
Extending JumpProcess.jl for fast point process simulation
with time-varying intensities

Guilherme Augusto Zagatti1, Samuel A. Isaacson3, Christopher Rackauckas4, Vasily Ilin5, See-Kiong
Ng1, 2, and Stéphane Bressan1, 2

1Institute of Data Science, National University of Singapore, Singapore
2School of Computing, National University of Singapore, Singapore

3Department of Mathematics and Statistics, Boston University
4Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology

5Department of Mathematics, University of Washington

ABSTRACT
Point processes model the occurrence of a countable number of
random points over some support. They can model diverse phe-
nomena, such as chemical reactions, stock market transactions and
social interactions. We show that the JumpProcesses.jl li-
brary, which was first developed for simulating jump processes
via stochastic simulation algorithms (SSAs) — including Doob’s
method, Gillespie’s methods, and Kinetic Monte Carlo methods —
also provides performant methods or sampling temporal point pro-
cesses (TPPs). Historically, jump processes have been developed
in the context of dynamical systems to describe dynamics with dis-
crete jumps. In contrast, the development of point processes has
been more focused on describing the occurrence of random events.
In this paper, we bridge the gap between the treatment of point
and jump process simulation. The algorithms previously included
in JumpProcesses.jl can be mapped to three general methods
developed in statistics for simulating TPPs. Our comparative exer-
cise reveals that the library lacked an efficient algorithm for sim-
ulating processes with variable intensity rates. We develop a new
simulation algorithm Coevolve. This is the first thinning algo-
rithm to step in sync with model time reducing the number of time
proposal rejections and allowing for new possibilities such as simu-
lating variable-rate jump processes coupled with differential equa-
tions via thinning. JumpProcesses.jl can now simulate any
point process on the real line with a non-negative, left-continuous,
history-adapted and locally bounded intensity rate efficiently, en-
abling the library to become one of the few readily available, fast
and general-purpose options for simulating TPPs.

1. Introduction
Methods for simulating the trajectory of temporal point processes
(TPPs) can be split into exact and inexact methods. Exact meth-
ods generate statistically exact realizations of each point in the pro-
cess chronologically 1. This exactness provides unbiased samples,
but can suffer from reduced performance when simulating systems

1Some exact methods might not be completely exact since they rely on root
finding approximation methods. However, we follow convention and denote
all such methods as exact methods.

where numerous events can fire within a short period since every
single point needs to be accounted for. Inexact methods trade accu-
racy for speed by simulating the total number of events in succes-
sive intervals. They are popular in biochemical applications, e.g.τ -
leap methods [8], which often require the simulation of chemical
reactions in systems with large molecular populations.
Previously, the development of point process simulation libraries
focused primarily on univariate processes with exotic intensities,
or large systems with conditionally constant intensities, but not
on both. As such, there was no widely used general-purpose soft-
ware for efficiently simulating compound point processes in large
systems with time-dependent rates. To enable the efficient sim-
ulation of such processes, we contribute a new simulation algo-
rithm together with its implementation as the Coevolve aggre-
gator in JumpProcesses.jl, a core sub-library of the popular
DifferentialEquations.jl library [20]. Our new method is
a type of thinning algorithm that thins in sync with time. This al-
lows the coupling of large multivariate TPPs with other algorithms
that step chronologically through time such as differential equa-
tion solvers. Our new algorithm improves the COEVOLVE algo-
rithm described in [4] from where the new JumpProcesses.jl
aggregator borrows its name. The addition of Coevolve dramati-
cally boosts the computational performance of the library in simu-
lating processes with intensities that have an explicit dependence
on time and/or other continuous variables, significantly expand-
ing the type of models that can be efficiently simulated. Widely-
used point processes with such intensities include compound in-
homogeneous Poisson process, Hawkes processes, stress-release
processes and piecewise deterministic Markov processes (PDMPs).
Since JumpProcesses.jl is a member of Julia’s SciML orga-
nization, it also becomes easier, and more feasible, to incorporate
compound point processes with explicit time-dependent rates into
a wide variety of applications and higher-level analyses. Our new
additions are available as of JumpProcesses.jl 9.72.
This paper starts by bridging the gap between simulation methods
developed in statistics and biochemistry, which led us to the de-
velopment of Coevolve. We briefly introduce TPPs and simula-
tion methods for the homogeneous Poisson process, which serve as

2All examples and benchmarks in this paper use version 9.9 of the library

1

Proceedings of JuliaCon 1(1), 2023

building blocks for all other simulation methods. Then, we identify
and discuss three types of exact simulation methods. In the sec-
ond part of this paper, we describe the algorithms implemented in
JumpProcesses.jl and how they relate to the literature. We
highlight our contribution Coevolve, investigate the correctness
of our implementation and provide performance benchmarks to
demonstrate its value. The paper concludes by discussing potential
improvements.

2. The temporal point process
The TPP is a stochastic collection of marked points over a one-
dimensional support. They are exhaustively described in [2]. The
likelihood of any TPP is fully characterized by its conditional in-
tensity,

λ∗(t) ≡ λ(t | Ht−) =
p∗(t)

1−
∫ t

tn
p∗(u) du

, (2.1)

and conditional mark distribution, f ∗(k|t) — see Chapter 7 [2].
Here Ht− = {(tn, kn) | 0 ≤ tn < t} denotes the internal
history of the process up to but not including t, the superscript ∗
denotes the conditioning of any function on Ht− , and p∗(t) is the
density function corresponding to the probability of an event taking
place at time t given Ht− . We can interpret the conditional inten-
sity as the likelihood of observing a point in the next infinitesimal
unit of time, given that no point has occurred since the last observed
point inHt− . Lastly, the mark distribution denotes the density func-
tion corresponding to the probability of observing mark k given the
occurrence of an event at time t and internal history Ht− .

3. The homogeneous process
A homogeneous process can be simulated using properties of the
Poisson process, which allow us to describe two equivalent sam-
pling procedures. The first procedure consists of drawing succes-
sive inter-arrival times. The distance between any two points in
a homogeneous process is distributed according to the exponen-
tial distribution — see Theorem 7.2 [12]. Given the homogeneous
process with intensity λ, then the distance ∆t between two points
is distributed according to ∆t ∼ exp(λ). Draws from the ex-
ponential distribution can be performed by drawing from a uni-
form distribution in the interval [0, 1]. If V ∼ U [0, 1], then
T = − ln(V)/λ ∼ exp(1). (Note, however, in Julia the opti-
mized Ziggurat-based method used in the randexp stdlib func-
tion is generally faster than this inverse method for sampling a
unit exponential random variable.) When a point process is homo-
geneous, the inverse method of Subsection 4.1 reduces to this ap-
proach. Thus, we defer the presentation of this Algorithm to the
next section.
The second procedure uses the fact that Poisson processes can be
represented as a mixed binomial process with a Poisson mixing dis-
tribution — see Proposition 3.5 [12]. In particular, the total number
of points of a Poisson homogeneous process in [0, T) is distributed
according to N (T) ∼ Poisson(λT) and the location of each
point within the region is independently distributed according to
the uniform distribution tn ∼ U [0, T].

4. Exact simulation methods
4.1 Inverse methods
The inverse method leverages Theorem 7.4.I [2] which states that
every simple point process3 can be transformed to a homogeneous
Poisson process with unit rate via the compensator. Let tn be the
time in which the n-th chronologically sorted event took place and
t0 ≡ 0, we define the compensator as:

Λ∗(tn) ≡ t̃n ≡
∫ tn

0

λ∗(u)du (4.1)

The transformed data t̃n forms a homogeneous Poisson process
with unit rate. Now, if this is the case, then the transformed interval
is distributed according to the exponential distribution.

∆t̃n ≡ t̃n − t̃n−1 ∼ exp(1) (4.2)

The idea is to draw realizations from the unit rate Exponential pro-
cess and solve Equation 4.2 for tn to determine the next event/firing
time. We illustrate this in Algorithm 1 where we adapt Algorithm
7.4 [2].
Whenever the conditional intensity is constant between two
points, Equation 4.2 can be solved analytically. Let λ∗ (t) =
λn−1,∀tn−1 ≤ t < tn, then∫ tn

tn−1

λ∗ (u) du = ∆t̃n ⇐⇒

λn−1(tn − tn−1) = ∆t̃n ⇐⇒

tn = tn−1 +
∆t̃n
λn−1

.

