us to the develop-
ment of Coevolve. First, we briefly introduce evolutionary point
processes. Next, since all simulation methods require a basic under-
standing of simulation methods for the Poisson homogeneous pro-
cess, we first describe such methods. Then, we identify and discuss
three general, exact methods. In the second part of this paper, we
describe the algorithms in JumpProcesses.jl and how they re-
late to the literature. We highlight our contribution Coevolve, in-
vestigate the correctness of our implementation and provide perfor-
mance benchmarks to demonstrate its value. The paper concludes
by discussing potential improvements.

2. The evolutionary point process
The evolutionary point process is a stochastic collection of marked
points over a unidimensional support. They are exhaustively de-
scribed in [1]. The likelihood of any evolutionary point process is
fully characterized by its conditional intensity and mark distribu-

1

Proceedings of JuliaCon 1(1), 2023

tion :

λ∗(t) ≡ λ(t | Ht−) =
Pr(t | Ht−)

1− Pr(t | Ht−)
and f ∗(k | tn)

Where Ht− = {(tn, kn) | 0 ≤ tn ≤ t} denotes the internal
history of the process up to but not including t, and the superscript
∗ denotes the conditoning of a function on the internal history. We
can interpret the conditonal intensity as the likelihood of observing
a point in the next infinitesimal unit of time, given that no point has
occurred since the last observed point in Ht− .

3. The homogeneous process
A homogeneous process can be simulated using properties of the
Poisson process, which allow us to describe two equivalent sam-
pling procedures. The first procedure consists of drawing succes-
sive inter-arrival times. We know that the distance between any two
points in a homogeneous process is distributed according to the ex-
ponential distribution — see Theorem 7.2 [8]. Given the homoge-
neous process with intensity λ, then the distance ∆t between two
points is distributed according to ∆t ∼ exp(1/λ). Draws from
the exponential distribution can be performed by drawing from a
uniform distribution in the interval [0, 1]. If V ∼ U [0, 1], then
T = −ln(V) / λ ∼ exp(1). When a point process is homo-
geneous, the inverse method of Subsection 4.1 reduces to this ap-
proach. Thus, we defer the presentation of this Algorithm to the
next section.
The second procedure uses the fact that Poisson processes can be
represented as a mixed binomial process with a Poisson mixing
distribution — see Proposition 3.5 [8]. In particular, the total num-
ber of points of a Poisson homogeneous process in [0, T) is dis-
tributed according toN (T) ∼ Poisson(λT) and the location of
each point within the region is distributed according to the uniform
distribution tn ∼ U [0, T].

4. Exact simulation methods
4.1 Inverse methods
The inverse method leverages Theorem 7.4.I [1] which states that
every simple point process 1 can be transformed to a homogeneous
Poisson process with unit rate via the following formula:∫ tn

tn−1

λ∗ (u) du = ∆t̃n , ∆t̃n ∼ exp(1) (1)

The idea is to draw realizations from the unit rate Poisson process
and solve Equation 1 above to obtain the desired point process. In
Algorithm 1, we adapt Algorithm 7.4 [1]. The advantage of using
the inverse method is that it is easier to couple the point process
with differential equations and solve the system with the same nu-
merical integrator.
Whenever the conditional intensity is constant between two
points, Equation 1 can be solved analytically. Let λ∗ (t) =

1A simple point process is a process in which the probability of observing
more than one point in the same location is zero.

λn−1,∀tn−1 ≤ t < tn, then∫ tn

tn−1

λ∗ (u) du = ∆t̃n−1 ⇐⇒

λn−1(tn − tn−1) = ∆t̃n ⇐⇒

tn = tn−1 +
∆t̃n
λn−1

Which is equivalent to drawing the next realization time from the
re-scaled exponential distribution ∆tn ∼ exp(1/λn−1). As we
will see in Subsection 2, this implies that the inverse and thinning
methods are the same whenever the conditional intensity is constant
between jumps.
The main drawback of the inverse method is that the root finding
problem defined in Equation 1 often requires a numerical solution.
To get around a similar obstacle in the context of the piecewise de-
terministic Markov process, Veltz [19] proposes a change of vari-
able trick that sees the root finding problem transformed into an
initial value problem.
We map the evolutionary point process to a piecewise determinis-
tic Markov process as following. Let ϕ∗t(·) define a flow describ-
ing the deterministic evolution of the conditional intensity function
over t ≥ 0, 1(·) be the indicator function, and λ∗n ≡ λ∗(tn), then
the conditional intensity function can be written as a jump process:

λ∗(t) =
∑
n≥1

ϕ∗t−tn−1(λ
∗
n−1)1(tn−1 ≤ t < tn)

According to Meiss [13], if ϕ∗t(λ
∗) is a flow, then it is a solution to

the initial value problem:

ϕ∗0(λ
∗
n) = λ∗n ,

d

dt
ϕ∗t(λ

∗
n) = f(ϕ∗t(λ

∗
n))

Given the definition of the conditional intensity we have that:

Pr(tn − tn−1 | λ∗n−1) = exp

(
−
∫ t

0

ϕu(λ
∗
n−1)du

)
Therefore, we have a piecewise deterministic Markov process that
satisfies the conditions of Theorem 3.1 [19]. In this case, we can
find tn by solving the following initial value problem:

