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ABSTRACT
Point processes model the occurrence of a countable number of
random points over some support. They can model diverse phe-
nomena, such as chemical reactions, stock market transactions
and social interactions. We show that JumpProcesses.jl is
a fast, general-purpose library for simulating point processes.
JumpProcesses.jl was first developed for simulating jump
processes via stochastic simulation algorithms (SSAs) (including
Doob’s method, Gillespie’s methods, and Kinetic Monte Carlo
methods). Historically, jump processes have been developed in the
context of dynamical systems to describe dynamics with discrete
jumps. In contrast, the development of point processes has been
more focused on describing the occurrence of random events. In
this paper, we bridge the gap between the treatment of point and
jump process simulation. The algorithms previously included in
JumpProcesses.jl can be mapped to three general methods
developed in statistics for simulating evolutionary point processes.
Our comparative exercise revealed that the library initially lacked
an efficient algorithm for simulating processes with variable inten-
sity rates. We, therefore, extended JumpProcesses.jl with two
new simulations algorithm, Coevolve and CoevolveSynced,
that enables the rapid simulation of processes with locally-bounded
variable intensity rates. It is now possible to efficiently simulate any
point process on the real line with a non-negative, left-continuous,
history-adapted and locally bounded intensity rate coupled or not
with differential equations. This extension significantly improves
the computational performance of JumpProcesses.jl when
simulating such processes, enabling it to become one of the few
readily available, fast, general-purpose libraries for simulating evo-
lutionary point processes.

1. Introduction
Methods for simulating the trajectory of evolutionary point pro-
cesses can be split into exact and inexact methods. Exact methods
describe the realization of each point in the process chronologi-
cally. This exactness avoids bias from numerical approximations,
but such methods can suffer from reduced performance when sim-
ulating systems with large populations (where numerous events can
fire within a short period since every single point needs to be ac-

counted for). Inexact methods trade accuracy for speed by simu-
lating the total number of events in successive intervals. They are
popular in biochemical applications, e.g. τ -leap methods [5], which
often require the simulation of chemical reactions in systems with
large molecular populations.
Previously, point process simulation library development focused
primarily on univariate processes with exotic intensities, or large
systems with conditionally constant intensities, but not on both. As
such, there was no widely used general-purpose software for effi-
ciently simulating compound point processes in large systems with
time-dependent rates. To enable the efficient simulation of such
processes, we contribute two generalizations of the Coevolve [3]
method to JumpProcesses.jl, a core component of the popular
DifferentialEquations.jl library [17]. The implemented
algorithms improve the algorithm described in [3] from where they
borrow their names. Among other improvements, our algorithm
supports any process with locally bounded conditional intensity
rates, adapts to intensity rates that can [G: not] change between
jumps, can be coupled with differential equations [G: added], and
avoids both the unnecessary re-computation of randomly generated
numbers, as well as the computation of the intensity rate when its
lower bound is available. This extension of JumpProcesses.jl
dramatically boosts the computational performance of the library
in simulating processes with intensities that have an explicit de-
pendence on time and/or other continuous variables, significantly
expanding the type of models that can be efficiently simulated.
Widely-used point processes with such intensities include com-
pound inhomogeneous Poisson, Hawkes, and stress-release pro-
cesses — all described in [1]. Since JumpProcesses.jl is a
member of Julia’s SciML organization, it also becomes easier, and
more feasible, to incorporate compound point processes with ex-
plicit time-dependent rates into a wide variety of applications and
higher-level analyses.
In this paper, we bridge the gap between simulation methods de-
veloped in statistics and biochemistry, which led us to the develop-
ment of Coevolve. First, we briefly introduce evolutionary point
processes. Next, since all simulation methods require a basic un-
derstanding of simulation methods for the Poisson homogeneous
process, we first describe such methods. Then, we identify and dis-
cuss three general, exact methods. In the second part of this paper,
we describe the algorithms in JumpProcesses.jl and how they
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relate to the literature. We highlight our contribution Coevolve
and CoevolveSynced, investigate the correctness of our imple-
mentations and provide performance benchmarks to demonstrate
its value. The paper concludes by discussing potential improve-
ments.

2. The evolutionary point process
The evolutionary point process is a stochastic collection of marked
points over a one-dimensional support. They are exhaustively de-
scribed in [1]. The likelihood of any evolutionary point process is
fully characterized by its conditional intensity,

λ∗(t) ≡ λ(t | Ht−) =
p∗(t)

1−
∫ t

t− p
∗(u) du

, (1)

and conditional mark distribution, f ∗(k|t) — see Chapter 7 [1].
[S: What does p(t | Ht−) mean here? Are you sure about this for-
mula? Do you mean the density for the next event time divided by
one minus the associated CDF?] Here Ht− = {(tn, kn) | 0 ≤
tn ≤ t} denotes the internal history of the process up to but not
including t, the superscript ∗ denotes the conditioning of any func-
tion on Ht− , and p∗(t) is the density function corresponding to
the probability of an event taking place at time t given Ht− . We
can interpret the conditional intensity as the likelihood of observ-
ing a point in the next infinitesimal unit of time, given that no point
has occurred since the last observed point in Ht− . Lastly, the mark
distribution denotes the density function corresponding to the prob-
ability of observing mark k given the occurrence of an event at time
t and internal history Ht− . [G: There was indeed a mistake in the
denominator. I hope that I have also clarified the notation.]

3. The homogeneous process
A homogeneous process can be simulated using properties of the
Poisson process, which allow us to describe two equivalent sam-
pling procedures. The first procedure consists of drawing succes-
sive inter-arrival times. The distance between any two points in
a homogeneous process is distributed according to the exponen-
tial distribution — see Theorem 7.2 [10]. Given the homogeneous
process with intensity λ, then the distance ∆t between two points
is distributed according to ∆t ∼ exp(λ). Draws from the ex-
ponential distribution can be performed by drawing from a uni-
form distribution in the interval [0, 1]. If V ∼ U [0, 1], then
T = − ln(V )/λ ∼ exp(1). (Note, however, in Julia the opti-
mized Ziggurat-based method used in the randexp stdlib func-
tion is generally faster than this inverse method for sampling a
unit exponential random variable.) When a point process is homo-
geneous, the inverse method of Subsection 4.1 reduces to this ap-
proach. Thus, we defer the presentation of this Algorithm to the
next section.
The second procedure uses the fact that Poisson processes can be
represented as a mixed binomial process with a Poisson mixing dis-
tribution — see Proposition 3.5 [10]. In particular, the total number
of points of a Poisson homogeneous process in [0, T ) is distributed
according to N (T ) ∼ Poisson(λT ) and the location of each
point within the region is distributed according to the uniform dis-
tribution tn ∼ U [0, T ].