(4.3)

Which is equivalent to drawing the next realization time from the
re-scaled exponential distribution ∆tn ∼ exp(λn−1). As we will
see in Subsection 2, this implies that the inverse and thinning
methods are the same whenever the conditional intensity is con-
stant between jumps.
The main drawback of the inverse method is that the root finding
problem defined in Equation 4.2 often requires a numerical solu-
tion. To get around a similar obstacle in the context of PDMPs,
Veltz [27] proposes a change of variables in time that recasts the
root finding problem into an initial value problem. He denotes his
method CHV.
PDMPs are composed of two parts: the jump process and the
piecewise ODE that changes stochastically at jump times — see
Lemaire et al. [14] for a formal definition. Therefore, it is easy to
employ CHV in our case by setting the ODE part to zero through-
out time. Adapting from Veltz [27], we can determine the model
jump time tn after sampling ∆t̃n ∼ exp(1) by solving the fol-
lowing initial value problem until ∆t̃n.

t(0) = tn−1 ,
dt

dt̃
=

1

λ∗(t)
(4.4)

Looking back at Equation 4.1, we note that it is a one-to-one map-
ping between t and t̃ which makes it completely natural to write
t(∆t̃n) ≡ Λ∗−1(t̃n−1 +∆t̃n).
Alternatively, when the intensity function is differentiable between
jumps we can go even further by recasting the jump problem as a

3A simple point process is a process in which the probability of observing
more than one point in the same location is zero.

2

Proceedings of JuliaCon 1(1), 2023

PDMP. Let λ∗n ≡ λ∗(tn), then the flow ϕt−tn(λ
∗
n) maps the ini-

tial value of the conditional intensity at time tn to its value at time
t. In other words, the flow describes the deterministic evolution of
the conditional intensity function over time. Next, denote 1(·) as
the indicator function, then the conditional intensity function can
be re-written as a jump process:

λ∗(t) =
∑
n≥1

ϕt−tn−1(λn−1)1(tn−1 ≤ t < tn). (4.5)

According to Meiss [18], if ϕt(·) is a flow, then it is a solution to
the initial value problem:

ϕ0(λ
∗
n) = λ∗n ,

d

dt
ϕt−tn(λ

∗
n) = g(ϕt−tn(λ

∗
n)) (4.6)

where g : R+ → R is the vector field of λ∗ such that dλ∗/dt =
g(λ∗).
Based on Equation 2.1, we find that the probability of observing an
interval longer than s given internal history Ht− is equivalent to:

Pr(tn − tn−1 > s | Ht−) = 1−
∫ tn−1+s

tn−1

p∗(u)du =

= exp

(
−
∫ tn−1+s

tn−1

λ∗(u)du

)
=

= exp

(
−
∫ tn−1+s

tn−1

ϕu−tn−1(λ
∗
n−1)du

)
(4.7)

Equations 4.5 and 4.7 define a PDMP satisfying the conditions of
Theorem 3.1 [27]. In this case, we find tn by solving the following
initial value problem from 0 to ∆t̃n ∼ exp(1).

λ∗(t(0)) = λ∗(tn−1) ,
dλ∗

dt̃
=

g(λ∗(t))

λ∗(t)

t(0) = tn−1 ,
dt

dt̃
=

1

λ∗(t)
.

(4.8)

This problem specifies how the conditional intensity and model
time evolve with respect to the transformed time. The solution to
Equation 4.2 is then given by (tn = t(∆t̃n), λ

∗(t(∆t̃n)) =
λ∗(tn)).
In Algorithm 1, we can implement the CHV method by solving
either Equation 4.4 or Equation 4.8 instead of Equation 4.2. We
denote the first specification as CHV simple and the second as
CHV full. Note that CHV full requires that the conditional inten-
sity be piecewise differentiable. The algorithmic complexity is then
determined by the ODE solver and no root-finding is required. In
Section 6.2, we will show that there are substantial differences in
performance between them with the full specification being faster.
Another concern with Algorithm 1 is updating and drawing from
the conditional mark distribution in Line 8, and updating the con-
ditional intensity in Line 9. Assume a process with K number of
marks. A naive implementation of Line 9 scales with the number
of marks as O(K) since λ∗ is usually constructed as the sum of K
independent processes, each of which requires updating the condi-
tional intensity rate. Likewise, drawing from the mark distribution
in Line 8 usually involves drawing from a categorical distribution
whose naive implementations also scales with the number of marks
as O(K).
Finally, Algorithm 1 is not guaranteed to terminate in finite time
since one might need to sample many points before tn > T . The

sampling rate can be especially high when simulating the process
in a large population with self-exciting encounters. In biochemistry,
Salis and Kaznessis [22] partition a large system of chemical reac-
tions into two: fast and slow reactions. While they approximate the
fast reactions with a Gaussian process, the slow reactions are solved
using a variation of the inverse method. They obtain an equivalent
expression for the rate of slow reactions as in Equation 4.2, which
is integrated with the Euler method.

Algorithm 1 The inverse method for simulating a marked TPP over
a fixed duration of time [0, T).

1: procedure INVERSEMETHOD([0, T), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while t < T do
5: n← n+ 1
6: draw ∆t̃n ∼ exp(1)
7: find the next event time tn by solving Equation 4.2 or 4.8
8: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
9: update the history HT− ← HT− ∪ (tn, kn) and λ∗

10: end while
11: return HT−

12: end procedure

4.2 Thinning methods
Thinning methods are popular approaches for simulating point
processes. The main idea is to successively sample a homogeneous
process, then thin the obtained points with the conditional intensity
of the original process. As stated in Proposition 7.5.I [2], this pro-
cedure simulates the target process by construction. The advantage
of thinning over inverse methods is that the former only requires
the evaluation of the conditional intensity function while the latter
requires computing the inverse of its integrated form [2].
Thinning algorithms have been proposed in different forms [2].
Shedler-Lewis [15] first suggested a thinning routine that simulated
processes with bounded intensity over a fixed interval. Ogata’s re-
finement [19] suggests a procedure for evolving the simulation via
local boundary conditions and fixed partitions of the real line. As
long as the intensity conditioned on the simulated history remains
locally bounded, it is possible to simulate subsequent points indef-
initely.
In biochemistry, the thinning method was popularized by Gille-
spie [6, 7]. For this reason, this method is also called the Gille-
spie method. Gillespie himself called it the direct method or the
stochastic simulation algorithm. Gillespie introduced thinning
in the context of simulating chemical reactions of well-stirred sys-
tems. He developed a stochastic model for molecule interactions
from physics principles without any references to the point process
theory developed in this section. His model of chemical interactions
is equivalent to a marked Poisson process with constant conditional
intensity between jumps. The model consists of distinct populations
of molecular species that interact through several reaction channels.
A chemical reaction consists of a Poisson process that transforms
a set of molecules of some type into a set of molecules of another
type. What Gillespie calls the master equation can be deduced from
the superposition theorem — Theorem 3.3 [12].
In biochemistry, thinning methods are known as rejection algo-
rithms. Than et al. [25, 26] proposed the rejection-based algo-
rithm with composition-rejection search, yet another more so-
phisticated variation of the thinning method. In this case, the pro-

3

Proceedings of JuliaCon 1(1), 2023

cedure groups similar processes together. For each group, an upper-
and lower-bound conditional intensity is used for thinning. A sim-
ilar procedure is also described in [24], in which the authors refer
to their algorithm as kinetic Monte Carlo.
Algorithm 2 presents a thinning algorithm, which is a modified
version of Algorithm 7.5.IV [2]. To implement the algorithm, we
define three functions, B̄∗(t) = B̄(t | Ht),B

∗(t) =B(t | Ht)
and L∗(t) = L(t | Ht), that characterize the local boundedness
condition such that:

λ∗ (t+ u) ≤ B̄∗(t+ u) and λ∗ (t+ u) ≥B∗(t+ u),

∀ 0 ≤ u ≤ L∗(t).
(4.9)

