
Extending JumpProcesses.jl for fast point process simulation
with time-varying intensities

Guilherme Augusto Zagatti1, Samuel A. Isaacson3, Christopher Rackauckas4, Vasily Ilin5, See-Kiong
Ng1, 2, and Stéphane Bressan1, 2

1Institute of Data Science, National University of Singapore, Singapore
2School of Computing, National University of Singapore, Singapore

3Department of Mathematics and Statistics, Boston University
4Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology

5Department of Mathematics, University of Washington

ABSTRACT1

Point processes model the occurrence of a countable number of2

random points over some support. They can model diverse phe-3

nomena, such as chemical reactions, stock market transactions and4

social interactions. We show that the JumpProcesses.jl li-5

brary, which was first developed for simulating jump processes6

via stochastic simulation algorithms (SSAs) — including Doob’s7

method, Gillespie’s methods, and Kinetic Monte Carlo methods8

— also provides performant methods [G: for] sampling temporal9

point processes (TPPs). Historically, jump processes have been de-10

veloped in the context of dynamical systems to describe dynam-11

ics with discrete jumps. In contrast, the development of point pro-12

cesses has been more focused on describing the occurrence of ran-13

dom events. In this paper, we bridge the gap between the treat-14

ment of point and jump process simulation. The algorithms previ-15

ously included in JumpProcesses.jl can be mapped to three16

general methods developed in statistics for simulating TPPs. Our17

comparative exercise reveals that the library lacked an efficient al-18

gorithm for simulating processes with variable intensity rates. We19

develop [G:a new simulation algorithm Coevolve. This is] the20

first thinning algorithm to step in sync with model time reduc-21

ing the number of time proposal rejections and allowing for new22

possibilities such as simulating variable-rate jump processes cou-23

pled with differential equations[G:. We implement the new algo-24

rithm in] JumpProcesses.jl[G:, which] can now simulate any25

point process on the real line with a non-negative, left-continuous,26

history-adapted and locally bounded intensity rate efficiently, en-27

abling the library to become one of the few readily available, fast28

and general-purpose options for simulating TPPs.29

1. Introduction30

Methods for simulating the trajectory of temporal point processes31

(TPPs) can be split into exact and inexact methods. Exact methods32

generate statistically exact realizations of each point in the process33

chronologically 1. This exactness provides [G:unbiasedcorrect]34

1Some exact methods might not be completely exact since they rely on root
finding approximation methods. However, we follow convention and denote
all such methods as exact methods.