4. Exact simulation methods
4.1 Inverse methods
The inverse method leverages Theorem 7.4.I [1] which states that
every simple point process 1 can be transformed to a homogeneous
Poisson process with unit rate via the compensator. Let tn be the
time in which the n-th chronologically sorted event took place and
t0 ≡ 0, we define the compensator as:

Λ∗(tn) ≡ t̃n ≡
∫ tn

0

λ∗(u)du

The transformed data t̃n forms a homogeneous Poisson process
with unit rate. Now, if this is the case, then the transformed interval
is distributed according to the exponential distribution.

∆t̃n ≡ t̃n − t̃n−1 ∼ exp(1) (2)

The idea is to draw realizations from the unit rate Exponential pro-
cess and solve Equation 2 for tn to determine the next event/firing
time. In Algorithm 1, we adapt Algorithm 7.4 [1]. [G: The ad-
vantage of using the inverse method is that it is easier to couple
the point process with differential equations and solve the system
with the same numerical integrator.] [G: I have removed the previ-
ous bit, I am not sure if this is really an advantage seeing how this
method still needs to root find and so it is inefficient.]
Whenever the conditional intensity is constant between two
points, Equation 2 can be solved analytically. Let λ∗ (t) =
λn−1,∀tn−1 ≤ t < tn, then∫ tn

tn−1

λ∗ (u) du = ∆t̃n ⇐⇒

λn−1(tn − tn−1) = ∆t̃n ⇐⇒

tn = tn−1 +
∆t̃n
λn−1

.

Which is equivalent to drawing the next realization time from the
re-scaled exponential distribution ∆tn ∼ exp(λn−1). As we will
see in Subsection 2, this implies that the inverse and thinning
methods are the same whenever the conditional intensity is con-
stant between jumps.
The main drawback of the inverse method is that the root finding
problem defined in Equation 2 often requires a numerical solution.
To get around a similar obstacle in the context of the piecewise de-
terministic Markov process, Veltz [23] proposes a change of vari-
ables in time that recasts the root finding problem into an initial
value problem. He denotes his method for solving piecewise deter-
ministic Markov processes CHV.
We map the evolutionary point process to a piecewise determinis-
tic Markov process as following. Let λ∗n ≡ λ∗(tn), then the flow
ϕt−tn(λ

∗
n) maps the initial value of the conditional intensity at

time tn to its value at time t. In other words, the flow describes the
deterministic evolution of the conditional intensity function over
time. Next, denote 1(·) as the indicator function, then the condi-
tional intensity function can be re-written as a jump process:

λ∗(t) =
∑
n≥1

ϕt−tn−1(λn−1)1(tn−1 ≤ t < tn).

1A simple point process is a process in which the probability of observing
more than one point in the same location is zero.
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According to Meiss [15], if ϕt(·) is a flow, then it is a solution to
the initial value problem:

ϕ0(λ
∗
n) = λ∗n ,

d

dt
ϕt−tn(λ

∗
n) = g(ϕt−tn(λ

∗
n))

where g : R+ → R is the vector field of λ∗ such that dλ∗/dt =
g(λ∗). [S: Say what f is above, otherwise it is mysteriously used
but never defined / explained. Also, in the following discussion it
seems you are giving a bit different conversion to ODEs than Veltz,
see (3.1) in his paper, so it probably should be explained why what
you are presenting is equivalent in some sense but not formulated
exactly the same.][G: My objective was to show that the 3 assump-
tions of Theorem 3.1 in Veltz are satisfied. I hope I made it more
explicit.]
Equation 1, which defines the conditional intensity, denotes a dif-
ferential equation. We can thus show that the probability of observ-
ing an interval longer than s given internal history Ht− is equiva-
lent to:

Pr(tn − tn−1 > s | Ht−) = 1−
∫ tn−1+s

tn−1

p∗(u)du =

= exp

(
−
∫ tn−1+s

tn−1

λ∗(u+ tn−1)du

)
=

= exp

(
−
∫ tn−1+s

tn−1

ϕu(λ
∗
n−1)du

)
[S: Again, say what Pr(tn − tn−1 | λ∗n−1) is here, i.e. define
this notation. As written it looks like it is the probability that the
increment has a given value, which doesn’t make sense since that
would need to be a pdf not a probability. Also note you use tn, tn−1
on one side of the equation and just t on the other.][G: Notation
fixed.]
Equations 4.1 and 4.1 define a piecewise deterministic Markov pro-
cess that satisfies the conditions of Theorem 3.1 [23], namely (i)
ϕt(·) is globaly defined, (ii) the total rate λ∗(t) > 0 for t > 0,
and (iii) λ∗(t) is locally Lipschitz for t > 0. In this case, we can
find tn by solving the following initial value problem from 0 to
∆t̃n ∼ exp(1):

λ∗(t(0)) = λ∗(tn−1) ,
dλ∗

dt̃
=

g(λ∗(t))

λ∗(t)

t(0) = tn−1 ,
dt

dt̃
=

1

ν(t̃)
.

(3)

The solution to Equation 2 is then given by (tn =
t(∆t̃n), λ

∗(t(∆t̃n)) = λ∗(tn)). Looking back at Equation 4.1,
we note that it is a one-to-one mapping between t and t̃ which
makes it completely natural to write t(∆t̃n) ≡ Λ∗−1(t̃(n−1) +

∆t̃n). The initial value problem above describes how both model
time and the conditional intensity change with respect to trans-
formed time t̃. This allow us to draw a random sample in the trans-
formed space to find the next jump in model time. [S: Point out
why these equations make sense, and how they differ than Veltz’s
eqs.] [G: I have tried to make the connection between the com-
pensator and the initial value problem above more explicit. I hope
it clarifies better.] For more discussions on the links between point
processes and Markov processes see Chapter 10 [2].

In Algorithm 1, we can implement the CHV method by solving
Equation 3 instead of Equation 2. The algorithmic complexity is
then determined by the ODE solver and no root-finding is required.
Another concern with Algorithm 1 is updating and drawing from
the conditional mark distribution in Line 8, and updating the condi-
tional intensity in Line 9. A naive implementation of Line 9 scales
with the number of marks O(K) since λ∗ is usually constructed
as the sum of K independent processes, each of which requires
updating the conditional intensity rate. Likewise, drawing from the
mark distribution in Line 8 usually involves drawing from a cate-
gorical distribution whose naive implementations also scales with
the number of marks O(K).
Finally, Algorithm 1 is not guaranteed to terminate in finite time
since one might need to sample many points before tn > T . The
sampling rate can be especially high when simulating the process
in a large population with self-exciting encounters. In biochemistry,
Salis and Kaznessis [19] partition a large system of chemical reac-
tions into two: fast and slow reactions. While they approximate the
fast reactions with a Gaussian process, the slow reactions are solved
using a variation of the inverse method. They obtain an equivalent
expression for the rate of slow reactions as in Equation 2, which is
integrated with the Euler method.