ν∗(0) = λ∗(tn−1) ,
d

du
ν∗(u) =

f(ν∗(u))

ν∗(u)

s(0) = tn−1 ,
d

du
s(u) =

1

ν∗(u)

(2)

Up to t̃ ∼ exp(1). Veltz denotes this method CHV. In Algo-
rithm 1, we can implement the CHV method by solving Equation 2
instead of Equation 1. The algorithmic complexity is then deter-
mined by the ODE solver.
Another concern with Algorithm 1 is updating and drawing from
the conditional mark distribution in Line 8, and updating the condi-
tional intensity in Line 9. A naive implementation of Line 9 scales
with the number of marks O(K) since λ∗ is usually constructed
as the sum of K independent processes, each of which requires
updating the conditional intensity rate. Likewise, drawing from the
mark distribution in Line 8 usually involves drawing from a cate-
gorical distribution whose naive implementations also scales with
the number of marks O(K).
Finally, Algorithm 1 is not guaranteed to terminate in finite time
since one might need to sample many points before tn > T . The

2

Proceedings of JuliaCon 1(1), 2023

sampling rate can be especially high when simulating the process
in a large population with self-exciting encounters. In biochemistry,
Salis and Kaznessis [15] partition a large system of chemical reac-
tions into two: fast and slow reactions. While they approximate the
fast reactions with a Gaussian process, the slow reactions are solved
using a variation of the inverse method. They obtain an equivalent
expression for the rate of slow reactions as in Equation 1, which is
integrated with the Euler method.

Algorithm 1 The inverse method for simulating a marked evolu-
tionary point process over a fixed duration of time [0, T).

1: procedure INVERSEMETHOD([0, T), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while t < T do
5: n← n+ 1
6: draw ∆t̃n ∼ exp(1)
7: find the time of the next event tn by solving Equation 1
8: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
9: update the history HT− ← HT− ∪ (tn, kn) and λ∗

10: end while
11: return HT−

12: end procedure

4.2 Thinning methods
Thinning methods are one of the most popular methods for sim-
ulating point processes. The main idea is to successively sample
a homogeneous process, then thin the obtained points with the
conditional intensity of the original process. As stated in Propo-
sition 7.5.I [1], this procedure simulates the target process by con-
struction. The advantage of thinning over inverse methods is that
the former only requires the evaluation of the conditional intensity
function while the latter requires computing the inverse of its inte-
grated form [1].
Thinning algorithms have been proposed in different forms [1].
The Shedler-Lewis algorithm can simulate processes with bounded
intensity [10]. The classical algorithm from Ogata [14] overcomes
this limitation and only requires the local boundedness of the con-
ditional intensity. The advantage of Ogata’s algorithm and its vari-
ations is that it can simulate processes with potentially unbounded
intensity, such as self-exciting ones. As long as the intensity condi-
tioned on the simulated history remains locally bounded, it is pos-
sible to simulate subsequent points indefinitely.
In biochemistry, the thinning method was popularized by Gille-
spie [5, 4]. For this reason, this method is also called the Gille-
spie method. Gillespie himself called it the direct method or the
stochastic simulation algorithm. Gillespie introduced the thin-
ning method in the context of simulating chemical reactions of
well-stirred systems. He developed a stochastic model for molecule
interactions from physics principles without any references to
the point process theory developed in this section. His model of
molecule interaction boils down to a marked Poisson process with
constant conditional intensity between jumps. The model consists
of distinct populations of molecular species that interact through
several reaction channels. A chemical reaction consists of a Pois-
son process that transforms a set of molecules of some type into
a set of molecules of another type. What Gillespie calls the mas-
ter equation can be deduced from the superposition theorem —
Theorem 3.3 [8].

Alternatively, in biochemistry, thinning methods are known as re-
jection algorithms. Than et al. [17, 18] proposed the rejection-
based algorithm with composition-rejection search, yet an-
other more sophisticated variation of the thinning method. In this
case, the procedure groups similar processes together. For each
group, an upper- and lower-bound conditional intensities are used
for thinning. A similar procedure is also described in [16], in which
the authors refer to their algorithm as kinetic Monte Carlo.
In Algorithm 2, we modify Algorithm 7.5.IV [1] to incorporate the
idea of a lower bound for the conditional intensity from [18]. To im-
plement the algorithm, we define three functions, M̄ ∗(t) = M̄(t |
Ht), M

∗(t) = M(t | Ht) and L∗(t) = L(t | Ht), that charac-
terize the local boundedness condition such that:

λ∗ (t+u) ≤ M̄ ∗(t) and λ∗ (t+u) ≥M ∗(t) ,∀ 0 ≤ u ≤ L∗(t)