The tighter the bound B̄∗(·) on λ∗(·), the lower the number of
discarded samples. Since looser bounds lead to less efficient algo-
rithms, the art, when simulating via thinning, is to find the optimal
balance between the local supremum of the conditional intensity
B̄∗(·) and the duration of the local interval L∗(t). On the other
hand, the infimum B∗(·) can be used to avoid the evaluation of
λ∗ (·) in Line 12 of Algorithm 3 which often can be expensive.
In Line 6 of Algorithm 2, since the candidate interval u is itself the
random inter-event interval from a TPP with conditional intensity
B̄∗(·), we are back to simulating a TPP via the inverse method.
Therefore, the wrong choice of B̄∗(·) could in fact deteriorate the
performance of the simulation. In many applications, the bound
B̄∗(·) is constant over [0, L∗(t)] which simplifies the simulation
since then u ∼ exp(B̄∗(t)). Alternatively, Bierkens et al. [1] uses
a Taylor approximation of λ∗(t) to obtain an upper-bound which
is a linear function of t 4.
When the conditional intensity is constant between jumps such that
λ∗ (t) = λn−1,∀tn−1 ≤ t < tn, let B̄∗(t) = B∗(t) = λn−1
and L∗(t) = ∞. We have that for any u ∼ exp(1 / B̄∗(t)) =
exp(λn−1) and v ∼ U [0, 1], u < L∗(t) = ∞ and v <
λ∗ (t + u) / B̄∗(t) = 1. Therefore, we advance the internal
history for every iteration of Algorithm 2. In this case, the bound
B̄∗(t) is as tight as possible, and this method becomes equivalent
to the inverse method of Subsection 4.1.
We can draw more connections between thinning and inversion.
Lemaire et al. [14] propose a version of the thinning algorithm
for PDMPs which does not use a local interval for rejection —
equivalent to L∗(t) = ∞. They propose an optimal upper-bound
B̄∗(t) as a piecewise constant function partitioned in such a way
that it envelopes the intensity function as strictly as possible. The
efficiency of their algorithm depends on the assumption that the
stochastic process determined by B̄∗(t) can be efficiently inverted.
They show that under certain conditions the stochastic process de-
termined by B̄∗(t) converges in distribution to the target condi-
tional intensity as the partitions of the optimal boundary converge
to zero. These results suggest that the efficiency of thinning com-
pared to inversion most likely depends on the rejection rate ob-
tained by the former and the number of steps required by the ODE
solver for the latter.
While thinning algorithms avoid the issue of directly computing
the inverse of the integrated conditional intensity, they increase the
number of time steps needed in the sampling algorithm as we are
now sampling from a process with an increased intensity relative

4Their implementation of the Zig-Zag process, a type of PMDP for Markov
Chain Monte Carlo, is available as a Julia package at https://github.c
om/mschauer/ZigZagBoomerang.jl.

to the original process. Moreover, like the inverse method, thin-
ning algorithms can also face issues related with drawing from the
conditional mark distribution — Line 11 of Algorithm 2 —, and
updating the conditional intensity — Line 3 of Algorithm 3 — and
the mark distribution — Line 12 of Algorithm 2.

Algorithm 2 The thinning method for simulating a marked TPP
over a fixed duration of time [0, T).

1: procedure THINNINGMETHOD([0, T), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while true do
5: t← TimeViaThinning([t, T),HT− , λ

∗)
6: if t ≥ T then
7: break
8: end if
9: n← n+ 1

10: tn ← t
11: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
12: update the history HT− ← HT− ∪ (tn, kn)
13: end while
14: return HT−

15: end procedure

Algorithm 3 Generates the next event time via thinning.
1: procedure TIMEVIATHINNING([t, T), λ∗, Ht,)
2: while t < T do
3: update λ∗

4: find B̄∗(t),B∗(t) and L∗(t) which satisfy Eq. 4.9
5: draw candidate interval u such that
6: P (u > s) = exp(−

∫ s

0
B̄∗(t+ s)ds)

7: draw acceptance threshold v ∼ U [0, 1]
8: if u > L∗(t) then
9: t← t+ L∗(t)

10: next
11: end if
12: if (v ≤B∗(t+ u)) or (v ≤ λ∗ (t+ u)/B̄∗(t+ u)) then
13: t← t+ u
14: return t
15: end if
16: t← t+ u
17: end while
18: return t
19: end procedure

4.3 Queuing methods for multivariate processes
As an alternative to his direct method — in this text referred as the
constant rate thinning method —, Gillespie introduced the first
reaction method in his seminal work on simulation algorithms [6].
The first reaction method separately simulates the next reaction
time for each reaction channel — i.e. for each mark. It then selects
the smallest time as the time of the next event, followed by updat-
ing the conditional intensity of all channels accordingly. This is a
variation of the constant rate thinning method to simulate a set of
inter-dependent point processes, making use of the superposition
theorem — Theorem 3.3 [12] — in the inverse direction.
Gibson and Bruck [5] improved the first reaction method with the
next reaction method. They innovate on three fronts. First, they

4

https://github.com/mschauer/ZigZagBoomerang.jl
https://github.com/mschauer/ZigZagBoomerang.jl

Proceedings of JuliaCon 1(1), 2023

keep a priority queue to quickly retrieve the next event. Second,
they keep a dependency graph to quickly locate all conditional in-
tensity rates that need to be updated after an event is fired. Third,
they re-use previously sampled reaction times to update unused re-
action times. This minimizes random number generation, which
can be costly. Priority queues and dependency graphs have also
been used in the context of social media [4] and epidemics [11]
simulation. In both cases, the phenomena are modelled as point
processes.
We prefer to call this class of methods queued thinning methods
since most efficiency gains come from maintaining a priority queue
of the next event times. Up to this point we assumed that we were
sampling from a global process with a mark distribution that could
generate any mark k given an event at time t. With queuing, it is
possible to simulate point processes with a finite space of marks
as M interdependent point processes — see Definition 6.4.1 [2] of
multivariate point processes — doing away with the need to draw
from the mark distribution at every event occurrence. Alternatively,
it is possible to split the global process into M interdependent pro-
cesses each of which has its own mark distribution.
Algorithm 5, presents a method for sampling a superposed point
process consisting of M processes by keeping the strike time of
each process in a priority queue Q. The priority queue is initially
constructed in O(M) steps in Lines 4 to 7 of Algorithm 5. In con-
trast to thinning methods, updates to the conditional intensity de-
pend only on the size of the neighborhood of i. That is, processes j
whose conditional intensity depends on the history of i. If the graph
is sparse, then updates will be faster than with thinning.
A source of inefficiency in some implementations of queued thin-
ning algorithms such as [4] is the fact that one goes through mul-
tiple rejection cycles at time t before accepting a time candidate
t < ti for process i. This requires looking ahead in the future. In
addition to that, if process j, which i depends on, takes place be-
fore ti, then we need to repeat the whole thinning process to obtain
a new time candidate for i.
In Algorithm 5, we take a different approach which performs thin-
ning in synchrony with the main loop, avoiding look ahead and
wasted rejections. Our main contribution is to modify the main loop
of previous thinning algorithms to allow at most one event proposal
for each sub-process for each time step. The proposed candidates
are always added to the priority queue Q because we need to stop at
each proposed time. When the candidate is pre-rejected, we update
the bounds and make a new proposal. Alternatively, if the candidate
time has not been pre-rejected, we draw the acceptance threshold
and compute the intensity rate to make a decision. If the candi-
date is accepted, we trigger a new round of thinning. Otherwise,
we update the bounds and make a new proposal. Overall, we avoid
unnecessary updates. Additionally, thinning is now synced with the
main loop, which allows the coupling of this simulator with other
algorithms that step chronologically through time. These include
ordinary differential equation solvers, enabling us to simulate jump
processes with rates given by a differential equation. This is the first
queued thinning synced algorithm we are aware of.
Since Algorithm 5 can be mapped to a non-queued thinning al-
gorithm — see [4] —, it can simulate any point process on the real
line with a non-negative, left-continuous, history-adapted and lo-
cally bounded intensity rate as per Proposition 7.5.I [2].

5. Implementation
JumpProcesses.jl is a Julia library for simulating jump
— or point — processes which is part of Julia’s SciML or-
ganization. In the Julia ecosystem, there are other libraries

Algorithm 4 Generates the next candidate time for queued thin-
ning.

1: procedure QUEUETIME(t, λ∗, Ht,)
2: update λ∗

3: find B̄∗,B∗ and L∗(t) which satisfy Eq. 4.9
4: draw u ∼ exp(B̄∗(t))
5: if u > L∗(t) then
6: accepted← false
7: u← L∗(t)
8: else
9: accepted← true

10: end if
11: t← t+ u
12: return t, B̄∗,B∗, accepted
13: end procedure

Algorithm 5 The queued thinning method for simulating a marked
TPP over a fixed duration of time [0, T).