Algorithm 1 The inverse method for simulating a marked evolu-
tionary point process over a fixed duration of time [0, T ).

1: procedure INVERSEMETHOD([0, T ), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while t < T do
5: n← n+ 1
6: draw ∆t̃n ∼ exp(1)
7: find the next event time tn by solving Equation 2 or 3
8: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
9: update the history HT− ← HT− ∪ (tn, kn) and λ∗

10: end while
11: return HT−

12: end procedure

4.2 Thinning methods
Thinning methods are one of the most popular methods for sim-
ulating point processes. The main idea is to successively sample
a homogeneous process, then thin the obtained points with the
conditional intensity of the original process. As stated in Propo-
sition 7.5.I [1], this procedure simulates the target process by con-
struction. The advantage of thinning over inverse methods is that
the former only requires the evaluation of the conditional intensity
function while the latter requires computing the inverse of its inte-
grated form [1].
Thinning algorithms have been proposed in different forms [1].
The Shedler-Lewis algorithm can simulate processes with bounded
intensity [12]. The classical algorithm from Ogata [16] overcomes
this limitation and only requires the local boundedness of the con-
ditional intensity. The advantage of Ogata’s algorithm and its vari-
ations is that it can simulate processes with potentially unbounded
intensity, such as self-exciting ones. As long as the intensity condi-
tioned on the simulated history remains locally bounded, it is pos-
sible to simulate subsequent points indefinitely.
In biochemistry, the thinning method was popularized by Gille-
spie [7, 6]. For this reason, this method is also called the Gille-
spie method. Gillespie himself called it the direct method or the
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stochastic simulation algorithm. Gillespie introduced the thin-
ning method in the context of simulating chemical reactions of
well-stirred systems. He developed a stochastic model for molecule
interactions from physics principles without any references to
the point process theory developed in this section. His model of
molecule interaction boils down to a marked Poisson process with
constant conditional intensity between jumps. The model consists
of distinct populations of molecular species that interact through
several reaction channels. A chemical reaction consists of a Pois-
son process that transforms a set of molecules of some type into
a set of molecules of another type. What Gillespie calls the mas-
ter equation can be deduced from the superposition theorem —
Theorem 3.3 [10].
Alternatively, in biochemistry, thinning methods are known as re-
jection algorithms. Than et al. [21, 22] proposed the rejection-
based algorithm with composition-rejection search, yet an-
other more sophisticated variation of the thinning method. In this
case, the procedure groups similar processes together. For each
group, an upper- and lower-bound conditional intensities are used
for thinning. A similar procedure is also described in [20], in which
the authors refer to their algorithm as kinetic Monte Carlo.
In Algorithm 2, we modify Algorithm 7.5.IV [1] to incorporate the
idea of a lower bound for the conditional intensity from [22]. To im-
plement the algorithm, we define three functions, B̄∗(t) = B̄(t |
Ht), B

∗(t) = B(t | Ht) and L∗(t) = L(t | Ht), that charac-
terize the local boundedness condition such that:

λ∗ (t+ u) ≤ B̄∗(t) and λ∗ (t+ u) ≥ B∗(t),

∀ 0 ≤ u ≤ L∗(t).
(4)

The tighter the bound on B̄∗(t), the lower the number of samples
discarded. Since looser bounds lead to less efficient algorithms, the
art, when simulating via thinning, is to find the optimal balance be-
tween the local supremum of the conditional intensity B̄∗(t) and
the duration of the local interval L∗(t). On the other hand, the in-
fimum B∗(t) can be used to avoid the evaluation of λ∗ (t+ u) in
Line 6 of Algorithm 3 which often can be expensive.
When the conditional intensity is constant between jumps such that
λ∗ (t) = λn−1,∀tn−1 ≤ t < tn , let B̄∗(t) = B∗(t) = λn−1
and L∗(t) = ∞. We have that for any u ∼ exp(1 / B̄∗(t)) =
exp(λn−1) and v ∼ U [0, 1] , u < L∗(t) =∞ and v < λ∗ (t+
u) / B̄∗(t) = 1. Therefore, we advance the internal history for
every iteration of Algorithm 2. In this case, the bound B̄∗(t) is as
tight as possible, and this method becomes the same as the inverse
method of Subsection 4.1.
Surprisingly, the inverse method can also be seen as the limit of the
thinning method. Let dt̃ be a constant, ∆t̃ ∼ exp(1) and dt(dt̃)
such that given u ∼ exp(λ∗(t)) then Pr(u < dt) if and only
if Pr(∆t̃ < dt̃). This definition implies that dt/dt̃ = 1/λ∗(t)
and dλ∗/dt̃ = dλ∗/dt× 1/λ∗(t). For each round of thinning r,
we choose L∗(tr) = dtr such that B̄∗(tr) = λ∗(t) is as tight
as possible. In this case the probability of accepting candidate time

tR after R rounds is:

Pr(L∗(tR) < dtR)×
R∏

r=1

Pr(L∗(tr) > dtr) =

Pr(∆t̃ < dt̃)×
R∏

r=1

Pr(∆t̃ > dt̃) = exp(−dt̃) exp

(
−

R∑
r=1

dt̃

)
dt̃→0−−−→ exp

(
−
∫ TR

0

du

)
= 1− exp(−TR) = Pr(∆t̃ < TR)

Therefore, by construction we have that as dt̃ → 0, the thinning
procedure is equivalent to the initial value problem defined in Equa-
tion 3. Therefore, the efficiency of thinning compared to CHV will
depend on the rejection rate for the former and the number of steps
required by the ODE solver for the latter. [G: I have added this
comment to illustrate the connection between the different simu-
lation methods. I think it highlight a few of the trade-offs that we
discuss in the evaluation.]
While thinning algorithms solve the issue by computing the in-
verse of the integrated conditional intensity, the issue of termination
can be aggravated by the fact that we are now required to sample
from a process with a rate higher than the original process. More-
over, like the inverse method, thinning algorithms can also face
issues related with drawing from the conditional mark distribution
— Line 11 of Algorithm 2 —, and updating the conditional in-
tensity — Line 4 of Algorithm 3 — and the mark distribution —
Line 12 of Algorithm 2.

Algorithm 2 The thinning method for simulating a marked evolu-
tionary point process over a fixed duration of time [0, T ).