samples, but can suffer from reduced performance when simulat-35

ing systems where numerous events can fire within a short period36

since every single point needs to be accounted for. Inexact methods37

trade accuracy for speed by simulating the total number of events38

in successive intervals. They are popular in biochemical applica-39

tions, e.g.τ -leap methods [9], which often require the simulation40

of chemical reactions in systems with large molecular populations.41

Previously, the development of point process simulation libraries42

focused primarily on univariate processes with exotic intensities,43

or large systems with conditionally constant intensities, but not on44

both. As such, there was no widely used general-purpose software45

for efficiently simulating [G:multivariate TPPs in large systems46

with time-dependent rates. To enable the efficient simulation of47

such systems, we contribute a new simulation algorithm for mul-48

tivariate TPPs. Our new method is a type of thinning algorithm that49

thins in sync with time. This allows the coupling of large multivari-50

ate TPPs with other algorithms that step chronologically through51

time such as differential equation solvers. Our new algorithm im-52

proves the COEVOLVE algorithm from [5]. COEVOLVE itself can53

be seen as an improvement from the next reaction method of [6].54

We can trace the idea of synced thinning back to Section 7.5 [3]55

where it is discussed, but no algorithmic implementation of such56

idea existed until now. COEVOLVE [5] did not entertain jump pro-57

cesses that belong to systems of differential equations.]58

[G:Our new algorithm is implemented as the Coevolve aggre-59

gator in JumpProcesses.jl, a core sub-library of the popu-60

lar DifferentialEquations.jl library [22]. It is named af-61

ter COEVOLVE [5] as our new algorithm supersedes the original62

one. The new aggregator] dramatically boosts the computational63

performance of the library in simulating processes with intensi-64

ties that have an explicit dependence on time and/or other contin-65

uous variables, significantly expanding the type of models that can66

be efficiently simulated by it. Widely-used point processes with67

such intensities include compound inhomogeneous Poisson pro-68

cess, Hawkes processes, stress-release processes and piecewise de-69

terministic Markov processes (PDMPs).70

Since JumpProcesses.jl is a member of Julia’s SciML orga-71

nization, it also becomes easier, and more feasible, to incorporate72

compound point processes with explicit time-dependent rates into73

1

Proceedings of JuliaCon 1(1), 2023

a wide variety of applications and higher-level analyses. Our new74

additions are available as of JumpProcesses.jl 9.72.75

This paper starts by bridging the gap between simulation methods76

developed in statistics and biochemistry, which led us to the de-77

velopment of Coevolve. We briefly introduce TPPs and simula-78

tion methods for the homogeneous Poisson process, which serve as79

building blocks for all other simulation methods. Then, we identify80

and discuss three types of exact simulation methods. In the sec-81

ond part of this paper, we describe the algorithms implemented in82

JumpProcesses.jl and how they relate to the literature. We83

highlight our contribution Coevolve, investigate the correctness84

of our implementation and provide performance benchmarks to85

demonstrate its value. The paper concludes by discussing potential86

improvements.87

2. The temporal point process88

The TPP is a stochastic collection of marked points over a one-89

dimensional support. They are exhaustively described in [3]. The90

likelihood of any TPP is fully characterized by its conditional in-91

tensity,92

λ∗(t) ≡ λ(t | Ht−) =
p∗(t)

1−
∫ t

tn
p∗(u) du

, (2.1)

and conditional mark distribution, f ∗(k|t) — see Chapter 7 [3].93

[G: A mark is any random attribute associated with a point]. Here94

Ht− = {(tn, kn) | 0 ≤ tn < t} denotes the history of the pro-95

cess up to but not including t. [G: In other words, the history is a96

sequence of tuples with the timestamp and mark of each event.] The97

superscript ∗ denotes the conditioning of any function on Ht− , and98

p∗(t) is the density function corresponding to the probability of an99

event taking place at time t given Ht− . We can interpret the con-100

ditional intensity as the likelihood of observing a point in the next101

infinitesimal unit of time, given that no point has occurred since the102

last observed point in Ht− . Lastly, the mark distribution denotes103

the density function corresponding to the probability of observing104

mark k given the occurrence of an event at time t and history Ht− .105

3. The homogeneous process106

A homogeneous process can be simulated using properties of the107

Poisson process, which allow us to describe two equivalent sam-108

pling procedures. The first procedure consists of drawing succes-109

sive inter-arrival times. The distance between any two points in110

a homogeneous process is distributed according to the exponen-111

tial distribution — see Theorem 7.2 [14]. Given the homogeneous112

process with intensity λ, then the distance ∆t between two points113

is distributed according to ∆t ∼ exp(λ). Draws from the ex-114

ponential distribution can be performed by drawing from a uni-115

form distribution in the interval [0, 1]. If V ∼ U [0, 1], then116

T = − ln(V)/λ ∼ exp(1). (Note, however, in Julia the opti-117

mized Ziggurat-based method used in the randexp stdlib func-118

tion is generally faster than this inverse method for sampling a119

unit exponential random variable.) When a point process is homo-120

geneous, the inverse method of Subsection 4.1 reduces to this ap-121

proach. Thus, we defer the presentation of this Algorithm to the122

next section.123

The second procedure uses the fact that Poisson processes can be124

represented as a mixed binomial process with a Poisson mixing dis-125

tribution — see Proposition 3.5 [14]. In particular, the total number126

2All examples and benchmarks in this paper use version 9.9 of the library

of points of a Poisson homogeneous process in [0, T) is distributed127

according to N (T) ∼ Poisson(λT) and the location of each128

point within the region is independently distributed according to129

the uniform distribution [G:tn ∼ U [0, T]U [0, T]].130

4. Exact simulation methods131

4.1 Inverse methods132

The inverse method leverages Theorem 7.4.I [3] which states that133

every simple point process3 can be transformed to a homogeneous134

Poisson process with unit rate via the compensator. Let tn be the135

time in which the n-th chronologically sorted event took place and136

t0 ≡ 0, we define the compensator as:137

Λ∗(tn) ≡ t̃n ≡
∫ tn

0

λ∗(u)du (4.1)

The transformed data t̃n forms a homogeneous Poisson process138

with unit rate. Now, if this is the case, then the transformed interval139

is distributed according to the exponential distribution. [G:140

∆t̃n ≡ t̃n − t̃n−1 =

∫ tn

tn−1

λ∗(u)du ∼ exp(1) (4.2)

] The idea is to draw realizations from the unit rate Exponential pro-141

cess and solve Equation 4.2 for tn to determine the next event/firing142

time. We illustrate this in Algorithm 1 where we adapt Algorithm143

7.4 [3].144

Whenever the conditional intensity is constant between two145

points, Equation 4.2 can be solved analytically. Let λ∗ (t) =146

λn−1,∀tn−1 ≤ t < tn, then147 ∫ tn

tn−1

λ∗ (u) du = ∆t̃n ⇐⇒

λn−1(tn − tn−1) = ∆t̃n ⇐⇒

tn = tn−1 +
∆t̃n
λn−1

.