1: procedure QUEUINGMETHOD([0, T), {λ∗k}, {f ∗k},)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: for i=1,M do
5: (ti, B̄

∗
i ,B

∗
i , ai)← QueueTime(0,HT− , λ

∗
i(·))

6: push (i, ti, B̄
∗
i ,B

∗
i , ai) to Q

7: end for
8: while t < T do
9: first (i, ti, B̄∗i ,B

∗
i , ai) from Q

10: t← ti
11: if t ≥ T then
12: break
13: end if
14: draw v ∼ U [0, B̄∗i]
15: if ai and (v >B∗i) and (v > λ∗ (t)) then
16: ai ← false
17: end if
18: if ai then
19: n← n+ 1
20: tn ← t
21: update f ∗ and draw the mark kn ∼ f ∗i (k | tn)
22: update the history HT− ← HT− ∪ (tn, kn)
23: for j ∈ {i} ∪Neighborhood(i) do
24: (tj , B̄

∗
j ,B

∗
j , aj)← QueueTime(t, λ∗j ,HT−)

25: update (j, tj , B̄
∗
j ,B

∗
j , aj) in Q

26: end for
27: else
28: (ti, B̄

∗
i ,B

∗
i , ai)← QueueTime(t, λ∗i ,HT−)

29: update (i, ti, B̄
∗
i ,B

∗
i , ai) in Q

30: end if
31: end while
32: return HT−

33: end procedure

that can sample certain TPPs including Hawkes.jl 5,
HawkesProcesses.jl 6, NetworkHawkesProcesses.jl
7, PointProcessInference.jl [23] 8, GeoStats.jl

5https://github.com/em1234321/Hawkes.jl
6https://github.com/dm13450/HawkesProcesses.jl
7https://github.com/cswaney/NetworkHawkesProcesses.jl
8https://github.com/mschauer/PointProcessInference.jl

5

https://github.com/em1234321/Hawkes.jl
https://github.com/dm13450/HawkesProcesses.jl
https://github.com/cswaney/NetworkHawkesProcesses.jl
https://github.com/mschauer/PointProcessInference.jl

Proceedings of JuliaCon 1(1), 2023

[10] 9, PiecewiseDeterministicMarkovProcesses.
jl [27] 10, and PointProcesses.jl [3] 11. Apart from
PiecewiseDeterministicMarkovProcesses.jl, these
other libraries can only sample the Poisson and/or the Hawkes
processes. PointProcesses.jl also offers a formalized
interface that other packages can implement to leverage its TPP
modelling functionality. While JumpProcesses.jl can be used
to directly simulate TPPs, in its documentation we also show how
it can be wrapped to conform to this interface 12.
Our discussion in Section 4 identified three exact methods for
simulating point processes. In all the cases, we identified two
mathematical constructs required for simulation: the intensity
rate and the mark distribution. In JumpProcesses.jl, these
can be mapped to user defined functions rate(u, p, t) and
affect!(integrator). The former takes the current state of
the system, u, user provided parameters, p, and the current time, t,
and returns the value of the intensity function at this time. The lat-
ter takes the solver integrator object, which stores all solution
information, and updates it, including the state integrator.u,
for whatever changes should occur when the jump it encodes fires
at the time integrator.t. The library provides APIs for defin-
ing processes based on the nature of the intensity rate and the
intended simulation algorithm. Processes simulated using exact
sampling methods can choose between ConstantRateJump and
VariableRateJump. While the former expects the rate between
jumps to be constant, the latter allows for time-dependent rates.
The library also provides the MassActionJump API to define
large systems of point processes that can be expressed as mass ac-
tion type reaction equations. Finally, RegularJump is intended
for tau-leaping methods.
The inverse method as described around Equation 4.2 uses
root finding to calculate the next jump time. Jumps to be
simulated via the inverse method must be initialized as a
VariableRateJump. JumpProcesses.jl builds a continu-
ous callback following the algorithm in [22] and passes the prob-
lem to an OrdinaryDiffEq.jl integrator, which easily inter-
operates with JumpProcesses.jl (both libraries are part of
the SciML organization, and by design built to easily compose).
JumpProcesses.jl does not yet support the CHV ODE based
approach.
Alternatively, thinning methods can be simulated via discrete
steps. In JumpProcesses.jl, simulation approaches that take
discrete steps are handled via discrete callbacks that are checked at
the end of each time-step of some time evolution algorithm, e.g.an
ODE solver from OrdinaryDiffEq.jl, a stochastic differen-
tial equation solver from StochasticDiffEq.jl, or the pure-
jump process SSAStepper provided by JumpProcesses.jl.
In simple terms, discrete callbacks involve two functions. Condi-
tion functions are checked at each step of the main loop of a time-
stepping method to see if the callback should be executed, and if
it should, an associated affect function is called. In the context of
the library, any method that uses thinning via a discrete callback
is called an aggregator. There are twelve different aggregators
which we discuss below and are summarized in Table 4 in the An-
nex.

9https://github.com/JuliaEarth/GeoStats.jl
10https://github.com/rveltz/PiecewiseDeterministicMarkov

Processes.jl
11https://github.com/gdalle/PointProcesses.jl
12https://docs.sciml.ai/JumpProcesses/stable/application

s/advanced_point_process

We start with constant rate thinning aggregators for marked TPPs.
Algorithm 2 assumes that there is a single process. In reality, all
the implementations first assume a finite multivariate point process
with M interdependent sub-processes. This can be easily concil-
iated, as we do now, using Definition 6.4.1 [2] which states the
equivalence of such process with a point process with a finite space
of marks.
As all the constant rate thinning aggregators only support
ConstantRateJumps and MassActionJumps, i.e.the inten-
sity between jumps is constant, Algorithm 3 short-circuits to
quickly return t ∼ exp(B̄) = exp(λn) as discussed in Subsec-
tion 4.2. Next, the mark distribution becomes the categorical dis-
tribution weighted by the intensity of each process. That is, given
an event at time tn, we have that the probability of drawing pro-
cess i out of M sub-processes is λ∗i (tn)/λ

∗(tn). Conditional on
sub-process i, the corresponding affect!(integrator) is in-
voked, that is, kn ∼ f ∗i (k | tn). So all sub-processes could poten-
tially be marked, but note users need to handle any additional sam-
pling related to such marks within their provided affect! func-
tion. Where most implementations differ is on updating the mark
distribution in Line 11 of Algorithm 2 and the conditional intensity
rate in Line 3 of Algorithm 3.
Direct and DirectFW follow the direct method in [6] which
re-evaluates all intensities after every iteration scaling at O(K). It
draws the next-time from the ground process whose rate is the sum
of all sub-processes’ rates. It selects the mark by executing a search
in an array that stores the cumulative sum of rates.
SortingDirect, RDirect, DirectCR are improvements over
the Direct method. They only re-evaluate the intensities of the
processes that are affected by the realized process based on a de-
pendency graph. SortingDirect draws from the ground pro-
cess, but keeps the intensity rate in a loosely sorted array follow-
ing [17]. RDirect is a rejection-based direct method which as-
signs the maximum rate of the system as the bound to all processes.
The implementation slight differs from Algorithm 2. Since all sub-
process have the same rate it draws the next time from a homoge-
neous Poisson process with the maximum rate, then randomly se-
lects a candidate process and confirms the candidate only if its rate
is above a random proportion of the maximum rate. DirectCR —
from [24] — is a composition-rejection method that groups sub-
processes with similar rates using a priority table. Each group is as-
signed the sum of all the rates within it. We apply a routine equiv-
alent to Direct to select the time in which the next group fires.
Given a group, we then select which process fires.
RSSA and RSSACR place processes in bounded brackets. RSSA —
from [25] — follows Algorithm 2 very closely in the case where
the bounds are constant between jumps. RSSACR — from [26] —
groups sub-processes with similar rates like DirectCR, but then
places each group within a bounded bracket. It then samples the
next group to fire similar to RSSA. Given the group, it selects a
candidate to fire and performs a thinning routine to accept or reject.
Finally, we have what we call the queued thinning ag-
gregators. Starting with aggregators that only support
ConstantRateJumps we have, FRM, FRMFW and NRM.
FRM and FRMFW follow the first reaction method in [6]. To
compute the next jump, both algorithms compute the time to the
next event for each process and select the process with minimum
time. This is equivalent to assuming a complete dependency graph
in Algorithm 5. For large systems, these methods are inefficient
compared to NRM which is a queued thinning method sourced
from [5]. NRM gains efficiency by using an indexed priority queue
to store and determine next event times, and by using dependency

6

https://github.com/JuliaEarth/GeoStats.jl
https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
https://github.com/gdalle/PointProcesses.jl
https://docs.sciml.ai/JumpProcesses/stable/applications/advanced_point_process
https://docs.sciml.ai/JumpProcesses/stable/applications/advanced_point_process

Proceedings of JuliaCon 1(1), 2023

graphs to only update intensities that would need to be recalculated
after a given event.
Most of the algorithms implemented in JumpProcesses.jl
come from the biochemistry literature. There has been less em-
phasis on implementing processes commonly studied in statis-
tics such as self-exciting point processes characterized by time-
varying and history-dependent intensity rates. Our latest ag-
gregator, Coevolve, which is an implementation of Algo-
rithm 5, addresses this gap. This is the first aggregator that sup-
ports VariableRateJumps. Compared with the current inverse
method-based approach that relies on ODE integration, the new
aggregator substantially improves the performance of simulations
with time-dependent intensity rates and/or coupled with differential
equations from DifferentialEquations.jl.
Coevolve also employs several enhancements compared to Al-
gorithm 5. First, we avoid the re-computation of unused random
numbers. When updating processes that have not yet fired, we
can transform the unused time of constant rate processes to ob-
tain the next candidate time for the first round of iteration of the
thinning procedure in Algorithm 3. This saves one round of sam-
pling from the exponential distribution, which translates into a
faster algorithm. Second, it adapts to processes with constant inten-
sity between jumps which reduces the loop in Algorithm 3 to the
equivalent implemented in NRM for ConstantRateJumps and
MassActionJumps.