1: procedure THINNINGMETHOD([0, T ), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while true do
5: t, _← NextTimeViaThinning([t, T ),HT− , λ

∗)
6: if t ≥ T then
7: break
8: end if
9: n← n+ 1

10: tn ← t
11: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
12: update the history HT− ← HT− ∪ (tn, kn)
13: end while
14: return HT−

15: end procedure

4.3 Queueing methods
[S: I think calling the direct method the thinning method is a bit
confusing, as currently many different methods are called thinning
methods here. It might make more sense to just call it the direct
method or constant rate thinning method in the following.] [G: Ok,
I think constant rate thinning is more explicit and links with
the previous section so I have picked this one] As an alternative to
his direct method — in this text referred as the constant rate thin-
ning method —, Gillespie introduced the first reaction method
in his seminal work on simulation algorithms [7]. The first reac-
tion method separately simulates the next reaction time for each
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Algorithm 3 Generates the next event time via thinning.
[S: Is line 10’s first inequality correct?]
[G: Fixed inequalities by changing the sampling distribution for
v.]

1: procedure NEXTTIMEVIATHINNING([t, T ), λ∗, Ht,)
2: accepted← false
3: while t < T do
4: update λ∗

5: find B̄∗(t), B∗(t) and L∗(t) which satisfy Eq. 4
6: draw u ∼ exp(B̄∗(t)) and v ∼ U [0, B̄∗(t)]
7: if u > L∗(t) then
8: t← t+ L∗(t)
9: next

10: end if
11: if (v > B∗(t)) and (v > λ∗ (t+ u)) then
12: t← t+ u
13: next
14: end if
15: t← t+ u
16: accepted← true
17: break
18: end while
19: return t, accepted
20: end procedure

reaction channel — i.e. for each mark. It then selects the small-
est time as the time of the next event, followed by updating the
conditional intensity of all channels accordingly. This is a variation
of the constant rate thinning method to simulate a set of inter-
dependent point processes, making use of the superposition the-
orem — Theorem 3.3 [10] — in the inverse direction.
Gibson and Bruck [4] improved the first reaction method with the
next reaction method. They innovate on three fronts. First, they
keep a priority queue to quickly retrieve the next event. Second,
they keep a dependency graph to quickly locate all conditional in-
tensity rates that need to be updated after an event is fired. Third,
they re-use previously sampled reaction times to update unused re-
action times. This minimizes random number generation, which
can be costly. Priority queues and dependency graphs have also
been used in the context of social media [3] and epidemics [9] sim-
ulation. In both cases, the phenomena are modelled as point pro-
cesses.
We prefer to call this class of methods queueing methods since
most efficiency gains come from maintaining a priority queue of
the next event times. Up to this point we assumed that we were
sampling from a global process with a mark distribution that could
generate any mark k given an event at time t. With queueing, it is
possible to simulate point processes with a finite space of marks
as M interdependent point processes — see Definition 6.4.1 [1] of
multivariate point processes — doing away with the need to draw
from the mark distribution at every event occurrence. Alternatively,
it is possible to split the global process into M interdependent pro-
cesses each one of which with its own mark distribution.
Our contribution, Algorithm 4, presents a method for sampling a
superposed point process consisting of M processes by keeping
the strike time of each process in a priority queue Q. The prior-
ity queue is initially constructed in O(M) steps in Lines 4 to 7 of
Algorithm 4. In contrast to thinning methods, updates to the con-
ditional intensity depend only on the size of the neighbourhood of
i. That is, processes j whose conditional intensity depends on the
history of i. If the graph is sparse, then updates will be faster than
with thinning.

A source of inneficiency in some implementations of queueing al-
gorithms is the fact that one might need to go through multiple
rejection cycles before accepting a time candidate ti for process i.
This might require looking ahead in the future. In addition to that,
if process j, which i depends on, takes place before i, then we need
to repeat the whole thinning process to obtain a new time candidate
for i. Algorithms like that can be implemented by adapting Lines
5 and 23 of Algorithm 4. Replacing [0, ε] by [0, T ] and [t, t + ε]
by [t, T ] in Lines 5 and 23 respectively results in completing the
thinning procedure before handling the program execution back to
the main loop. In our case, each call to NextTimeViaThinning
performs a single thinning cycle in sync with the main loop which
avoids lookaheads and wasted rejections. Also, because thinning is
synced with the main loop it is then possible to couple this simu-
lator with other algorithms that step chronologically through time
like ordinary differential equation solvers which means we can sim-
ulate jump processes with rates given by a differential equation.

Algorithm 4 The queueing method for simulating a marked evolu-
tionary point process over a fixed duration of time [0, T ).
[S: In the following say what λ∗k and f ∗k are somewhere. I’d sug-
gest a different notation for one of k and kn, otherwise one might
think the k in 9 is a mark and not the index of a given processes.
Why do you say you are pushing and poping from the queue – the
algorithim is usually to update the queue in-place?]
[G: Processes are indexed with i and j. There are M sub-
processes. Kept k for marks. Fixed method names in queue.]

1: procedure QUEUEINGMETHOD([0, T ), λ∗k, f ∗k,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: for i=1,M do
5: t, accepted← NextTimeViaThinning([0, ε),HT− , λ

∗
i(·))

6: push (ti, i, accepted) to Q
7: end for
8: while t < T do
9: first (t, i, accepted) from Q

10: if t ≥ T then
11: break
12: end if
13: if accepted then
14: n← n+ 1
15: tn ← t
16: update f ∗ and draw the mark kn ∼ f ∗i (k | tn)
17: update the history HT− ← HT− ∪ (tn, kn)
18: for j ∈ {i} ∪Neighborhood(i) do
19: tj , accepted ← NextTimeViaThinning(

[t, t+ ε),HT− , λ
∗
j(·))

20: update (tj , j, accepted) in Q
21: end for
22: else
23: ti, accepted ← NextTimeViaThinning([t, t +

ε),HT− , λ
∗
i(·))