(4.3)

Which is equivalent to drawing the next realization time from the148

re-scaled exponential distribution ∆tn ∼ exp(λn−1). As we will149

see in Subsection 2, this implies that the inverse and thinning150

methods are the same whenever the conditional intensity is con-151

stant between jumps.152

The main drawback of the inverse method is that the root finding153

problem defined in Equation 4.2 often requires a numerical solu-154

tion. To get around a similar obstacle in the context of PDMPs,155

Veltz [30] proposes a change of variables in time that recasts the156

root finding problem into an initial value problem. He denotes his157

method CHV.158

PDMPs are composed of two parts: the jump process and the159

piecewise ODE that changes stochastically at jump times — see160

Lemaire et al. [16] for a formal definition.161

[G: It is easy to employ CHV in our case by setting the ODE162

part to zero throughout time. By re-arranging Equation 4.1 and163

Equation 4.2, we note that it is a one-to-one mapping between t164

and t̃ which allow us to obtain t(∆t̃n) = Λ∗−1(t̃n−1 + ∆t̃n)165

which describes the law of motion for a PDMP. Adapting from166

3A simple point process is a process in which the probability of observing
more than one point in the same location is zero.

2

Proceedings of JuliaCon 1(1), 2023

Veltz [30], we can determine the model jump time tn after sam-167

pling ∆t̃n ∼ exp(1) by solving the following initial value prob-168

lem until ∆t̃n, which we denote CHV simple.169

t(0) = tn−1 ,
dt

dt̃
(∆t̃) =

1

λ∗(t)
(4.4)

]170

Alternatively, when the intensity function is differentiable between171

jumps we can go even further[G: by recasting the jump problem172

as a PDMP]. Let λ∗n ≡ λ∗(tn), then the flow ϕt−tn(λ
∗
n) maps173

the initial value of the conditional intensity at time tn to its value174

at time t. In other words, the flow describes the deterministic evo-175

lution of the conditional intensity function over time. Next, denote176

1(·) as the indicator function, then the conditional intensity func-177

tion can be re-written as a jump process:178

λ∗(t) =
∑
n≥1

ϕt−tn−1(λn−1)1(tn−1 ≤ t < tn). (4.5)

According to Meiss [20], if ϕt(·) is a flow, then it is a solution to179

the initial value problem:180

ϕ0(λ
∗
n) = λ∗n ,

d

dt
ϕt−tn(λ

∗
n) = g(ϕt−tn(λ

∗
n)) (4.6)

where g : R+ → R is the vector field of λ∗ such that dλ∗/dt =181

g(λ∗).182

Based on Equation 2.1, we find that the probability of observing an183

interval longer than s given history Ht− is equivalent to:184

Pr(tn − tn−1 > s | Ht−) = 1−
∫ tn−1+s

tn−1

p∗(u)du =

= exp

(
−
∫ tn−1+s

tn−1

λ∗(u)du

)
=

= exp

(
−
∫ tn−1+s

tn−1

ϕu−tn−1(λ
∗
n−1)du

)
(4.7)

Equations 4.5 and 4.7 define a PDMP satisfying the conditions of185

Theorem 3.1 [30]. In this case, we find tn by solving the following186

initial value problem from 0 to ∆t̃n ∼ exp(1). [G:187 
ϕ0(λ

∗
n−1) = λ∗(tn−1) ,

d

dt̃
ϕ∆t (λ

∗
n−1) =

g(λ∗(t))

λ∗(t)

t(0) = tn−1 ,
dt

dt̃
(∆t̃) =

1

λ∗(t)
.