The tighter the bound on M̄ ∗(t), the lower the number of samples
discarded. Since looser bounds lead to less efficient algorithms, the
art, when simulating via thinning, is to find the optimal balance
between the local supremum of the conditional intensity M̄ ∗(t)
and the duration of the local interval L∗(t). On the other hand, the
infimum M ∗(t) can be used to avoid the evaluation of λ∗ (t+ u)
in Line 10 of Algorithm 3 which often can be expensive.
When the conditional intensity is constant between jumps such
that λ∗ (t) = λn−1,∀tn−1 ≤ t < tn , let M̄ ∗(t) =
M ∗(t) = λn−1 and L∗(t) = ∞. We have that for any
u ∼ exp(1 / M̄ ∗(t)) = exp(1/λn−1) and v ∼ U [0, 1] ,
u < L∗(t) = ∞ and v < λ∗ (t + u) / M̄ ∗(t) = 1. There-
fore, we advance the internal history for every iteration of Algo-
rithm 2. In this case, the bound M̄ ∗(t) is as tight as possible, and
this method becomes the same as the inverse method of Subsec-
tion 4.1.
While thinning algorithms solve the issue by computing the in-
verse of the integrated conditional intensity, the issue of termination
can be aggravated by the fact that we are now required to sample
from a process with a rate higher than the original process. More-
over, like the inverse method, thinning algorithms can also face
issues related with drawing from the conditional mark distribution
— Line 11 of Algorithm 2 —, and updating the conditional in-
tensity — Line 3 of Algorithm 3 — and the mark distribution —
Line 11 of Algorithm 2.

Algorithm 2 The thinning method for simulating a marked evolu-
tionary point process over a fixed duration of time [0, T).

1: procedure THINNINGMETHOD([0, T), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while true do
5: t← NextTimeViaThinning([t, T),HT− , λ

∗)
6: if t ≥ T then
7: break
8: end if
9: n← n+ 1

10: tn ← t
11: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
12: update the history HT− ← HT− ∪ (tn, kn)
13: end while
14: return HT−

15: end procedure

3

Proceedings of JuliaCon 1(1), 2023

Algorithm 3 Generates the next event time via thinning.
1: procedure NEXTTIMEVIATHINNING([t, T), λ∗, Ht,)
2: while t < T do
3: update λ∗

4: find M̄ ∗(t), M ∗(t) and L∗(t) which satisfies Equa-
tion 4.2

5: draw u ∼ exp(1 / M̄ ∗(t)) and v ∼ U [0, 1]
6: if u > L∗(t) then
7: t← t+ L∗(t)
8: next
9: end if

10: if (v > M ∗(t)) and (v > λ∗ (t+ u) / M̄ ∗(t)) then
11: t← t+ u
12: next
13: end if
14: t← t+ u
15: break
16: end while
17: return t
18: end procedure

4.3 Queueing methods
As an alternative to his direct method — in this text referred as
the thinning method —, Gillespie introduced the first reaction
method in his seminal work on simulation algorithms [5]. The first
reaction method separately simulates the next reaction time for
each reaction channel. It then selects the smallest time as the time
of the next event, followed by updating the conditional intensity of
all channels accordingly. This is a variation of the thinning method
to simulate a set of inter-dependent point processes, making use of
the superposition theorem — Theorem 3.3 [8] — in the inverse
direction.
Gibson and Bruck [3] improved the first reaction method with the
next reaction method. They innovate on three fronts. First, they
keep a priority queue to quickly retrieve the next event. Second,
they keep a dependency graph to quickly locate all conditional in-
tensity rates that need to be updated after an event is fired. Third,
they re-use previously sampled reaction times to update unused re-
action times. This minimizes random number generation, which
can be costly. Priority queues and dependency graphs have also
been used in the context of social media [2] and epidemics [7] sim-
ulation. In both cases, the phenomena are modelled as point pro-
cesses.
We prefer to call this class of methods queueing methods since
most efficiency gains come from maintaining a priority queue of
the next event times. Algorithm 4 presents a method for sampling a
superposed point process by keeping the strike time of each process
in a priority queue Q. The priority queue is initially constructed in
O(K) steps in Lines 4 to 7 of Algorithm 4. But, in contrast to thin-
ning methods, updates to the conditional intensity depend only on
the size of the neighbourhood of k. That is, the processes k′ whose
conditional intensity depends on the history of k. If the graph is
sparse, then updates will be faster than with thinning. Another ad-
vantage of queueing is that, since marks are determined accord-
ing to their priority in the queue, it is possible to simulate point
processes with a finite space of marks as interdependent point pro-
cesses — see Definition 6.4.1 [1] of multivariate point processes
— doing away with the need to draw from the mark distribution at
every event occurrence.

Algorithm 4 The queueing method for simulating a marked evolu-
tionary point process over a fixed duration of time [0, T).

1: procedure QUEUEINGMETHOD([0, T), λ∗k, f ∗k,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: for k=1,K do
5: t← NextTimeViaThinning([0, T),HT− , λ

∗
k(·))

6: push tk, k to Q
7: end for
8: while t < T do
9: pop t, k from Q

10: if t ≥ T then
11: break
12: end if
13: n← n+ 1
14: tn ← t
15: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
16: update the history HT− ← HT− ∪ (tn, kn)
17: for k′ ∈ {k} ∪Neighborhood(k) do
18: tk′ ← NextTimeViaThinning([t, T),HT− , λ

∗
k′(·))