24: update (ti, i, accepted) in Q
25: end if
26: end while
27: return HT−

28: end procedure
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5. Implementation
JumpProcesses.jl is a Julia library for simulating jump —
or point — processes which is part of Julia’s SciML organiza-
tion. Our discussion in Section 4 identified three exact meth-
ods for simulating point processes. In all the cases, we identi-
fied two mathematical constructs required for simulation: the in-
tensity rate and the mark distribution. In JumpProcesses.jl,
these can be mapped to user defined functions rate(u, p,
t) and affect!(integrator). The library provides APIs
for defining processes based on the nature of the intensity rate
and the intended simulation algorithm. Processes intended for
exact methods can choose between ConstantRateJump and
VariableRateJump. While the former expects the rate between
jumps to be constant, the latter allows for time-dependent rates. The
library also provides the MassActionJump API to define large
systems of point processes that can be expressed as reaction equa-
tions. Finally, RegularJump are intended for inexact methods.
[S: normally one doesn’t solve a differential equation but does a
root find, so I would modify the following discuusion. Or perhaps
you mean the DifferentialEquations.jl approach, in which please
clarify that as implemented in DifferentialEquations.jl the root find
is achieved by using continuous events combined with ODE in-
tegrators to solve (1), and this is different than the CHV ODE
based approach.] [G: rephrased.] The inverse method as described
around Equation 2 uses root find to find the next jump time. Jumps
to be simulated via the inverse method must be initialized as a
VariableRateJump. JumpProcesses.jl builds a continu-
ous callback following the algorithm in [19] and passes the problem
to an OrdinaryDiffEq.jl integrator, which easily interoperate
with JumpProcesses.jl as the former library also belong to the
SciML organization. JumpProcesses.jl does not yet support
the CHV ODE based approach.
Alternatively, thinning and queuing methods can be simulated via
discrete steps. In the context of the library, any method that uses a
discrete callback is called an aggregator. There are twelve differ-
ent aggregators, seven of which implement a variation of the thin-
ning method and five of which a variation of the queuing method.
We start with the thinning aggregators, none of which support
VariableRateJump. Algorithm 2 assumes that there is a single
process. In reality, all the implementations assume a finite multi-
variate point process withM interdependent processes. This can be
easily conciliated, as we do now, using Definition 6.4.1 [1] which
states the equivalence of such process with a point process with a
finite space of marks. As all the thinning aggregators only deal
with ConstantRateJump, the intensity between jumps is con-
stant, Algorithm 3 short-circuits to quickly return t ∼ exp(B̄) =
exp(λn) as discussed in Subsection 4.2. Next, the mark distribu-
tion becomes the categorical distribution weighted by the inten-
sity of each process. That is, given an event at time tn, we have
that the probability of drawing process i out of M subprocesses
is λ∗i (tn)/λ

∗(tn). Conditional on subprocess i, the corresponding
affect!(integrator) is invoked, that is, kn ∼ f ∗i (k | tn).
Here we use a notation analogous to Section 4.3. [S: Define
what a and the function f ∗(a | kn, tn) are in the following.] [G:
Changed the notation in line with Section 4.3.]
Where most implementations differ is on updating the mark dis-
tribution in Line 11 of Algorithm 2 and the conditional intensity
rate in Line 4 of Algorithm 3. Direct and DirectFW follows the
direct method in [7] which re-evaluates all intensities after every
iteration scaling at O(K). When drawing the process to fire, it ex-
ecutes a search in an array that stores the cumulative sum of rates.
DirectCR, SortingDirect and RDirect only re-evaluate the

intensities of the processes that are affected by the realized process.
This operation is executed efficiently by keeping a vector of depen-
dencies. These three algorithms differ in how they select the pro-
cess. DirectCR keeps the intensity rates in a priority table, it is
implemented after [20]. SortingDirect keeps the intensity rate
in a loosely sorted array following [14]. In both cases, the idea is to
use a randomly generated number between zero and one to guide
the search for the next jump. With the intensity rates sorted, more
frequent processes should be selected faster than less frequent ones.
Overall, this should increase the speed of the simulation. RDirect
keeps track of the maximum rate of the system, it implements an
algorithm equivalent to thinning with B̄ equal to the maximum
rate. However, the implementation differs. It thins with B̄ = λn,
then randomly selects a candidate process and confirms the candi-
date only if its rate is above a random proportion of the maximum
rate. Finally, RSSA and RSSACR group processes with similar rates
in bounded brackets. The upper bounds are used for thinning. For
each round of thinning, a sampled candidate process is considered
for selection. In RSSA, the candidate process is selected similarly
to Direct, while a priority table is used in RSSACR. Both of these
algorithms follow from [21, 22].
Next, we consider the queuing aggregators. Starting with aggre-
gators that only support ConstantRateJumps we have, FRM,
FRMFW and NRM. FRM and FRMFW follow the first reaction method
in [7]. To compute the next jump, both algorithms compute the time
to the next event for each process and select the process with min-
imum time. This is equivalent to assuming a complete dependency
graph in Algorithm 4. For large systems, they can be less efficient
than NRM. The latter implementation is sourced from [4] and fol-
lows Algorithm 4 very closely.
Previously, we attempted to bridge the gap between the treat-
ment of point process simulation in statistics and biochemistry.
Despite the many commonalities, most of the algorithms im-
plemented in JumpProcesses.jl are derived from the bio-
chemistry literature. There has been less emphasis on imple-
menting processes commonly studied in statistics such as self-
exciting point processes characterized by time-varying and history-
dependent intensity rates. This is addressed by our two lat-
est aggregators, Coevolve and CoevolveSynced. These are
the first aggregators that support VariableRateJumps, facil-
itating substantially more performant simulation of processes
with time-dependent intensity rates in JumpProcesses.jl and
DifferentialEquations.jl compared to the current in-
verse method-based approach that relies on ODE integration and
continuous events.
The implementation of these aggregators take inspiration from [3],
and improves the method in several ways. First, we take advan-
tage of the modularity and composability of Julia to design an API
that accepts any intensity rate, not only the Hawkes’. Second, we
avoid the re-computation of unused random numbers. When updat-
ing processes that have not yet fired, we can transform the unused
time to obtain the next candidate time for the first round of iter-
ation of the thinning procedure in Algorithm 3. This saves one
round of sampling from the exponential distribution, which trans-
lates into a faster algorithm. Third, we allow the user to supply a
lower bound rate which can short-circuit the loop in Algorithm 3,
saving yet another round of sampling. Fourth, it adapts to processes
with constant intensity between jumps which reduces the loop in
Algorithm 3 to the equivalent implemented in NRM. Finally, since
Coevolve — and by extension CoevolveSynced — can be
mapped to a thinning algorithm — see [3] —, it can simulate any
point process on the real line with a non-negative, left-continuous,
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history-adapted and locally bounded intensity rate as per Proposi-
tion 7.5.I [1].
While Coevolve does not sync the thinning loop with the
main execution loop, CoevolveSynced does which means that
CoevolveSynced can be easily coupled with differential equa-
tions modeled with OrdinaryDiffEq.jl. For instance, It is
possible to model processes whose rates are given by a differential
equation. This is a departure from the algorithm described in [3]
which translates not only into a faster, but also more flexibile simu-
lator. This difference in implementation follows our discussion on
the relationship between the main execution loop and the thinning
loop in Section 4.3.

6. Empirical evaluation
This section conducts some empirical evaluation of the
JumpProcesses.jl aggregators described in Section 5. First,
since Coevolve and CoevolveSynced are new aggregators,
we test the correctness of Coevolve and CoevolveSynced
by conducting statistical analysis. Second, we conduct the jump
benchmarks available in SciMLBenchmarks.jl. We have
added new benchmarks that assess the performance of the new
aggregators under settings that could not be simulated with
previous aggregators. [G: I have broken this section in to two
subsections for clarity.]