(4.8)
] This problem specifies how the conditional intensity and model188

time evolve with respect to the transformed time. The solution to189

Equation 4.2 is then given by (tn = t(∆t̃n), λ
∗(t(∆t̃n)) =190

λ∗(tn)). [G: We denote this problem CHV full.]191

In Algorithm 1, we can implement the CHV method by solving ei-192

ther Equation 4.4 or Equation 4.8 instead of Equation 4.2. Note that193

CHV full requires that the conditional intensity be piecewise dif-194

ferentiable. The algorithmic complexity is then determined by the195

ODE solver and no root-finding is required. In Section 6.2, we will196

show that there are substantial differences in performance between197

them with the full specification being faster.198

Another concern with Algorithm 1 is updating and drawing from199

the conditional mark distribution in Line 8[G:, and updating the200

conditional intensity in Line 9]. Assume a process with K num-201

ber of marks.[G: A naive implementation of Line 9 scales with the202

number of marks as O(K) since λ∗ is usually constructed as the203

sum of K independent processes, each of which requires updating204

the conditional intensity rate. Likewise, Naively] drawing from the205

mark distribution in Line 8 usually involves drawing from a cat-206

egorical distribution whose implementations also scales with the207

number of marks as O(K).208

Finally, Algorithm 1 is not guaranteed to terminate in finite time209

since one might need to sample many points before tn > T . The210

sampling rate can be especially high when simulating the process211

in a large population with self-exciting encounters. In biochemistry,212

Salis and Kaznessis [24] partition a large system of chemical reac-213

tions into two: fast and slow reactions. While they approximate the214

fast reactions with a Gaussian process, the slow reactions are solved215

using a variation of the inverse method. They obtain an equivalent216

expression for the rate of slow reactions as in Equation 4.2, which217

is integrated with the Euler method.218

Algorithm 1 The inverse method for simulating a marked TPP over
a fixed duration of time [0, T).

1: procedure INVERSEMETHOD([0, T), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while t < T do
5: n← n+ 1
6: draw ∆t̃n ∼ exp(1)
7: find the next event time tn by solving Equation 4.2 or 4.8
8: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
9: update the history HT− ← HT− ∪ (tn, kn) and λ∗

10: end while
11: return HT−

12: end procedure

4.2 Thinning methods219

Thinning methods are popular approaches for simulating point220

processes. The main idea is to successively sample a homogeneous221

process, then thin the obtained points with the conditional intensity222

of the original process. As stated in Proposition 7.5.I [3], this pro-223

cedure simulates the target process by construction. The advantage224

of thinning over inverse methods is that the former only requires225

the evaluation of the conditional intensity function while the latter226

requires computing the inverse of its integrated form [3].227

Thinning algorithms have been proposed in different forms [3].228

Shedler-Lewis [17] first suggested a thinning routine that simulated229

processes with bounded intensity over a fixed interval. Ogata’s re-230

finement [21] suggests a procedure for evolving the simulation via231

local boundary conditions and fixed partitions of the real line. As232

long as the intensity conditioned on the simulated history remains233

locally bounded, it is possible to simulate subsequent points indef-234

initely.235

In biochemistry, the thinning method was popularized by Gille-236

spie [7, 8]. For this reason, this method is also called the Gille-237

spie method. Gillespie himself called it the direct method or the238

stochastic simulation algorithm. Gillespie introduced thinning239

in the context of simulating chemical reactions of well-stirred sys-240

tems. He developed a stochastic model for molecule interactions241

from physics principles without any references to the point process242

theory developed in this section. His model of chemical interactions243

is equivalent to a marked Poisson process with constant conditional244

3

Proceedings of JuliaCon 1(1), 2023

intensity between jumps. The model consists of distinct populations245

of molecular species that interact through several reaction channels.246

A chemical reaction consists of a Poisson process that transforms247

a set of molecules of some type into a set of molecules of another248

type. What Gillespie calls the master equation can be deduced from249

the superposition theorem — Theorem 3.3 [14].250

In biochemistry, thinning methods are known as rejection algo-251

rithms. Than et al. [28, 29] proposed the rejection-based algo-252

rithm with composition-rejection search, yet another more so-253

phisticated variation of the thinning method. In this case, the pro-254

cedure groups similar processes together. For each group, an upper-255

and lower-bound conditional intensity is used for thinning. A sim-256

ilar procedure is also described in [27], in which the authors refer257

to their algorithm as kinetic Monte Carlo.258

Algorithm 2 presents a thinning algorithm, which is a modified259

version of Algorithm 7.5.IV [3]. To implement the algorithm, we260

define three functions, B̄∗(t) = B̄(t | Ht),B
∗(t) =B(t | Ht)261

and L∗(t) = L(t | Ht), that characterize the local boundedness262

condition such that:263

λ∗ (t+ u) ≤ B̄∗(t+ u) and λ∗ (t+ u) ≥B∗(t+ u),

∀ 0 ≤ u ≤ L∗(t).
(4.9)