6. Empirical evaluation
This section conducts some empirical evaluation of the
JumpProcesses.jl aggregators described in Section 5.
First, since Coevolve is a new aggregator, we test its correctness
by conducting statistical analysis. Second, we conduct the jump
benchmarks available in SciMLBenchmarks.jl. We have
added new benchmarks that assess the performance of the new
aggregators under settings that could not be simulated with
previous aggregators.

6.1 Statistical analysis of Coevolve
To simulate a process intended for a discrete solver with Jump-
Processes.jl, we define a discrete problem, initialize the
jumps and define the jump problem which takes the aggregator as
an argument. The jump problem can then be solved with the dis-
crete stepper provided by JumpProcesses.jl, SSAStepper.
On the one hand, we can think of the stepper as the routine that
determines how the numerical solver advances time. On the other
hand, the aggregator is the algorithm for sampling the path of a
jump process. The aggregator provides stopping times to the step-
per.
The code for simulating the homogeneous Poisson process with
Direct is reproduced in Listing 1.

Listing 1: Simulation of the homogeneous Poisson process.� �
using JumpProcesses
rate (u, p, t) = p[1]
affect !(integrator) = (integrator .u[1] += 1;

nothing)
jump = ConstantRateJump (rate , affect !)
u, tspan , p = [0.], (0., 200 .), (0 .2 5,)
dprob = DiscreteProblem (u, tspan , p)
jprob = JumpProblem (dprob , Direct (), jump ;

dep_graph =[[1]])
sol = solve (jprob , SSAStepper ())� �

The simulation of a Hawkes process — see Subsection 6.2 for a
definition — requires a VariableRateJump along with the rate
bounds and the interval for which the rates are valid. Also, since
the Hawkes process is history dependent, we close the rate and
affect! function with a vector containing the history of events.
The code for simulating the Hawkes process is reproduced in List-
ing 2. Note that it is possible to simplify the computation of the
rate — see Subsection 6.2 —, but we keep the code here as close
as possible to its usual definition for illustration purposes.

Listing 2: Simulation of the Hawkes process.� �
using JumpProcesses
h = Float64 []
rate (u, p, t) = p[1] +

p[2]* sum (exp (-p[3]*(t- _t)) for _t in h; init =0)
lrate (u, p, t) = p[1]
urate = rate
rateinterval (u, p, t) = 1/(2* urate (u,p,t))
affect !(integrator) = (push !(h, integrator .t);

integrator .u[1] += 1; nothing)
jump = VariableRateJump (rate , affect !; lrate ,

urate , rateinterval)
u, tspan , p = [0.], (0., 200 .), (0 .2 5, 0 .5 , 2 .0)
dprob = DiscreteProblem (u, tspan , p)
jprob = JumpProblem (dprob , Coevolve (), jump ;

dep_graph =[[1]])
sol = solve (jprob , SSAStepper ())� �

To assess the correctness of Coevolve, we add it to the Jump-
Processes.jl test suite. Some tests check whether the aggrega-
tors are able to obtain empirical statistics close to the expected in
a number of simple biochemistry models such as linear reactions,
DNA repression, reversible binding and extinction. The test suite
was missing a unit test for a self-exciting process. Thus, we have
added a test for the univariate Hawkes model that checks whether
algorithms that accept VariableRateJump are able to produce
an empirical distribution of trajectories whose first two moments of
the observed rate are close to the expected ones.
In addition to that, the correctness of the implemented algorithm
can be visually assessed using a Q-Q plot. As discussed in Sub-
section 4.1, every simple point process can be transformed to a
Poisson process with unit rate. This implies that the interval be-
tween points for any such transformed process should match the
exponential distribution. Therefore, the correctness of any aggre-
gator can be assessed as following. First, transform the simulated
intervals with the appropriate compensator. Let tni

be the time in
which the n-th event of sub-process i took place and t0i ≡ 0, the
compensator for sub-process i is given by the following:

Λ∗i (tni
) ≡ Λ∗ni

≡
∫ tni

0

λ∗i (u)du (6.1)

Then the transformed simulated interval is given by:

∆Λni
≡ Λ∗ni

− Λ∗(n−1)i (6.2)

Compute the empirical quantiles of the transformed intervals. That
is, the q-th quantile is the interval ∆Λq that divides the sorted in-
tervals in two sets, those below and above ∆Λq such that q-percent
of the elements are below it. Plot the empirical quantiles with the
corresponding quantiles of the exponential distribution. If the sim-
ulator produces correct trajectories, this plot known as Q-Q plot
should depict the points aligned around the 45-degree line. We pro-
duce Q-Q plots for the homogeneous Poisson process as well as the
compound Hawkes process — see Subsection 6.2 for a definition

7

Proceedings of JuliaCon 1(1), 2023

0 5 10 15 20

1

2

3

t

no
de

in
de

x

(a)

0 5 10 15 20

0.5

0.6

0.7

0.8

t

co
nd

it
io

na
l

ra
te

(b)

(c)

0 1 2 3 4 5
0

1

2

3

4

5

Expected quantile

E
m

pi
ri

ca
l

qu
an

ti
le

(d)
Fig. 1: Simulations of 10-nodes compound Hawkes process with parameters
λ = 0.5, α = 0.1, β = 2.0 for 200 units of time. (a) and (b) sampled
trajectory and intensity rate for a single simulation for the three selected
nodes in (c) for the first 20 units of time. (c) underlying 10-nodes network
with three random nodes selected. (d) Q-Q plot of transformed inter-event
time for 250 simulations colored by node.

— to attest the correctness of Coevolve. Figure 1 (d) depicts the
Q-Q plot for a ten-node compound Hawkes process with parame-
ters λ = 0.5, α = 0.1, β = 2.0 simulated 250 times for 200
units of time. Figure 1 also depicts the trajectory, the conditional
intensity and the network structure of a single simulation for three
random nodes in panels (a), (b) and (c) respectively. We obtained
similar Q-Q plots for the other algorithms that benchmarked the
Multivariate Hawkes process below.

6.2 Benchmarks
We conduct a set of benchmarks to assess the performance of
the JumpProcesses.jl aggregators described in Section 5. All
benchmarks are available in SciMLBenchmarks.jl13. All were

13https://github.com/SciML/SciMLBenchmarks.jl/tree/7d

356203ea107d7343af1ce41d94b64847095d4a/benchmarks/Jumps

Diffusion Multi-state Gene I Gene II

Direct 7.14 s 0.16 s 0.24 ms 0.59 s
FRM 15.76 s 0.25 s 0.29 ms 0.77 s
SortingDirect 1.06 s 0.11 s 0.24 ms 0.53 s
NRM 0.76 s 0.25 s 0.39 ms 0.90 s
DirectCR 0.50 s 0.22 s 0.49 ms 1.09 s
RSSA 1.42 s 0.10 s 0.43 ms 0.66 s
RSSACR 0.46 s 0.15 s 0.91 ms 1.06 s
Coevolve 0.88 s 0.34 s 0.53 ms 1.29 s

Table 1. : Median execution time. A 1-dimensional continuous time ran-
dom walk approximation of a diffusion model (Diffusion), the multi-state
model from Appendix A.6 [16] (Multi-state), a simple negative feedback
gene expression model (Gene I) and the negative feedback gene expres-
sion from [9] (Gene II). Fastest time is bold, second fastest underlined.
Benchmark source code and dependencies are available in SciMLBench-

marks.jl, see first paragraph of Section 6.2 for source references.