19: push tk′ , k
′ to Q

20: end for
21: end while
22: return HT−

23: end procedure

5. Implementation
JumpProcesses.jl is a Julia library for simulating jump —
or point — processes which is part of Julia’s SciML organiza-
tion. Our discussion in Section 4 identified three exact meth-
ods for simulating point processes. In all the cases, we identi-
fied two mathematical constructs required for simulation: the in-
tensity rate and the mark distribution. In JumpProcesses.jl,
these can be mapped to user defined functions rate(u, p,
t) and affect!(integrator). The library provides APIs
for defining processes based on the nature of the intensity rate
and the intended simulation algorithm. Processes intended for
exact methods can choose between ConstantRateJump and
VariableRateJump. While the former expects the rate between
jumps to be constant, the latter allows for time-dependent rates. The
library also provides the MassActionJump API to define large
systems of point processes that can be expressed as reaction equa-
tions. Finally, RegularJump are intended for inexact methods.
Since inverse methods solve a differential equation to deter-
mine the next jump time, they require a continuous numerical
integrator. This facility is provided by OrdinaryDiffEq.jl,
which easily interoperates with JumpProcesses.jl as it
also belongs to the SciML organization. All point processes
to be solved via the inverse method must be initialized as a
VariableRateJump. JumpProcesses.jl builds a continu-
ous callback following the algorithm in [15] and passes the problem
to the OrdinaryDiffEq.jl solver.
Alternatively, thinning and queuing methods can be simulated via
discrete steps. In the context of the library, any method that uses a
discrete callback is called an aggregator. There are eleven differ-
ent aggregators, seven of which implements a variation of the thin-
ning method and four of which a variation of the queuing method.
We start with the thinning aggregators, none of which support
VariableRateJump. Algorithm 2 assumes that there is a sin-
gle process. In reality, all the implementations assume a finite
multivariate point process with K interdependent processes. How-

4

Proceedings of JuliaCon 1(1), 2023

ever, this can be easily conciliated using Definition 6.4.1 [1]
which states the equivalence of such process with a point pro-
cess with a finite space of marks. As all the thinning aggrega-
tors only deal with ConstantRateJump, the mark distribution
becomes the categorical distribution weighted by the intensity of
each process. Conditional on the selected process, the correspond-
ing affect!(integrator) is invoked. Thus, the mark distri-
bution can be re-written as an ∼ f ∗(a|kn, tn)f ∗(k|tn). More-
over, since the intensity between jumps is constant, Algorithm 3
short-circuits to quickly return t ∼ exp(1/M̄) = exp(1/λn) as
discussed in Subsection 4.2.
Where most implementations differ is on updating the mark dis-
tribution in Line 11 of Algorithm 2 and the conditional intensity
rate in Line 3 of Algorithm 3. Direct and DirectFW follows the
direct method in [5] which re-evaluates all intensities after every
iteration scaling at O(K). When drawing the process to fire, it ex-
ecutes a search in an array that stores the cumulative sum of rates.
DirectCR, SortingDirect and RDirect only re-evaluate the
intensities of the processes that are affected by the realized process.
This operation is executed efficiently by keeping a vector of depen-
dencies. These three algorithms differ in how they select the pro-
cess. DirectCR keeps the intensity rates in a priority table, it is
implemented after [16]. SortingDirect keeps the intensity rate
in a loosely sorted array following [12]. In both cases, the idea is to
use a randomly generated number between zero and one to guide
the search for the next jump. With the intensity rates sorted, more
frequent processes should be selected faster than less frequent ones.
Overall, this should increase the speed of the simulation. RDirect
keeps track of the maximum rate of the system, it implements an
algorithm equivalent to thinning with M̄ equals to the maximum
rate. However, the implementation differs. It thins with M̄ = λn,
then randomly selects a candidate process and confirms the candi-
date only if its rate is above a random proportion of the maximum
rate. Finally, RSSA and RSSACR group processes with similar rates
in bounded brackets. The upper bounds are used for thinning. For
each round of thinning, a sampled candidate process is considered
for selection. In RSSA, the candidate process is selected similarly to
Direct, while a priority queue is used in RSSACR. Both of these
algorithms follow from [17, 18].
Next, we consider the queuing aggregators. Starting with aggre-
gators that only support ConstantRateJump we have, FRM,
FRMFW and NRM. FRM and FRMFW follows the first reaction
method in [5]. To compute the next jump, both algorithms com-
pute the time to next event for each process and selects the process
with minimum time. This is equivalent to assuming a complete de-
pendency graph in Algorithm 4. For large systems, they can be less
efficient than NRM. The latter implementation is sourced from [3]
and follows Algorithm 4 very closely.
Previously, we attempted to bridge the gap between the treatment
of point process simulation in statistics and biochemistry. Despite
the many commonalities, most of the algorithms implemented in
JumpProcesses.jl are derived from the biochemistry litera-
ture. There has been less emphasis on implementing processes
commonly studied in statistics such as self-exciting point pro-
cesses characterized by time-varying and history-dependent inten-
sity rates. This is addressed by our latest aggregator, Coevolve.
This is the only aggregator that allows VariableRateJump to
open the door for the efficient simulation of processes with time-
dependent intensity rates. Our implementation takes inspiration
from [2]. It improves it in several fronts. First, we take advantage of
its modularity of Julia to design an API that accepts any intensity
rate, not only the Hawkes’. Second, we avoid the re-computation of

unused random numbers. When updating processes that have not
yet fired, we can transform the unused time to obtain the next can-
didate time for the first round of iteration of the thinning procedure
in Algorithm 3. This saves one round of sampling from the expo-
nential distribution, which translates into a faster algorithm. Third,
we allow the user to supply a lower bound which can short-circuit
the loop in Algorithm 3, saving yet another round of sampling.
Fourth, it adapts to processes with constant intensity between jumps
which reduces the loop in Algorithm 3 to the equivalent imple-
mented in NRM. Finally, since Coevolve can be mapped to a thin-
ning algorithm — see [2] —, it can simulate any point process on
the real line with a non-negative, left-continuous, history-adapted
and locally bounded intensity rate as per Proposition 7.5.I [1].