The tighter the bound B̄∗(·) on λ∗(·), the lower the number of264

discarded samples. Since looser bounds lead to less efficient algo-265

rithms, the art, when simulating via thinning, is to find the optimal266

balance between the local supremum of the conditional intensity267

B̄∗(·) and the duration of the local interval L∗(t). On the other268

hand, the infimum B∗(·) can be used to avoid the evaluation of269

λ∗ (·) in Line 13 of Algorithm 3 which often can be expensive.270

In Line 6 of Algorithm 2, since the candidate interval u is itself the271

random inter-event interval from a TPP with conditional intensity272

B̄∗(·), we are back to simulating a TPP via the inverse method.273

Therefore, the wrong choice of B̄∗(·) could in fact deteriorate the274

performance of the simulation. In many applications, the bound275

B̄∗(·) is constant over [0, L∗(t)] which simplifies the simulation276

since then u ∼ exp(B̄∗(t)). Alternatively, Bierkens et al. [2] uses277

a Taylor approximation of λ∗(t) to obtain an upper-bound which278

is a linear function of t 4.279

When the conditional intensity is constant between jumps such that280

λ∗ (t) = λn−1,∀tn−1 ≤ t < tn, let B̄∗(t) = B∗(t) = λn−1281

and L∗(t) = ∞. We have that for any u ∼ exp(1 / B̄∗(t)) =282

exp(λn−1) and v ∼ U [0, 1], u < L∗(t) = ∞ and v <283

λ∗ (t + u) / B̄∗(t) = 1. Therefore, we advance the history284

for every iteration of Algorithm 2. In this case, the bound B̄∗(t)285

is as tight as possible, and this method becomes equivalent to the286

inverse method of Subsection 4.1.287

We can draw more connections between thinning and inversion.288

Lemaire et al. [16] propose a version of the thinning algorithm289

for PDMPs which does not use a local interval for rejection —290

equivalent to L∗(t) = ∞. They propose an optimal upper-bound291

B̄∗(t) as a piecewise constant function partitioned in such a way292

that it envelopes the intensity function as strictly as possible. The293

efficiency of their algorithm depends on the assumption that the294

stochastic process determined by B̄∗(t) can be efficiently inverted.295

They show that under certain conditions the stochastic process de-296

termined by B̄∗(t) converges in distribution to the target condi-297

4Their implementation of the Zig-Zag process, a type of PMDP for Markov
Chain Monte Carlo, is available as a Julia package at https://github.c
om/mschauer/ZigZagBoomerang.jl.

tional intensity as the partitions of the optimal boundary converge298

to zero. These results suggest that the efficiency of thinning com-299

pared to inversion most likely depends on the rejection rate ob-300

tained by the former and the number of steps required by the ODE301

solver for the latter.302

While thinning algorithms avoid the issue of directly computing303

the inverse of the integrated conditional intensity, they increase the304

number of time steps needed in the sampling algorithm as we are305

now sampling from a process with an increased intensity relative306

to the original process. Moreover, like the inverse method, thin-307

ning algorithms can also face issues related with drawing from the308

conditional mark distribution — Line 11 of Algorithm 2 —, and309

updating the conditional intensity — Line 3 of Algorithm 3 — and310

the mark distribution — Line 12 of Algorithm 2.311

Algorithm 2 The thinning method for simulating a marked TPP
over a fixed duration of time [0, T).

1: procedure THINNINGMETHOD([0, T), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while true do
5: t← TIMEVIATHINNING([t, T),HT− , λ

∗)
6: if t ≥ T then
7: break
8: end if
9: n← n+ 1

10: tn ← t
11: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
12: update the history HT− ← HT− ∪ (tn, kn)
13: end while
14: return HT−

15: end procedure

Algorithm 3 Generates the next event time via thinning.
1: procedure TIMEVIATHINNING([t, T), λ∗, Ht,)
2: while t < T do
3: update λ∗ [G: with new Ht]
4: find B̄∗(t),B∗(t) and L∗(t) which satisfy Eq. 4.9
5: draw candidate interval u such that
6: P (u > s) = exp(−

∫ s

0
B̄∗(t+ s)ds)

7: draw acceptance threshold v ∼ U [0, 1]
8: if u > L∗(t) then
9: t← t+ L∗(t)

10: next
11: end if
12: if [G: (v ≤B∗(t+ u)/B̄∗(t+ u))]
13: or (v ≤ λ∗ (t+ u)/B̄∗(t+ u)) then
14: t← t+ u
15: [G:return tbreak]
16: end if
17: t← t+ u
18: end while
19: return t
20: end procedure

4

https://github.com/mschauer/ZigZagBoomerang.jl
https://github.com/mschauer/ZigZagBoomerang.jl