run in BuildKite14 via the continuous integration facilities provided
by the package maintainers. We have added two benchmark suites
to assess the performance of the new aggregators under settings that
could not be simulated with previous aggregators.
First, we assess the speed of the aggregators against jump pro-
cesses whose rates are constant between jumps. There are four such
benchmarks: a 1-dimensional continuous time random walk ap-
proximation of a diffusion model (Diffusion), the multi-state model
from Appendix A.6 [16] (Multi-state), a simple negative feedback
gene expression model (Gene I) and the negative feedback gene
expression from [9] (Gene II). We simulate a single trajectory for
each aggregator to visually check that they produce similar trajec-
tories for a given model. The Diffusion, Multi-state, Gene I and
Gene II benchmarks are then simulated 50, 100, 2000 and 200
times, respectively. Check the source code for further implementa-
tion details.
Benchmark results are listed in Table 1. The table shows that no
single aggregator dominates suggesting they should be selected ac-
cording to the task at hand. However, FRM, NRM, Coevolve never
dominate any benchmark. In common, they all belong to the family
of queuing methods suggesting that there is a penalty when using
such methods for jump processes whose rates are constant between
jumps. We also note that the performance of Coevolve lag that
of NRM despite the fact that Coevolve should take the same num-
ber of steps as NRM when no VariableRateJump is used. The
reason behind this discrepancy is likely due to implementation dif-
ferences, but left for future investigation.
Second, we add a new benchmark which simulates the compound
Hawkes process for an increasing number processes. Consider a
graph with V nodes. The compound Hawkes process is character-
ized by V point processes such that the conditional intensity rate
of node i connected to a set of nodes Ei in the graph is given by

λ∗i (t) = λ+
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]
. (6.3)

This process is known as self-exciting, because the occurrence of
an event j at tnj

will increase the conditional intensity of all the

and https://github.com/SciML/SciMLBenchmarks.jl/tree/7d

356203ea107d7343af1ce41d94b64847095d4a/benchmarks/Hybrid

Jumps
14https://buildkite.com/julialang/scimlbenchmarks-dot-j

l/builds/1849#018c3980-5247-42ab-a7fe-3145209b26c5

8

https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/Jumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/Jumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/HybridJumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/HybridJumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/HybridJumps
https://buildkite.com/julialang/scimlbenchmarks-dot-jl/builds/1849#018c3980-5247-42ab-a7fe-3145209b26c5
https://buildkite.com/julialang/scimlbenchmarks-dot-jl/builds/1849#018c3980-5247-42ab-a7fe-3145209b26c5

Proceedings of JuliaCon 1(1), 2023

processes connected to it by α. The excited intensity then decreases
at a rate proportional to β.

dλ∗i (t)

dt
= −β

∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]

= −β (λ∗i (t)− λ)

(6.4)

The conditional intensity of this process has a recursive formulation
which can significantly speed the simulation. The recursive formu-
lation for the univariate case is derived in [13] which also provides
additional discussion and results on the Hawkes process. We derive
the compound case here. Let tNi

= max{tnj
< t | j ∈ Ei}

and φ∗i (t) below.

φ∗i (t) =
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tNi

+ tNi
− tnj

)
]

= exp [−β(t− tNi
)]
∑
j∈Ei

∑
tnj
≤tNi

α exp
[
−β(tNi

− tnj
)
]

= exp [−β(t− tNi
)] (α+ φ∗i (tNi

))
(6.5)

Then the conditional intensity can be re-written in terms of
φ∗i (tNi

).

λ∗i (t) = λ+ φ∗i (t) = λ+ exp [−β(t− tNi
)] (α+ φ∗i (tNi

))
(6.6)

A random graph is sampled from the Erdős-Rényi model. This
model assumes the probability of an edge between two nodes is in-
dependent of other edges, which we fix at 0.2. Note that this setup
implies an increasing expected node degree with the graph size.
We fix the Hawkes parameters at λ = 0.5, α = 0.1, β = 5.0
ensuring the process does not explode and simulate models in the
range from 1 to 95 nodes for 25 units of time. We simulate 50
trajectories with a limit of ten seconds to complete execution. For
this benchmark, we save the state of the system exactly after each
jump.
We assess the benchmark in eight different settings. First, we run
the inverse method, Coevolve and CHV simple using the brute
force formula of the intensity rate which loops through the whole
history of past events — Equation 6.3. Second, we simulate the
same three methods with the recursive formula — Equation 6.6.
Next, we run the benchmark against CHV full. All CHV spec-
ifications are implemented with PiecewiseDeterministic-
MarkovProcesses.jl which is developed by Veltz, the author
of the CHV algorithm discussed in Subsection 4.1. Finally, we run
the benchmark using the Python library Tick15. This library imple-
ments a version of the thinning method for simulating the Hawkes
process and implements a recursive algorithm for computing the
intensity rate.
Table 2 shows that the Inverse method which relies on root finding
is the most inefficient of all methods for any system size. For large
system size this method is unable to complete all 50 simulation
runs because it needs to find an ever larger number of roots of an
ever larger system of differential equations.
The recursive implementation of the intensity rate brings a consid-
erable boost to the simulations, placing Coevolve as one of the
fastest algorithms. As shown in Algorithm 5, every sampled point
in Coevolve requires a number of expected updates equal to the

15https://github.com/X-DataInitiative/tick

expected degree of the dependency graph. Therefore, it is able to
complete non-exploding simulations efficiently.
The Python library Tick remains competitive for smaller prob-
lems, but gets considerably slower for bigger ones. Also, it is only
specialized to the Hawkes process. Another drawback is that the
library wraps the actual C++ implementation. In contrast, Jump-
Processes.jl can simulate many other point processes with a
relatively simple user-interface provided by the Julia language.
There is substantial difference between the performance of recur-
sive CHV simple and CHV full. The former does not make use
of the derivative of the intensity function in Equation 6.4 which is
more efficient to compute than the recursive rate in Equation 6.6.
On the one hand, Coevolve clearly dominates CHV simple.
On the other hand, CHV full is slower for smaller networks, but
slightly faster than Coevolve for larger models. This change in
relative performance occurs due to the rate of rejection in Coe-
volve increasing in model size for this particular model. We com-
pute the rejection rate as one minus the ratio between the number
of jumps and the number of calls to the upper-bound. A system
with a single node sees a rejection rate of around 8 percent which
rapidly increases to 80 percent when the system reaches 20 nodes
and plateaus at around 95 percent with 95 nodes.
Finally, we introduce a new benchmark which is intended to assess
the performance of algorithms capable of simulating the stochastic
model of hippocampal synaptic plasticity with geometrical read-
out of enzyme dynamics proposed in [21]. For short, we denote it
as the synapse model. We chose to benchmark this model as it is
representative of a complex biochemical model. It couples a jump
problem containing 98 jumps affecting 49 discrete variables with
a stiff, ordinary differential equation problem containing 34 con-
tinuous variables. Continuous variables affect jump rates while the
discrete variables affect the continuous problem. There are 3 stages
to the simulation: pre-synaptic evolution, glutamate release, and
post-synaptic evolution. Among the algorithms considered, only
the inverse method implemented in JumpProcesses.jl, Co-
evolve and CHV are theoretically able to simulate the synapse
model. However, in practice, only the last two complete at least one
benchmark run. The original synapse problem was described as a
PDMP, so we do not make the distinction between CHV simple
and full in this benchmark.
Benchmark results are displayed in Table 3. We observe that CHV
is the fastest algorithm completing the synapse evolution in about
half of the time it takes Coevolve with less than half of the allo-
cations. Further investigation reveals that the thinning procedure in
Coevolve reaches an average of 70 percent over all jumps which
then leads to 2 to 3 times more function evaluations and Jaco-
bians created compared to CHV. Our implementation adds stop-
ping times via a call to register_next_jump_time! even for
rejected jumps — we do not know a jump will be rejected until
evaluated. This then leads the ODE solver to step to those times and
make additional function evaluations and Jacobians. Lemaire et
al. [14] performs a similar benchmark in which they compare the
Hodgkin-Huxley model against different thinning conditions and
against an ODE approximation. They find that a thinned algorithm
with optimal boundary conditions can run significantly faster than
the ODE approximation. Thus, there could be plenty of room to
improve the performance of Coevolve in our setting.
A disadvantage of CHV compared with Coevolve is that it sup-
ports limited saving options by design. To save at pre-specified
times would require using the fact that solutions are piecewise con-
stant to determine solutions at times in-between jumps — and for
coupled ODE-jump problems would require root-finding to deter-
mine when s(u) = sn for each desired saving time sn in Equa-

9

https://github.com/X-DataInitiative/tick

Proceedings of JuliaCon 1(1), 2023

tion 4.8. The alternative proposed in [27] is to introduce an artificial
jump to the model such as the homogeneous Poisson process with
unit rate to sample the system at regular intervals. Alternatively,
Coevolve allows saving at any arbitrary point. A common work-
flow in simulating jump processes, particularly when interested in
calculating statistics over time, is to pre-specify a precise set of
times at which to save a simulation. In theory, this reduces mem-
ory pressure, particularly for systems with large numbers of jumps,
and can give increased computational performance relative to sav-
ing the state at the occurrence of every jump. However, in the case
of the synapse model, the number of candidate time rejections far
surpasses the number of jumps. Therefore, reducing the number of
saving points — e.g. only saving at start and end of the simulation
— does not significantly reduce allocations or running time. Given
these considerations, we decided to save after every jump and at
regular pre-specified intervals that occur at the same frequency as
the artificial saving jump used by CHV.
Another parameter that can affect the precision and speed of the
synapse benchmark is the ODE solver. The author of Piece-
wiseDeterministicMarkovProcesses.jl discuss some
of these issues in Discourse16. Some ODE solvers can be faster and
more precise. Due to time constraints, we have not investigated this
matter. The synapse benchmark uses the AutoTsit5(Rosen-
brock23()) solver in both Coevolve and CHV. Further inves-
tigation of this matter is left to future research.