6. Benchmarks
This section compares the algorithms described in Section 5 im-
plemented in JumpProcesses.jl. Since Coevolve is a new
aggregator and the only one to support VariableRateJump
we proceed in three steps. First, we test the correctness of
Coevolve by conducting some statistical analysis. Second, we
compare all the existing aggregators with the jump benchmarks in
SciMLBenchmarks.jl. Coevolve should attain similar per-
formance to NRM. Finally, we propose a new benchmark for com-
pound, self-exciting point processes to evaluate the performance of
the Coevolve aggregator against the alternative which uses an in-
verse method. We also use this new benchmark to compare across
another python library for simulating Hawkes processes.
To simulate a process intended for a discrete solver with
JumpProcesses.jl, we define the discrete problem, initialize
the jumps and define the jump problem which takes the aggregator
as an argument. The jump problem can then be solved with a dis-
crete stepper. The code for simulating the homogeneous Poisson
process with Coevolve is reproduced in Listing 1.

Listing 1: Simulation of the homogeneous Poisson process.� �
using JumpProcesses
rate (u, p, t) = p[1]
affect !(integrator) = integrator .u[1] += 1
jump = ConstantRateJump (rate , affect !)
u, tspan , p = [0.], (0., 200 .), (0 .2 5,)
dprob = DiscreteProblem (u, tspan , p)
jprob = JumpProblem (dprob , Coevolve (), jump ;

dep_graph =[[1]])
sol = solve (jprob , SSAStepper ())� �

The simulation of a Hawkes process requires a
VariableRateJump along with the rate bounds and the
interval for which the rates are valid. Also, since the Hawkes
process is history dependent, we close the rate and affect!
function with a vector containing the history of events. The code
for simulating the Hawkes process is reproduced in Listing 2. Note
that it is possible to simplify the computation of the rate — shown
below —, but we keep the code here as close as possible to its
usual definition for illustration purposes.

Listing 2: Simulation of the Hawkes process.� �
using JumpProcesses
h = Float64 []
rate (u, p, t) = p[1] +

p[2]* sum (exp .([-p[3]*(t- _t) for _t in h]))
lrate (u, p, t) = p[1]
urate = rate

5

Proceedings of JuliaCon 1(1), 2023

rateinterval (u, p, t) = 1/(2* urate (u,p,t))
affect !(integrator) = (push !(h, integrator .t);

integrator .u[1] += 1)
jump = VariableRateJump (rate , affect !; lrate ,

urate , rateinterval)
u, tspan , p = [0.], (0., 200 .), (0 .2 5, 0 .5 , 2 .0)
dprob = DiscreteProblem (u, tspan , p)
jprob = JumpProblem (dprob , Coevolve (), jump ;

dep_graph =[[1]])
sol = solve (jprob , SSAStepper ())� �

To assess the correctness of the Coevolve aggregator, we add
it to the JumpProcesses.jl test suite. Some tests in the suite
check whether the aggregators are able to obtain empirical statis-
tics close to the expected one in a number of simple biochem-
istry models such as linear reactions, DNA repression, reversible
binding and extinction. The test suite was missing a unit test for
self-exciting process. Thus, we have added a test for the uni-
variate Hawkes model that checks whether algorithms that accept
VariableRateJump are able to produce an empirical distribu-
tion of trajectories whose first two moments of the observed rate
are close to the expected ones.
In addition to that, the correctness of the implemented algorithm
can be visually assessed using a QQ-plot. As discussed in Subsec-
tion 4.1, every simple point process can be transformed to a Poisson
process with unit rate. This implies that the interval between points
for any such transformed process should match the exponential dis-
tribution. Therefore, the correctness of the Coevolve aggregator
can be assessed as following. First, transform the simulated in-
tervals with the appropriate compensator. Compute the empirical
quantiles of the transformed intervals. Plot the empirical quantiles
with the corresponding quantiles of the exponential distribution. If
the simulator produces correct trajectories, this plot known as QQ-
plot should depict the points aligned around the 45-degree line. We
produce QQ-plots for the homogeneous Poisson process as well as
the compound Hawkes process — see Section 3.6 [9] for a defini-
tion — to attest the correctness of Coevolve. Figure 1 (d) depicts
the QQ-plot for a ten-node compound Hawkes process with param-
eters λ = 0.5, α = 0.1, β = 2.0 simulated 250 times for 200
units of time. Figure 1 also depicts the trajectory, the conditional
intensity and the network structure of a single simulation for three
random nodes in panels (a), (b) and (c) respectively.
Next, we assess the speed of the different aggregators.
SciMLBenchmarks.jl includes four jump benchmarks for
point processes over the real line: a 1-dimensional continuous time
random walk approximation of a diffusion model (Diffusion), the
multi-state model from Appendix A.6 [11] (Multi-state), a simple
negative feedback gene expression model (Gene I) and the negative
feedback gene expression from [6] (Gene II). The intensity rate of
all the modelled processes in these benchmarks are constant be-
tween jumps. We simulate a single trajectory for each aggregator
to visually check that they produce similar trajectories for a given
model. The Diffusion, Multi-state, Gene I and Gene II benchmarks
are then simulated 50, 100, 2000 and 200 times, respectively.
Check the source code for further implementation details. Bench-
mark results are listed in Table 1. The table shows that no single ag-
gregator dominates suggesting they should be selected according to
the task at hand. We also note that the performance of Coevolve
matches NRM except for the last problem. Further investigation is
needed to understand this difference in performance since the for-
mer should reduce to the latter when no VariableRateJump is
used.
Finally, we add a new benchmark to the benchmark suite which
simulates the compound Hawkes process for an increasing number