Proceedings of JuliaCon 1(1), 2023

4.3 Queuing methods for multivariate processes312

As an alternative to his direct method — in this text referred as the313

constant rate thinning method —, Gillespie introduced the first314

reaction method in his seminal work on simulation algorithms [7].315

The first reaction method separately simulates the next reaction316

time for each reaction channel — i.e. for each mark. It then selects317

the smallest time as the time of the next event, followed by updat-318

ing the conditional intensity of all channels accordingly. This is a319

variation of the constant rate thinning method to simulate a set of320

inter-dependent point processes, making use of the superposition321

theorem — Theorem 3.3 [14] — in the inverse direction.322

Gibson and Bruck [6] improved the first reaction method with the323

next reaction method. They innovate on three fronts. First, they324

keep a priority queue to quickly retrieve the next event. Second,325

they keep a dependency graph to quickly locate all conditional in-326

tensity rates that need to be updated after an event is fired. Third,327

they re-use previously sampled reaction times to update unused re-328

action times. This minimizes random number generation, which329

can be costly. Priority queues and dependency graphs have also330

been used in the context of social media [5] and epidemics [13]331

simulation. In both cases, the phenomena are modelled as point332

processes.333

We prefer to call this class of methods queued thinning methods334

since most efficiency gains come from maintaining a priority queue335

of the next event times. Up to this point we assumed that we were336

sampling from a global process with a mark distribution that could337

generate any mark k given an event at time t. With queuing, it is338

possible to simulate point processes with a finite space of marks339

as M interdependent point processes — see Definition 6.4.1 [3] of340

multivariate point processes — doing away with the need to draw341

from the mark distribution at every event occurrence. Alternatively,342

it is possible to split the global process into M interdependent pro-343

cesses each of which has its own mark distribution.344

Algorithm 5 presents our [G: new] method for sampling a super-345

posed point process consisting of M processes by keeping the346

strike time of each process in a priority queue Q. [G: Thus, it is347

an example of queued thinning.] The priority queue is initially348

constructed in O(M) steps in Lines 4 to 7 of Algorithm 5. In con-349

trast to thinning methods, updates to the conditional intensity de-350

pend only on the size of the neighborhood of i. That is, processes j351

whose conditional intensity depends on the history of i. If the graph352

is sparse, then updates will be faster than with thinning.353

A source of inefficiency in some implementations of queued thin-354

ning algorithms such as [5] is the fact that one goes through mul-355

tiple rejection cycles at time t before accepting a time candidate356

t < ti for process i. This requires looking ahead in the future. In357

addition to that, if process j, which i depends on, takes place be-358

fore ti, then we need to repeat the whole thinning process to obtain359

a new time candidate for i.360

In Algorithm 5, we take a different approach which performs thin-361

ning in synchrony with the main loop, avoiding look ahead and362

wasted rejections. Our main contribution is to modify the main loop363

of previous thinning algorithms to allow at most one event proposal364

for each sub-process for each time step. The proposed candidates365

are always added to the priority queue Q because we need to stop at366

each proposed time. When the candidate is pre-rejected, we update367

the bounds and make a new proposal. Alternatively, if the candidate368

time has not been pre-rejected, we draw the acceptance threshold369

and compute the intensity rate to make a decision. If the candi-370

date is accepted, we trigger a new round of thinning. Otherwise,371

we update the bounds and make a new proposal. Overall, we avoid372

unnecessary updates. Additionally, thinning is now synced with the373

main loop, which allows the coupling of this simulator with other374

algorithms that step chronologically through time. These include375

ordinary differential equation solvers, enabling us to simulate jump376

processes with rates given by a differential equation. This is the first377

queued thinning synced algorithm we are aware of.378

Since Algorithm 5 can be mapped to a non-queued thinning al-379

gorithm — see [5] —, it can simulate any point process on the real380

line with a non-negative, left-continuous, history-adapted and lo-381

cally bounded intensity rate as per Proposition 7.5.I [3].382

Algorithm 4 Generates the next candidate time for queued thin-
ning.

1: procedure QUEUETIME(t, λ∗, Ht,)
2: update λ∗

3: find B̄∗,B∗ and L∗(t) which satisfy Eq. 4.9
4: draw u ∼ exp(B̄∗(t))
5: if u > L∗(t) then
6: accepted← false
7: u← L∗(t)
8: else
9: accepted← true