6.1 Statistical analysis of Coevolve and
CoevolveSynced

To simulate a process intended for a discrete solver with Jump-
Processes.jl, we define a discrete problem, initialize the
jumps and define the jump problem which takes the aggregator as
an argument. The jump problem can then be solved with the dis-
crete stepper provided by JumpProcesses.jl, SSAStepper.
The code for simulating the homogeneous Poisson process with
Direct is reproduced in Listing 1.

Listing 1: Simulation of the homogeneous Poisson process.� �
using JumpProcesses
rate (u, p, t) = p[1]
affect !( integrator ) = integrator .u[1] += 1
jump = ConstantRateJump ( rate , affect !)
u, tspan , p = [0.], (0., 200 .), (0 .2 5,)
dprob = DiscreteProblem (u, tspan , p)
jprob = JumpProblem ( dprob , Direct (), jump ;

dep_graph =[[1]])
sol = solve ( jprob , SSAStepper ())� �

The simulation of a Hawkes process — see Subsection 6.2 for a
definition — requires a VariableRateJump along with the rate
bounds and the interval for which the rates are valid. Also, since
the Hawkes process is history dependent, we close the rate and
affect! function with a vector containing the history of events.
The code for simulating the Hawkes process is reproduced in List-
ing 2. Note that it is possible to simplify the computation of the
rate — see Subsection 6.2 —, but we keep the code here as close
as possible to its usual definition for illustration purposes.

Listing 2: Simulation of the Hawkes process.� �
using JumpProcesses
h = Float64 []
rate (u, p, t) = p[1] +

p[2]* sum ( exp .([-p[3]*(t- _t ) for _t in h]))

lrate (u, p, t) = p[1]
urate = rate
rateinterval (u, p, t) = 1/(2* urate (u,p,t))
affect !( integrator ) = ( push !(h, integrator .t);

integrator .u[1] += 1)
jump = VariableRateJump ( rate , affect !; lrate ,

urate , rateinterval )
u, tspan , p = [0.], (0., 200 .), (0 .2 5, 0 .5 , 2 .0 )
dprob = DiscreteProblem (u, tspan , p)
jprob = JumpProblem ( dprob , Coevolve (), jump ;

dep_graph =[[1]])
sol = solve ( jprob , SSAStepper ())� �

To assess the correctness of Coevolve and CoevolveSynced,
we add it to the JumpProcesses.jl test suite. Some tests in the
suite check whether the aggregators are able to obtain empirical
statistics close to the expected one in a number of simple biochem-
istry models such as linear reactions, DNA repression, reversible
binding and extinction. The test suite was missing a unit test for
self-exciting process. Thus, we have added a test for the univariate
Hawkes model that checks whether algorithms that accept Vari-
ableRateJump are able to produce an empirical distribution of
trajectories whose first two moments of the observed rate are close
to the expected ones.
In addition to that, the correctness of the implemented algorithm
can be visually assessed using a QQ-plot. As discussed in Subsec-
tion 4.1, every simple point process can be transformed to a Pois-
son process with unit rate. This implies that the interval between
points for any such transformed process should match the expo-
nential distribution. Therefore, the correctness of any aggregator
can be assessed as following. [S: I think the next three sentences
should be described more precisely / mathematically, for example,
not assuming a reader will understand what a compensator is.] [G:
I have added the definition of the compensator and the empirical
quantile. Feel free to simplify it.] First, transform the simulated in-
tervals with the appropriate compensator. Let tni

be the time in
which the n-th event of subprocess i took place and t0i ≡ 0, the
compensator for subprocess i is given by the following:

Λ∗i (tni
) ≡ Λ∗ni

≡
∫ tni

0

λ∗i (u)du

Then the transformed simulated interval is given by:

∆Λni
≡ Λ∗ni

− Λ∗(n−1)i

Compute the empirical quantiles of the transformed intervals. That
is, the q-th quantile is the interval∆Λq that divides the sorted inter-
vals in two sets, those below and above ∆Λq such that q-percent of
the elements are below it. Plot the empirical quantiles with the cor-
responding quantiles of the exponential distribution. If the simula-
tor produces correct trajectories, this plot known as QQ-plot should
depict the points aligned around the 45-degree line. We produce
QQ-plots for the homogeneous Poisson process as well as the com-
pound Hawkes process — see Subsection 6.2 for a definition — to
attest the correctness of both Coevolve and CoevolveSynced.
Figure 1 (d) depicts the QQ-plot for a ten-node compound Hawkes
process with parameters λ = 0.5, α = 0.1, β = 2.0 simulated
250 times for 200 units of time. Figure 1 also depicts the trajec-
tory, the conditional intensity and the network structure of a single
simulation for three random nodes in panels (a), (b) and (c) respec-
tively. We obtained similar QQ-plots for the other algorithms that
benchmarked the Multivariate Hawkes process below.

7



Proceedings of JuliaCon 1(1), 2023

0 5 10 15 20

1

2

3

t

no
de

in
de

x

(a)

0 5 10 15 20

0.5

0.6

0.7

0.8

t

co
nd

it
io

na
l

ra
te

(b)

(c)

0 1 2 3 4 5
0

1

2

3

4

5

Expected quantile

E
m

pi
ri

ca
l

qu
an

ti
le

(d)
Fig. 1: Simulations of 10-nodes compound Hawkes process with parameters
λ = 0.5, α = 0.1, β = 2.0 for 200 units of time. (a) and (b) sampled
trajectory and intensity rate for a single simulation for the three selected
nodes in (c) for the first 20 units of time. (c) underlying 10-nodes network
with three random nodes selected. (d) QQ-plot of transformed inter-event
time for 250 simulations colored by node.

6.2 Benchmarks
We conduct a set of benchmarks to assess the performance of
the JumpProcesses.jl aggregators described in Section 5. All
benchmarks are available in SciMLBenchmarks.jl2. All were
run in BuildKite3via the continuous integration facilities provided
by the package maintainers. We have added two benchmark suites
to assess the performance of the new aggregators under settings that
could not be simulated with previous aggregators.