0 5 10 15 20

1

2

3

t

no
de

in
de

x

(a)

0 5 10 15 20

0.5

0.6

0.7

0.8

t

co
nd

it
io

na
l

ra
te

(b)

(c)

0 1 2 3 4 5
0

1

2

3

4

5

Expected quantile
E

m
pi

ri
ca

l
qu

an
ti

le

(d)
Fig. 1: Simulations of 10-nodes compound Hawkes process with parameters
λ = 0.5, α = 0.1, β = 2.0 for 200 units of time. (a) and (b) sampled
trajectory and intensity rate for a single simulation for the three selected
nodes in (c) for the first 20 units of time. (c) underlying 10-nodes network
with three random nodes selected. (d) QQ-plot of transformed inter-event
time for 250 simulations colored by node.

Benchmark Diffusion Multi-state Gene I Gene II
Direct 4.85 s 0.12 s 0.17 ms 0.44 s
FRM 15.88 s 0.22 s 0.24 ms 0.62 s
SortingDirect 1.17 s 0.12 s 0.21 ms 0.39 s
NRM 0.87 s 0.27 s 0.44 ms 0.75 s
DirectCR 0.43 s 0.20 s 0.38 ms 0.79 s
RSSA 1.91 s 0.11 s 0.35 ms 0.59 s
RSSACR 0.37 s 0.16 s 0.73 ms 0.83 s
Coevolve 0.77 s 0.28 s 0.40 ms 0.96 s

Table 1. : Median execution time. A 1-dimensional continuous time ran-
dom walk approximation of a diffusion model (Diffusion), the multi-state
model from Appendix A.6 [11] (Multi-state), a simple negative feedback
gene expression model (Gene I) and the negative feedback gene expression
from [6] (Gene II).

6

Proceedings of JuliaCon 1(1), 2023

of self-exciting processes. Let a graph with V nodes, then the com-
pound Hawkes process is characterized by V point processes such
that the conditional intensity rate of node i connected to a set of
nodes Ei in the graph is given by

λ∗i (t) = λ+
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]

This process is known as self-exciting, because the occurence of
an event j at tnj

will increase the conditional intensity of all the
processes connected to it by α. The excited intensity then decreases
at a rate proportional to β.

dλ∗i (t)

dt
= −β

∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]

= −β (λ∗i (t)− λ)

The conditional intensity of this process has a recursive formula-
tion which can significantly speed the simulation. The recursive
formulation for the univariate case is derived in [9]. We derive the
compound case here. Let tNi

= max{tnj
< t | j ∈ Ei} and

φ∗i (t) below.

φ∗i (t) =
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tNi

+ tNi
− tnj

)
]

= exp [−β(t− tNi
)]
∑
j∈Ei

∑
tnj
≤tNi

α exp
[
−β(tNi

− tnj
)
]

= exp [−β(t− tNi
)] (α+ φ∗(tNi

))

Then the conditional intensity can be re-written in terms of
φ∗i (tNi

)

λ∗i (t) = λ+ φ∗i (t) = λ+ exp [−β(t− tNi
)] (α+ φ∗i (tNi

))

A random graph is sampled from the Erdős-Rényi model. This
model assumes the probability of an edge between two nodes is in-
dependent of other edges, which we fix at 0.2. Note that this setup
implies an increasing expected node degree.
We fix the Hawkes parameters at λ = 0.5, α = 0.1, β = 5.0
ensuring the process does not explode and simulate models in the
range from 1 to 95 nodes for 25 units of time. We simulate 50
trajectories with a limit of ten seconds to complete execution.
We assess the benchmark in five different settings. First, we
run the inverse method and Coevolve using the brute force
implementation of the intensity rate which loops through the
whole history of past events. Second, we implement a re-
cursive algorithm for computing the intensity rate which we
use to run both methods. We also run the benchmark against
PiecewiseDeterministicMarkovProcesses.jl 2 which
is developed by the same author who proposed the CHV algorithm
discussed in Subsection 4.1. Finally, we run the benchmark using
the Python library Tick 3. This library implements a version of the
thinning method for simulating the process and implements a re-
cursive algorithm for computing the intensity rate.
Table 2 shows that Coevolve is orders of magnitude faster than
the inverse method for any system size. As shown in Algorithm 4,
every sampled point in Coevolve requires a number of expected

2https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.

jl
3https://github.com/X-DataInitiative/tick

updates equal to the expected degree of the dependency graph.
Therefore, it is able to complete non-exploding simulations effi-
ciently. Instead, the inverse method is unable to complete within
the allocated time for larger systems because it is required to find an
ever larger number of roots of an ever larger system of differential
equations.
The recursive implementation of the intensity rate also brings con-
siderable performance boost placing Coevolve as one of the
fastest algorithms. The Python library Tick remains competitive
for smaller problems, but gets considerably slower for bigger ones.
Also, it is only specialized to the Hawkes process. Another draw-
back is that the library wraps the actual C++ implementation. In
contrast, JumpProcesses.jl can simulate many other point
processes with a relatively simple user-interface provided by the
Julia language. Finally, CHV is slower for smaller networks, but
slightly faster than Coevolve for larger models. The fact that
CHV is not well-integrated with the SciML organization might
pose a challenge for some users.