10: end if
11: t← t+ u
12: return t, B̄∗,B∗, accepted
13: end procedure

5. Implementation383

JumpProcesses.jl is a Julia library for simulating jump384

— or point — processes which is part of Julia’s SciML or-385

ganization. In the Julia ecosystem, there are other libraries386

that can sample certain TPPs including Hawkes.jl 5,387

HawkesProcesses.jl 6, NetworkHawkesProcesses.jl388

7, PointProcessInference.jl [26] 8, GeoStats.jl389

[12] 9, PiecewiseDeterministicMarkovProcesses.390

jl [30] 10, and PointProcesses.jl [4] 11. Apart from391

PiecewiseDeterministicMarkovProcesses.jl, these392

other libraries can only sample the Poisson and/or the Hawkes pro-393

cesses. PointProcesses.jl also offers a formalized interface394

that other packages can implement to leverage its TPP modelling395

functionality. While JumpProcesses.jl can be used to directly396

simulate TPPs, in its documentation we also show how it can be397

wrapped to conform to this interface 12.[G: Outside of Julia, there398

are many packages to simulate TPPs. A non-exaustive list include399

the Python libraries Tick [1], PoPPy [31], hawkesbook [15],400

and the R library PtProcess [11].]401

Our discussion in Section 4 identified three exact methods for402

simulating point processes. In all the cases, we identified two403

mathematical constructs required for simulation: the intensity404

5https://github.com/em1234321/Hawkes.jl
6https://github.com/dm13450/HawkesProcesses.jl
7https://github.com/cswaney/NetworkHawkesProcesses.jl
8https://github.com/mschauer/PointProcessInference.jl
9https://github.com/JuliaEarth/GeoStats.jl
10https://github.com/rveltz/PiecewiseDeterministicMarkov

Processes.jl
11https://github.com/gdalle/PointProcesses.jl
12https://docs.sciml.ai/JumpProcesses/stable/application

s/advanced_point_process

5

https://github.com/em1234321/Hawkes.jl
https://github.com/dm13450/HawkesProcesses.jl
https://github.com/cswaney/NetworkHawkesProcesses.jl
https://github.com/mschauer/PointProcessInference.jl
https://github.com/JuliaEarth/GeoStats.jl
https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
https://github.com/gdalle/PointProcesses.jl
https://docs.sciml.ai/JumpProcesses/stable/applications/advanced_point_process
https://docs.sciml.ai/JumpProcesses/stable/applications/advanced_point_process

Proceedings of JuliaCon 1(1), 2023

Algorithm 5 The queued thinning method for simulating a marked
TPP over a fixed duration of time [0, T).

1: procedure QUEUINGMETHOD([0, T), {λ∗k}, {f ∗k},)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: for i=1,M do
5: (ti, B̄

∗
i ,B

∗
i , ai)← QUEUETIME(0,HT− , λ

∗
i(·))

6: push (i, ti, B̄
∗
i ,B

∗
i , ai) to Q

7: end for
8: while t < T do
9: first (i, ti, B̄∗i ,B

∗
i , ai) from Q

10: t← ti
11: if t ≥ T then
12: break
13: end if
14: draw [G: v ∼ U [0, 1]]
15: if ai and [G: (v >B∗i/B̄

∗
i) and (v > λ∗ (t)/B̄∗i)] then

16: ai ← false
17: end if
18: if ai then
19: n← n+ 1
20: tn ← t
21: update f ∗ and draw the mark kn ∼ f ∗i (k | tn)
22: update the history HT− ← HT− ∪ (tn, kn)
23: for j ∈ {i} ∪Neighborhood(i) do
24: (tj , B̄

∗
j ,B

∗
j , aj)← QueueTime(t, λ∗j ,HT−)

25: update (j, tj , B̄
∗
j ,B

∗
j , aj) in Q

26: end for
27: else
28: (ti, B̄

∗
i ,B

∗
i , ai)← QueueTime(t, λ∗i ,HT−)