2https://github.com/SciML/SciMLBenchmarks.jl/tree/

ba0827aca9f1da1c83d11805f2e50405d3847e0e/benchmarks/

Jumps
3https://buildkite.com/julialang/scimlbenchmarks-dot-jl/

builds/1302#0187e27f-e75e-4b7e-9e66-ef7401baeacf

Diffusion Multi-state Gene I Gene II
Direct 7.14 s 0.16 s 0.24 ms 0.59 s
FRM 15.54 s 0.25 s 0.29 ms 0.81 s
SortingDirect 1.06 s 0.11 s 0.23 ms 0.50 s
NRM 0.76 s 0.25 s 0.40 ms 0.91 s
DirectCR 0.52 s 0.21 s 0.46 ms 1.03 s
RSSA 1.42 s 0.10 s 0.43 ms 0.67 s
RSSACR 0.43 s 0.15 s 0.88 ms 1.03 s
Coevolve 0.86 s 0.33 s 0.53 ms 1.24 s
CoevolveSynced 0.88 s 0.34 s 0.54 ms 1.29 s

Table 1. : Median execution time. A 1-dimensional continuous time ran-
dom walk approximation of a diffusion model (Diffusion), the multi-state
model from Appendix A.6 [13] (Multi-state), a simple negative feedback
gene expression model (Gene I) and the negative feedback gene expression
from [8] (Gene II). Fastest time is bold, second fastest underlined.

First, we assess the speed of the aggregators against jump pro-
cesses whose rates are constant between jumps. There are four such
benchmarks: a 1-dimensional continuous time random walk ap-
proximation of a diffusion model (Diffusion), the multi-state model
from Appendix A.6 [13] (Multi-state), a simple negative feedback
gene expression model (Gene I) and the negative feedback gene ex-
pression from [8] (Gene II). We simulate a single trajectory for each
aggregator to visually check that they produce similar trajectories
for a given model. The Diffusion, Multi-state, Gene I and Gene II
benchmarks are then simulated 50, 100, 2000 and 200 times, re-
spectively. [S: In the next sentence, at least give a reference / link
to where the source code is and what version of the benchmarks
was used so this is not dated if the benchmarks are updated...] [G:
Provided above.] Check the source code for further implementation
details.
Benchmark results are listed in Table 1. The table shows that no
single aggregator dominates suggesting they should be selected ac-
cording to the task at hand. However, FRM, NRM, Coevolve and
CoevolveSynced never dominate any benchmark. In common,
they all belong to the family of queueing methods suggesting that
there is a penalty when using such methods for jump processes
whose rates are constatnt between jumps. We also note that the
performance of Coevolve and CoevolveSynced lag that of
NRM despite the fact that both Coevolve and CoevolveSynced
should take the same number of steps as NRM when no Vari-
ableRateJump is used. The reason behind this discrepancy is
left for future investigation.
Second, we add a new benchmark which simulates the compound
Hawkes process for an increasing number processes. Consider a
graph with V nodes. The compound Hawkes process is character-
ized by V point processes such that the conditional intensity rate
of node i connected to a set of nodes Ei in the graph is given by

λ∗i (t) = λ+
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]
.

This process is known as self-exciting, because the occurence of
an event j at tnj

will increase the conditional intensity of all the
processes connected to it by α. The excited intensity then decreases
at a rate proportional to β.

dλ∗i (t)

dt
= −β

∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]

= −β (λ∗i (t)− λ)
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The conditional intensity of this process has a recursive formulation
which can significantly speed the simulation. The recursive formu-
lation for the univariate case is derived in [11] which also provides
additional discussion and results on the Hawkes process. We derive
the compound case here. Let tNi

= max{tnj
< t | j ∈ Ei}

and φ∗i (t) below.

φ∗i (t) =
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tNi

+ tNi
− tnj

)
]

= exp [−β(t− tNi
)]
∑
j∈Ei

∑
tnj
≤tNi

α exp
[
−β(tNi

− tnj
)
]

= exp [−β(t− tNi
)] (α+ φ∗i (tNi

))

[S: I added an underscore i to φ∗ in the last eq above.] [G:
Thanks.] Then the conditional intensity can be re-written in terms
of φ∗i (tNi

).

λ∗i (t) = λ+ φ∗i (t) = λ+ exp [−β(t− tNi
)] (α+ φ∗i (tNi

))

A random graph is sampled from the Erdős-Rényi model. This
model assumes the probability of an edge between two nodes is in-
dependent of other edges, which we fix at 0.2. Note that this setup
implies an increasing expected node degree.
We fix the Hawkes parameters at λ = 0.5, α = 0.1, β = 5.0
ensuring the process does not explode and simulate models in the
range from 1 to 95 nodes for 25 units of time. We simulate 50
trajectories with a limit of ten seconds to complete execution. For
this benchmark, we save the state of the system exactly after each
jump.
We assess the benchmark in five different settings. First, we
run the inverse method, Coevolve and CoevolveSynced us-
ing the brute force implementation of the intensity rate which
loops through the whole history of past events. Second, we im-
plement a recursive algorithm for computing the intensity rate
which we simulate with the same three methods. Next, we run the
benchmark against PiecewiseDeterministicMarkovPro-
cesses.jl 4 which is developed by the same author who pro-
posed the CHV algorithm discussed in Subsection 4.1. Finally, we
run the benchmark using the Python library Tick 5. This library
implements a version of the thinning method for simulating the
process and implements a recursive algorithm for computing the
intensity rate.
Table 2 shows that the Inverse method which relies on root finding
is the most inneficient of all methods for any system size. For large
system size this method is unable to complete all 50 simulation
runs because it is required to find an ever larger number of roots of
an ever larger system of differential equations.
The recursive implementation of the intensity rate brings consid-
erable performance boost to the simulations, placing Coevolve
and CoevolveSynced as one of the fastest algorithm. As shown
in Algorithm 4, every sampled point in both Coevolve and Co-
evolveSynced require a number of expected updates equal to
the expected degree of the dependency graph. Therefore, it is able
to complete non-exploding simulations efficiently. As expected, we
also observe that CoevolveSynced is more efficient than Coe-
volve, especially for larger systems.

4https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.