7. Conclusion
This paper demonstrates that JumpProcesses.jl is a fast,
general-purpose library for simulating evolutionary point pro-
cesses. With the addition of the Coevolve aggregator, any point
process on the real line with a non-negative, left-continuous,
history-adapted and locally bounded intensity rate can be simu-
lated with this library. The objective of this paper was to bridge
the gap between the treatment of point process simulation in statis-
tics and biochemistry. We demonstrated that many of the algo-
rithms developed in biochemistry which served as the basis for the
JumpProcesses.jl aggregators can be mapped to three gen-
eral methods developed in statistics for simulating evolutionary
point processes. We showed that the existing aggregators mainly
differ in how they update and sample from the intensity rate
and mark distribution. As we performed this exercise, we noticed
the lack of an efficient aggregator for variable intensity rates in
JumpProcesses.jl, a gap which Coevolve is meant to fill.
Coevolve borrows many enhacements from other aggregators in
JumpProcesses.jl. However, there are still a number of ways
forward. First, the aggregator cannot simulate processes whose rate
depends on variables from differential equations. This extension
would allow two-way interoperability with the rest of the SciML
family. Next, we should consider whether it is possible to reduce
the number of iterations during thinning. Processes get updated
once its dependencies change. Once we know a process will not
fire before one of its dependencies, we should be able to stop the it-
eration and wait for the update or continue from where the iteration
stopped if the dependency gets delayed. This might become im-
portant once we allow rates that depend on differential equations.
Third, given the performance of the CHV algorithm in our bench-
marks, we should consider adding it to JumpProcesses.jl as
another aggregator such that it can benefit with tighter integra-
tion with the SciML organization. Fourth, JumpProcesses.jl
would benefit from further development in inexact methods. At the
moment, support is limited to processes with constant rates be-
tween jumps and does not support marks. Inexact methods should
allow for the simulation of longer periods of time when only an
event count per time interval is required. Hawkes processes can
be expressed as a branching process. There are simulation algo-
rithms that already take advantage of this structure to leap through
time [9]. It would be important to adapt these algorithms for gen-
eral, compound branching processes to cater for a larger number of
settings. Finally, JumpProcesses.jl also includes algorithms

7

https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
https://github.com/X-DataInitiative/tick

Proceedings of JuliaCon 1(1), 2023

Brute force Recursive
V Inverse Coevolve Inverse Coevolve CHV Tick

n time n time n time n time n time n time
1 50 143.4 µs 50 2.6 µs 50 104.3 µs 50 4.1 µs 50 150.0 µs 50 28.3 µs
10 50 16.0 ms 50 342.0 µs 50 9.8 ms 50 96.0 µs 50 472.2 µs 50 134.6 µs
20 50 106.8 ms 50 2.5 ms 50 47.0 ms 50 356.1 µs 50 713.3 µs 50 933.5 µs
30 29 344.8 ms 50 5.7 ms 50 158.0 ms 50 649.2 µs 50 1.2 ms 50 3.0 ms
40 6 1.9 s 50 13.6 ms 9 1.2 s 50 1.2 ms 50 1.4 ms 50 7.3 ms
50 3 3.6 s 50 26.0 ms 5 2.4 s 50 1.8 ms 50 1.8 ms 50 14.3 ms
60 2 6.9 s 50 45.6 ms 3 4.3 s 50 2.5 ms 50 2.5 ms 50 28.9 ms
70 2 9.5 s 50 72.3 ms 2 6.6 s 50 3.5 ms 50 2.9 ms 50 56.9 ms
80 1 15.4 s 50 118.7 ms 1 10.9 s 50 4.3 ms 50 3.5 ms 50 97.8 ms
90 1 26.0 s 50 146.3 ms 1 17.4 s 50 5.3 ms 50 4.4 ms 50 160.8 ms

Table 2. : Median execution time for the compound Hawkes process, V is the number of nodes and n is the total number of successful
executions under ten seconds. Brute force refers to the implementation of the intensity rate looping through the whole history of past events.
Recursive refers to a recursive implementation that only requires looking at the previous state of each node. Inverse and Coevolve are
algorithms from JumpProcesses.jl, CHV is an algorithm from PiecewiseDeterministicMarkovProcesses.jl and Tick is a Python
library. Fastest time is bolded, second fastest underlined.

for jumps over two-dimensional spaces. It might be worth conduct-
ing a similar comparative exercise to identify algorithms in statis-
tics for 2- and N -dimensional processes that could also be added
to JumpProcess.jl as it has the potential to become the go-to
library for general point process simulation.