7. Conclusion
This paper demonstrates that JumpProcesses.jl is a fast,
general-purpose library for simulating TPPs. With the addition of
Coevolve, any point process on the real line with a non-negative,
left-continuous, history-adapted and locally bounded intensity rate
can be simulated with this library. The objective of this paper was to
bridge the gap between the point process simulation in statistics and
biochemistry. We demonstrated that many of the algorithms devel-
oped in biochemistry which served as the basis for the JumpPro-
cesses.jl aggregators can be mapped to three general methods
developed in statistics for simulating TPPs. We showed that the
existing aggregators mainly differ in how they update and sample
from the intensity rate and mark distribution. As we performed this
exercise, we noticed the lack of an efficient aggregator for variable
intensity rates, a gap which Coevolve is meant to fill.
There are still a number of ways forward. First, given the perfor-
mance of the CHV algorithm in our benchmarks, we should con-
sider adding it to JumpProcesses.jl as another aggregator so
that it can benefit from tighter integration with the SciML orga-
nization and libraries. The saving behavior of CHV might pose a
challenge when bringing this algorithm to the library.
Second, the new aggregator depends on the user providing bounds
on the jump rates as well as the duration of their validity. In prac-
tice, it can be difficult to determine these bounds a priori, particu-
larly for models with many ODE variables. Moreover, determining
such bounds from an analytical solution or the underlying ODEs
does not guarantee their holding for the numerically computed so-
lution (which is obtained via an ODE discretization), and so modi-
fications may be needed in practice. A possible improvement would
be for JumpProcesses.jl to determine these bounds automati-
cally taking into account the derivative of the rates. The approach of
ZigZagBoomerang.jl that combines Taylor approximation of

16https://discourse.julialang.org/t/help-me-beat-lsoda

/88236

the conditional intensity with automatic differentiation could be ex-
plored. Deriving efficient bounds require not only knowledge of the
problem and a good amount of analytical work, but also knowledge
about the numerical integrator. At best, the algorithm can perform
significantly slower if a suboptimal bound or interval is used, at
worst it can return incorrect results if a bound is incorrect — i.e. it
can be violated inside the calculated interval of validity.
Third, JumpProcesses.jl would benefit from further develop-
ment in inexact methods. At the moment, support is limited to pro-
cesses with constant rates between jumps and the only solver avail-
able SimpleTauLeaping does not support marks. Inexact meth-
ods should allow for the simulation of longer periods of time when
only an event count per time interval is required. Hawkes processes
can be expressed as a branching process. There are simulation algo-
rithms that already take advantage of this structure to leap through
time [13]. It would be important to adapt these algorithms for gen-
eral, compound branching processes to cater for a larger number of
settings.
Finally, JumpProcesses.jl also includes algorithms for jumps
over two-dimensional spaces. It might be worth conducting a sim-
ilar comparative exercise to identify algorithms in statistics for 2-
and N -dimensional processes that could also be added to Jump-
Process.jl as it has the potential to become the go-to library for
general point process simulation.

8. Acknowledgements
This project has been made possible in part by grant number 2021-
237457 from the Chan Zuckerberg Initiative DAF, an advised fund
of Silicon Valley Community Foundation. SAI was also partially
supported by NSF-DMS 1902854 and 2325185.

9. References
[1] Joris Bierkens, Paul Fearnhead, and Gareth Roberts. The Zig-

Zag process and super-efficient sampling for Bayesian analy-
sis of big data. The Annals of Statistics, 47(3), June 2019.
doi:10.1214/18-AOS1715.

[2] Daryl J. Daley and David Vere-Jones. An Introduction to
the Theory of Point Processes: Volume I: Elementary
Theory and Methods. Probability and Its Applications,
An Introduction to the Theory of Point Processes. Springer-
Verlag, New York, 2 edition, 2003. doi:10.1007/b97277.

[3] Guillaume Dalle. PointProcesses.jl. Zenodo, January 2024.
doi:10.5281/zenodo.10477603.

[4] Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-
Rodriguez, Shuang Li, Hongyuan Zha, and Le Song.
COEVOLVE: A joint point process model for informa-
tion diffusion and network evolution. The Journal of
Machine Learning Research, 18(1), January 2017.
doi:10.5555/3122009.3122050.

[5] Michael A. Gibson and Jehoshua Bruck. Efficient Exact
Stochastic Simulation of Chemical Systems with Many
Species and Many Channels. The Journal of Physical
Chemistry A, 104(9), March 2000. doi:10.1021/jp993732q.

[6] Daniel T Gillespie. A general method for numerically simu-
lating the stochastic time evolution of coupled chemical reac-
tions. Journal of Computational Physics, 22(4), Decem-
ber 1976. doi:10.1016/0021-9991(76)90041-3.

[7] Daniel T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. The Journal of Physical Chemistry,
81(25), December 1977. doi:10.1021/j100540a008.

10

https://discourse.julialang.org/t/help-me-beat-lsoda/88236
https://discourse.julialang.org/t/help-me-beat-lsoda/88236
http://dx.doi.org/10.1214/18-AOS1715
http://dx.doi.org/10.1007/b97277
http://dx.doi.org/10.5281/zenodo.10477603
http://dx.doi.org/10.5555/3122009.3122050
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1021/j100540a008

Proceedings of JuliaCon 1(1), 2023

Brute Force Recursive
V Inverse Coevolve CHV Inverse Coevolve CHV CHV Tick

simple simple full

Time

1 74.1 µs 4.8 µs 203.1 µ s 76.6 µs 5.0 µs 201.5 µs 197.9 µs 30.7 µs

10 10.0 ms 205.2 µs 5.1 ms 3.8 ms 73.5 µs 471.6 µs 607.3 µs 175.0 µs

20 89.6 ms 1.5 ms 48.9 ms 16.2 ms 265.8 µs 964.1 µs 902.3 µs 1.2 ms

30 274.2 ms 3.3 ms 129.5 ms 45.7 ms 502.9 µs 1.6 ms 1.3 ms 3.7 ms
n=37

40 1.9 s 8.4 ms 320.8 ms 1.2 s 913.5 µs 2.5 ms 1.6 ms 9.3 ms
n=7 n=31 n=9

50 3.6 s 16.8 ms 681.0 ms 2.4 s 1.5 ms 3.6 ms 2.0 ms 21.7 ms
n=3 n=15 n=5

60 6.7 s 37.9 ms 1.3 s 4.1 s 2.2 ms 5.1 ms 2.6 ms 46.9 ms
n=2 n=8 n=3

70 10.6 s 58.5 ms 2.2 s 6.8 s 3.0 ms 6.9 ms 3.0 ms 89.5 ms
n=1 n=5 n=2

80 15.5 s 138.8 ms 3.3 s 10.6 s 4.0 ms 9.1 ms 3.2 ms 147.1 ms
n=1 n=4 n=1

90 27.86 s 139.7 ms 5.6 s 16.0 s 5.3 ms 11.8 ms 3.9 ms 233.4 ms
n=1 n=2 n=1

Table 2. : Median execution time for the compound Hawkes process, V is the number of nodes and n is the total number of successful
executions under ten seconds. Brute force refers to the implementation of the intensity rate looping through the whole history of past events.
Recursive refers to a recursive implementation that only requires looking at the previous state of each node. Inverse and Coevolve are
algorithms from JumpProcesses.jl, CHV is an algorithm from PiecewiseDeterministicMarkovProcesses.jl. See Subsection 4.1
for the distinction between CHV simple and CHV full. Tick is a Python library. All simulations were run 50 times except when stated
otherwise under the running time. Fastest time is bold, second fastest underlined. Benchmark source code and dependencies are available in
SciMLBenchmarks.jl, see first paragraph of Section 6.2 for source references.

Time Allocation

Inverse - -
Coevolve 4.9 s 94.0 Mb
CHV 2.7 s 43.5 Mb

Table 3. : Median execution time and memory allocation. All simulations
were run 50 times, a dash indicates that no runs were successful. Fastest
time is bold, second fastest underlined. Benchmark source code and de-
pendencies are available in SciMLBenchmarks.jl, see first paragraph of
Section 6.2 for source references.