jl
5https://github.com/X-DataInitiative/tick

The Python library Tick remains competitive for smaller prob-
lems, but gets considerably slower for bigger ones. Also, it is only
specialized to the Hawkes process. Another drawback is that the
library wraps the actual C++ implementation. In contrast, Jump-
Processes.jl can simulate many other point processes with a
relatively simple user-interface provided by the Julia language.
CHV is slower for smaller networks, but slightly faster than both
Coevolve and CoevolveSynced for larger models. The reason
behind the catchup is due to the fact that as the system becomes
larger, the rejection rate of the thinning procedure in both Coe-
volve and CoevolveSynced increases at a similar rate as the
simulation time. We compute the rejection rate as one minus the
ratio between the number of jumps and the number of calls to the
upper bound. A system with a single node sees a rejection rate of
around 8 percent which rapidly increases to 80 percent when the
system reaches 20 nodes and plateaus at around 95 percent with
95 nodes. There is a difference that ranges from 0 to 4 percent-
age points between Coevolve and CoevolveSynced. When
the system contains a single node the difference is zero, it peaks
at around 10 nodes and decrease to about 1.7 percentage as the
system reaches 95 nodes which explains the similar performance
between the algorithms.
Finally, we introduce a new benchmark which intends to assess
the performance of algorithms capable of simulating the stochastic
model of hippocampal synaptic plasticity with geometrical read-
out of enzyme dynamics proposed in [18]. For short, we denote it
as the synapse model. We chose to benchmark this model as it is
representative of a complex biochemical model. It couples a jump
problem containing 98 jumps affecting 49 discrete variables with
a stiff, ordinary differential equation problem containing 34 con-
tinuous variables. Continuous variables affect jump rates while the
discrete variables affect the continuous problem. There are 3 stages
to the simulation: pre-synaptic evolution, glutamate release, and
post-synaptic evolution. Among the algorithms considered, only
the inverse method implemented in JumpProcesses.jl, Coe-
volveSynced and CHV are able to simulate the synapse model
in theory. However, in practice, only the last two complete at least
one benchmark run.
Benchmark results are displayed in Table 3. We observe that CHV
is the fastest algorithm completing the synapse evolution in about
half of the time it takes CoevolveSynced with less than half
of the allocations. Further investigation reveals that the thinning
procedure in CoevolveSynced reaches an average of 70 percent
over all jumps which likely leads to 2 to 3 times more function
evaluations and Jacobians created compared to CHV.
A disadvantage of CHV compared with CoevolveSynced is
that it supports limited saving options by design. To save at pre-
specified times would require using the fact that solutions are piece-
wise constant to determine solutions at times in-between jumps —
and for coupled ODE-jump problems would require root-finding to
determine when s(u) = sn for each desired saving time sn in
Equation 3. The alternative proposed in [23] is to introduce an arti-
ficial jump to the model such as the homogeneous Poisson process
with unit rate to sample the system at regular intervals. Alterna-
tively, CoevolveSynced allows saving at any arbitrary point. A
common workflow in simulating jump processes, particularly when
interested in calculating statistics over time, is to pre-specify a pre-
cise set of times at which to save a simulation. In theory, this re-
duces memory pressure, particularly for systems with large num-
bers of jumps, and can give increased computational performance
relative to saving the state at the occurrence of ever jump. How-
ever in the case of the synapse model, the number of candidate
time rejections far surpasses the number of jumps. Therefore, re-
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ducing the number of saving points — e.g. only saving at start
and end of the simulation — does not significantly reduce allo-
cations or running time. Given these considerations, we decided
to save after every jump and at regular pre-specified intervals that
occur at the same frequency as the artificial jump used by CHV
to save at random intervals. [S: Please confirm what saving op-
tions PDMP.jl supports and update the following. I’ve never ac-
tually used it... Also, what was the saving protocol in the bench-
marking? Saving nothing or everything? We should state that in
this section when describing the benchmarks.] [G: I investigated
the performance of CoevolveSynced under different saving set-
tings and I have expanded the discussion you started. The bottom-
line is that it was not possible to improve the performance of Coe-
volveSynced by saving less. However, some additional investi-
gation might be required to pinpoint the exact cause of the prob-
lem. I find it strange that CoevolveSynced performs signifi-
cantly more function evaluations and Jacobian creation when it is
tracing the same path as CHV but with more stops.]
Another parameter that can affect the precision and speed of the
synapse benchmark is the ODE solver. The author of Piece-
wiseDeterministicMarkovProcesses.jl discuss some
of these issues in Discourse6. Some ODE solvers can be faster and
more precise. Due to time constraints, we have not investigated this
matter. The synapse benchmark uses the AutoTsit5(Rosen-
brock23()) solver. Further investigation of this matter is left to
future research.

7. Conclusion
This paper demonstrates that JumpProcesses.jl is a fast,
general-purpose library for simulating evolutionary point pro-
cesses. With the addition of Coevolve and CoevolveSynced, any
point process on the real line with a non-negative, left-continuous,
history-adapted and locally bounded intensity rate can be simulated
with this library. The objective of this paper was to bridge the gap
between the treatment of point process simulation in statistics and
biochemistry. We demonstrated that many of the algorithms devel-
oped in biochemistry which served as the basis for the JumpPro-
cesses.jl aggregators can be mapped to three general methods
developed in statistics for simulating evolutionary point processes.
We showed that the existing aggregators mainly differ in how they
update and sample from the intensity rate and mark distribution.
As we performed this exercise, we noticed the lack of an efficient
aggregator for variable intensity rates in JumpProcesses.jl, a
gap which Coevolve and CoevolveSynced are meant to fill.
Coevolve and CoevolveSynced borrow many enhancements
from other aggregators in JumpProcesses.jl. However, there
are still a number of ways forward. First, given the performance of
the CHV algorithm in our benchmarks, we should consider adding
it to JumpProcesses.jl as another aggregator so that it can
benefit from tighter integration with the SciML organization and
libraries. The saving behaviour of CHV might pose a challenge
when bringing this algorithm to the library. We could leverage the
connection between inverse and thinning methods illustrated in
Subsection 4.2 to attempt to develop a version of this algorithm
that can evolve in synchrony with model time. Second, the new
aggregators depend on the user providing the bounds of the jump
rates as well as well as the duration of their validity. A possible
step forward would be for JumpProcesses.jl to determine this
bounds automatically taking into account the derivative of the rates.

6https://discourse.julialang.org/t/help-me-beat-lsoda/

88236

Deriving efficient bounds require knowledge of the problem and a
good amount of analytical work. The algorithm can perform sig-
nificantly slower if a sub-optimal bound or interval is used. Third,
we note that all benchmarks have used rate functions that are con-
tinuous except at jump time. Since CHV requires a continuous in-
tegrator to find the next jump, we speculate that its performance
might deteriorate in the presence of discontinuities. It would be
interesting to assess the performance of CoevolveSynced and
CHV in these situations. Fourth, JumpProcesses.jl would ben-
efit from further development in inexact methods. At the moment,
support is limited to processes with constant rates between jumps
and does not support marks. Inexact methods should allow for the
simulation of longer periods of time when only an event count
per time interval is required. Hawkes processes can be expressed
as a branching process. There are simulation algorithms that al-
ready take advantage of this structure to leap through time [11].
It would be important to adapt these algorithms for general, com-
pound branching processes to cater for a larger number of settings.
Finally, JumpProcesses.jl also includes algorithms for jumps
over two-dimensional spaces. It might be worth conducting a sim-
ilar comparative exercise to identify algorithms in statistics for 2-
and N -dimensional processes that could also be added to Jump-
Process.jl as it has the potential to become the go-to library for
general point process simulation. [G: With the addition of Coe-
volveSynced, I have modified the conclusion accordingly.]
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