8. References
[1] D. J. Daley and D. Vere-Jones. An Introduction to the The-

ory of Point Processes: Volume I: Elementary Theory
and Methods. Probability and Its Applications, An Introduc-
tion to the Theory of Point Processes. Springer-Verlag, 2 edi-
tion. doi:10.1007/b97277.

[2] Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-
Rodriguez, Shuang Li, Hongyuan Zha, and Le Song.
COEVOLVE: A joint point process model for in-
formation diffusion and network evolution. 18(1).
doi:10.5555/3122009.3122050.

[3] Michael A. Gibson and Jehoshua Bruck. Efficient Exact
Stochastic Simulation of Chemical Systems with Many
Species and Many Channels. 104(9). doi:10.1021/jp993732q.

[4] Daniel T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. 81(25). doi:10.1021/j100540a008.

[5] Daniel T Gillespie. A general method for numerically simu-
lating the stochastic time evolution of coupled chemical reac-
tions. 22(4). doi:10.1016/0021-9991(76)90041-3.

[6] Abhishekh Gupta and Pedro Mendes. An Overview of
Network-Based and -Free Approaches for Stochastic Simu-
lation of Biochemical Systems. 6(1). doi:10.3390/computa-
tion6010009.

[7] Petter Holme. Fast and principled simulations of the
SIR model on temporal networks. 16(2). doi:10.1371/jour-
nal.pone.0246961.

[8] Günter Last and Mathew Penrose. Lectures on the Poisson
Process. Cambridge University Press, 1st edition edition.

[9] Patrick J. Laub, Young Lee, and Thomas Taimre. The Ele-
ments of Hawkes Processes. Springer International Pub-
lishing. doi:10.1007/978-3-030-84639-8.

[10] P. A. W. Lewis and G. S. Shedler. Simulation of Nonhomo-
geneous Poisson Processes with Log Linear Rate Function.
63(3). doi:10.2307/2335727. jstor:2335727.

[11] Luca Marchetti, Corrado Priami, and Vo Hong Thanh. Sim-
ulation Algorithms for Computational Systems Biol-
ogy. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer International Publishing. doi:10.1007/978-3-
319-63113-4.

[12] James M. McCollum, Gregory D. Peterson, Chris D. Cox,
Michael L. Simpson, and Nagiza F. Samatova. The sort-
ing direct method for stochastic simulation of biochemi-
cal systems with varying reaction execution behavior. 30(1).
doi:10.1016/j.compbiolchem.2005.10.007.

[13] James Meiss. Differential Dynamical Systems, Re-
vised Edition. Mathematical Modeling and Computa-
tion. Society for Industrial and Applied Mathematics.
doi:10.1137/1.9781611974645.

[14] Y. Ogata. On Lewis’ simulation method for point processes.
27(1). doi:10.1109/TIT.1981.1056305.

[15] Howard Salis and Yiannis Kaznessis. Accurate hybrid
stochastic simulation of a system of coupled chemical or bio-
chemical reactions. 122(5). doi:10.1063/1.1835951.

[16] Alexander Slepoy, Aidan P. Thompson, and Steven J. Plimp-
ton. A constant-time kinetic Monte Carlo algorithm for sim-
ulation of large biochemical reaction networks. 128(20).
doi:10.1063/1.2919546.

[17] Vo Hong Thanh, Corrado Priami, and Roberto Zunino.
Efficient rejection-based simulation of biochemical
reactions with stochastic noise and delays. 141(13).
doi:10.1063/1.4896985.

[18] Vo Hong Thanh, Roberto Zunino, and Corrado Pri-
ami. Efficient Constant-Time Complexity Algorithm for
Stochastic Simulation of Large Reaction Networks. 14(3).
doi:10.1109/TCBB.2016.2530066.

[19] Romain Veltz. A new twist for the simulation of hybrid
systems using the true jump method. (arXiv:1504.06873).
doi:10.48550/arXiv.1504.06873. arxiv:arXiv:1504.06873.

8

http://dx.doi.org/10.1007/b97277
http://dx.doi.org/10.5555/3122009.3122050
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.3390/computation6010009
http://dx.doi.org/10.3390/computation6010009
http://dx.doi.org/10.1371/journal.pone.0246961
http://dx.doi.org/10.1371/journal.pone.0246961
http://dx.doi.org/10.1007/978-3-030-84639-8
http://dx.doi.org/10.2307/2335727
http://dx.doi.org/10.1007/978-3-319-63113-4
http://dx.doi.org/10.1007/978-3-319-63113-4
http://dx.doi.org/10.1016/j.compbiolchem.2005.10.007
http://dx.doi.org/10.1137/1.9781611974645
http://dx.doi.org/10.1109/TIT.1981.1056305
http://dx.doi.org/10.1063/1.1835951
http://dx.doi.org/10.1063/1.2919546
http://dx.doi.org/10.1063/1.4896985
http://dx.doi.org/10.1109/TCBB.2016.2530066
http://dx.doi.org/10.48550/arXiv.1504.06873
http://arxiv.org/abs/arXiv:1504.06873

	Introduction
	The evolutionary point process
	The homogeneous process
	Exact simulation methods
	Inverse methods
	Thinning methods
	Queueing methods

	Implementation
	Benchmarks
	Conclusion
	References