[8] Daniel T. Gillespie. Approximate accelerated stochas-
tic simulation of chemically reacting systems. The
Journal of Chemical Physics, 115(4), July 2001.
doi:10.1063/1.1378322.

[9] Abhishekh Gupta and Pedro Mendes. An Overview of
Network-Based and -Free Approaches for Stochastic Simu-
lation of Biochemical Systems. Computation, 6(1), March
2018. doi:10.3390/computation6010009.

[10] Júlio Hoffimann, Fredrik Ekre, Martijn Visser, Anshul
Singhvi, Durand D’souza, M. A. Siddique, Morten Piibeleht,
Tony Kelman, and Zlatan Vasović. JuliaEarth/GeoStats.jl:
V0.11.7. Zenodo, June 2020. doi:10.5281/zenodo.3875233.

[11] Petter Holme. Fast and principled simulations of the SIR
model on temporal networks. PLOS ONE, 16(2), February
2021. doi:10.1371/journal.pone.0246961.

[12] Günter Last and Mathew Penrose. Lectures on the Pois-
son Process. Cambridge University Press, 1st edition edi-

tion, October 2017.
[13] Patrick J. Laub, Young Lee, and Thomas Taimre. The Ele-

ments of Hawkes Processes. Springer International Pub-
lishing, 2021. doi:10.1007/978-3-030-84639-8.

[14] Vincent Lemaire, Michèle Thieullen, and Nicolas Thomas.
Exact Simulation of the Jump Times of a Class of Piece-
wise Deterministic Markov Processes. Journal of Scien-
tific Computing, 75(3), June 2018. doi:10.1007/s10915-017-
0607-4.

[15] P. a. W Lewis and G. S. Shedler. Simulation of
nonhomogeneous poisson processes by thinning.
Naval Research Logistics Quarterly, 26(3), 1979.
doi:10.1002/nav.3800260304.

[16] Luca Marchetti, Corrado Priami, and Vo Hong Thanh. Sim-
ulation Algorithms for Computational Systems Biol-
ogy. Texts in Theoretical Computer Science. An EATCS
Series. Springer International Publishing, Cham, 2017.
doi:10.1007/978-3-319-63113-4.

[17] James M. McCollum, Gregory D. Peterson, Chris D. Cox,
Michael L. Simpson, and Nagiza F. Samatova. The sort-
ing direct method for stochastic simulation of biochemical
systems with varying reaction execution behavior. Compu-
tational Biology and Chemistry, 30(1), February 2006.
doi:10.1016/j.compbiolchem.2005.10.007.

[18] James Meiss. Differential Dynamical Systems, Revised
Edition. Mathematical Modeling and Computation. Soci-
ety for Industrial and Applied Mathematics, January 2017.
doi:10.1137/1.9781611974645.

11

http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.3390/computation6010009
http://dx.doi.org/10.5281/zenodo.3875233
http://dx.doi.org/10.1371/journal.pone.0246961
http://dx.doi.org/10.1007/978-3-030-84639-8
http://dx.doi.org/10.1007/s10915-017-0607-4
http://dx.doi.org/10.1007/s10915-017-0607-4
http://dx.doi.org/10.1002/nav.3800260304
http://dx.doi.org/10.1007/978-3-319-63113-4
http://dx.doi.org/10.1016/j.compbiolchem.2005.10.007
http://dx.doi.org/10.1137/1.9781611974645

Proceedings of JuliaCon 1(1), 2023

[19] Y. Ogata. On Lewis’ simulation method for point processes.
IEEE Transactions on Information Theory, 27(1), Jan-
uary 1981. doi:10.1109/TIT.1981.1056305.

[20] Christopher Rackauckas and Qing Nie. DifferentialEqua-
tions.jl – A Performant and Feature-Rich Ecosystem for
Solving Differential Equations in Julia. 5(1), May 2017.
doi:10.5334/jors.151.

[21] Yuri E. Rodrigues, Cezar M. Tigaret, Hélène Marie,
Cian O’Donnell, and Romain Veltz. A stochastic
model of hippocampal synaptic plasticity with geo-
metrical readout of enzyme dynamics, March 2021.
doi:10.1101/2021.03.30.437703.

[22] Howard Salis and Yiannis Kaznessis. Accurate hybrid
stochastic simulation of a system of coupled chemical or
biochemical reactions. The Journal of Chemical Physics,
122(5), February 2005. doi:10.1063/1.1835951.

[23] Moritz Schauer, Frank van der Meulen, and Shota Gugushvili.
Mschauer/PointProcessInference.jl: V0.2.2. Zenodo, March
2020. doi:10.5281/zenodo.3716127.

[24] Alexander Slepoy, Aidan P. Thompson, and Steven J.
Plimpton. A constant-time kinetic Monte Carlo algorithm
for simulation of large biochemical reaction networks.
The Journal of Chemical Physics, 128(20), May 2008.
doi:10.1063/1.2919546.

[25] Vo Hong Thanh, Corrado Priami, and Roberto Zunino. Ef-
ficient rejection-based simulation of biochemical reactions
with stochastic noise and delays. The Journal of Chemical
Physics, 141(13), October 2014. doi:10.1063/1.4896985.

[26] Vo Hong Thanh, Roberto Zunino, and Corrado Priami. Ef-
ficient Constant-Time Complexity Algorithm for Stochastic
Simulation of Large Reaction Networks. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics,
14(3), May 2017. doi:10.1109/TCBB.2016.2530066.

[27] Romain Veltz. A new twist for the simulation of hy-
brid systems using the true jump method, April 2015.
doi:10.48550/arXiv.1504.06873. 1504.06873.

Annex

12

http://dx.doi.org/10.1109/TIT.1981.1056305
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.1101/2021.03.30.437703
http://dx.doi.org/10.1063/1.1835951
http://dx.doi.org/10.5281/zenodo.3716127
http://dx.doi.org/10.1063/1.2919546
http://dx.doi.org/10.1063/1.4896985
http://dx.doi.org/10.1109/TCBB.2016.2530066
http://dx.doi.org/10.48550/arXiv.1504.06873

Proceedings of JuliaCon 1(1), 2023

Jump types
Aggregator Name Description Sample Update MA Con. Var. Source

from

Direct Direct
Rates kept in a non-sorted
array. Sample on ground
process.

ground all x x [6]

DiretFW
Direct with
FunctionWrapper

Same as Direct, but wraps
rate functions with
FunctionWrapper for type
stability and better
performance in system with
many jumps.

ground all x x [6]

SortingDirect Sorting direct
Rates kept in a loosely sorted
array. Sample on ground
process.

ground graph x x [17]

RDirect Rejection-based direct

Sample next time using the
maximum rate of the system,
then randomly selects a
candidate and confirms the
jump only if its rate is above a
random proportion of the
maximum rate.

ground graph x x ours*

DirectCR

Direct with
composition-rejection
search

Rates in group with similar
rates using a priority table.
Group rates are the sum of
rates in group.

ground graph x x [24]

RSSA

Rejection-based
stochastic simulation
algorithm

Processes are assigned lower-
and upper-bounds. Sample on
upper-bounds.

ground graph x x [25]

RSSACR

Rejection-based
stochastic simulation
algorithm with
composition-rejection
search

Rates in group with similar
rates using a priority table.
Groups and processes are
assigned lower- and
upper-bounds. Sample on
group upper-bounds.

ground graph x x [26]

FRM First reaction method Selects the minimum time
from all samples. sub all x x [6]

FRMFW
First reaction method
with FunctionWrapper

Same as FRM, but wraps rate
functions with
FunctionWrapper for type
stability and better
performance in systems with
many jumps.

sub all x x [6]

NRM Next reaction method
Keeps a priority queue of
times. Next event is the
earliest in queue.

sub graph x x [5]

Coevolve Coevolve

Synced with model time.
Keeps a priority queue of
candidate times. Next stop
time is the earliest in the
queue.

sub graph x x x ours

Table 4. : JumpProcesses.jl aggregators. Sample from indicates whether the algorithm samples the ground process (or some composition
of it), or each sub-process separately. Update indicates whether the algorithm updates all rates, or only those affected by the realization of a
process via a dependency graph. Jump types indicates whether aggregators support MassActionJump (MA), ConstantRateJump (Con.), or
VariableRateJump (Var.). In source, ours* indicates that the algorithm was developed by the maintainers of the library prior to this paper.

13

	Introduction
	The temporal point process
	The homogeneous process
	Exact simulation methods
	Inverse methods
	Thinning methods
	Queuing methods for multivariate processes

	Implementation
	Empirical evaluation
	Statistical analysis of Coevolve
	Benchmarks

	Conclusion
	Acknowledgements
	References