29: update (i, ti, B̄
∗
i ,B

∗
i , ai) in Q

30: end if
31: end while
32: return HT−

33: end procedure

rate and the mark distribution. In JumpProcesses.jl, these405

can be mapped to user defined functions rate(u, p, t) and406

affect!(integrator). The former takes the current state of407

the system, u, user provided parameters, p, and the current time, t,408

and returns the value of the intensity function at this time. The lat-409

ter takes the solver integrator object, which stores all solution410

information, and updates it, including the state integrator.u,411

for whatever changes should occur when the jump it encodes fires412

at the time integrator.t. The library provides APIs for defin-413

ing processes based on the nature of the intensity rate and the414

intended simulation algorithm. Processes simulated using exact415

sampling methods can choose between ConstantRateJump and416

VariableRateJump. While the former expects the rate between417

jumps to be constant, the latter allows for time-dependent rates.418

The library also provides the MassActionJump API to define419

large systems of point processes that can be expressed as mass ac-420

tion type reaction equations. Finally, RegularJump is intended421

for [G:tauτ]-leaping methods.422

5.1 Inverse implementation423

The inverse method as described around Equation 4.2 uses424

root finding to calculate the next jump time. Jumps to be425

simulated via the inverse method must be initialized as a426

VariableRateJump. JumpProcesses.jl builds a continu-427

ous callback following the algorithm in [24] and passes the prob-428

lem to an OrdinaryDiffEq.jl integrator, which easily inter-429

operates with JumpProcesses.jl (both libraries are part of430

the SciML organization, and by design built to easily compose).431

JumpProcesses.jl does not yet support [G:the any of the]432

CHV approaches.433

5.2 Thinning implementation434

Alternatively, thinning methods can be simulated via dis-435

crete steps. [G: In JumpProcesses.jl, simulation ap-436

proaches that take discrete steps are handled via discrete437

callbacks that are checked at the end of each time-step438

of some time evolution algorithm, e.g.an ODE solver from439

OrdinaryDiffEq.jl, a stochastic differential equation solver440

from StochasticDiffEq.jl, or the pure-jump process441

SSAStepper provided by JumpProcesses.jl. In simple442

terms, discrete callbacks involve two functions. Condition func-443

tions are checked at each step of the main loop of a time-stepping444

method to see if the callback should be executed, and if it should,445

an associated affect function is called.] In the context of the library,446

any method that uses thinning via a discrete callback is called an447

aggregator. There are twelve different aggregators which we dis-448

cuss below and are summarized in Table 4 in the Annex. [G: At the449

moment, it is not necessarily the case that one method supersedes450

the other. There are cases in which a particular method might be451

faster than others.]452

We start with constant rate thinning aggregators for marked TPPs.453

Algorithm 2 assumes that there is a single process. In reality, all454

the implementations first assume a finite multivariate point process455

with M interdependent sub-processes. This can be easily concil-456

iated, as we do now, using Definition 6.4.1 [3] which states the457

equivalence of such process with a point process with a finite space458

of marks.459

As all the constant rate thinning aggregators only support460

ConstantRateJumps and MassActionJumps, i.e.the inten-461

sity between jumps is constant, Algorithm 3 short-circuits to462

quickly return t ∼ exp(B̄) = exp(λn) as discussed in Subsec-463

tion 4.2. Next, the mark distribution becomes the categorical dis-464

tribution weighted by the intensity of each process. That is, given465

an event at time tn, we have that the probability of drawing pro-466

cess i out of M sub-processes is λ∗i (tn)/λ
∗(tn). Conditional on467

sub-process i, the corresponding affect!(integrator) is in-468

voked, that is, kn ∼ f ∗i (k | tn). So all sub-processes could poten-469

tially be marked, but note users need to handle any additional sam-470

pling related to such marks within their provided affect! func-471

tion. Where most implementations differ is on updating the mark472

distribution in Line 11 of Algorithm 2 and the conditional intensity473

rate in Line 3 of Algorithm 3.474

Direct [G:and DirectFW] follow the direct method in [7]475

which re-evaluates all intensities after every iteration scaling at476

O(K). It draws the next-time from the ground process whose rate477

is the sum of all sub-processes’ rates. It selects the mark by execut-478

ing a search in an array that stores the cumulative sum of rates.479

SortingDirect, RDirect, DirectCR are improvements over480

the Direct method. They only re-evaluate the intensities of the481

processes that are affected by the realized process based on a de-482

pendency graph. SortingDirect draws from the ground pro-483

cess, but keeps the intensity rate in a loosely sorted array follow-484

ing [19]. RDirect is a rejection-based direct method which as-485

signs the maximum rate of the system as the bound to all processes.486

The implementation slight differs from Algorithm 2. Since all sub-487

process have the same rate it draws the next time from a homoge-488

neous Poisson process with the maximum rate, then randomly se-489

6

Proceedings of JuliaCon 1(1), 2023

lects a candidate process and confirms the candidate only if its rate490

is above a random proportion of the maximum rate. DirectCR —491

from [27] — is a composition-rejection method that groups sub-492

processes with similar rates using a priority table. Each group is as-493

signed the sum of all the rates within it. We apply a routine equiv-494

alent to Direct to select the time in which the next group fires.495

Given a group, we then select which process fires.496

RSSA and RSSACR place processes in bounded brackets. RSSA —497

from [28] — follows Algorithm 2 very closely in the case where498

the bounds are constant between jumps. RSSACR — from [29] —499

groups sub-processes with similar rates like DirectCR, but then500

places each group within a bounded bracket. It then samples the501

next group to fire similar to RSSA. Given the group, it selects a502

candidate to fire and performs a thinning routine to accept or reject.503

5.3 Queued thinning implemeentation504

Finally, we have what we call the queued thinning ag-505

gregators. Starting with aggregators that only support506

ConstantRateJumps we have, FRM[G: , FRMFW] and NRM.507

FRM[G: and FRMFW] follow the first reaction method in [7]. To508

compute the next jump, both algorithms compute the time to the509

next event for each process and select the process with minimum510

time. This is equivalent to assuming a complete dependency graph511

in Algorithm 5. For large systems, these methods are inefficient512

compared to NRM which is a [G:queued thinningqueued513

thinning] method sourced from [6]. NRM gains efficiency by using514

an indexed priority queue to store and determine next event times,515

and by using dependency graphs to only update intensities that516

would need to be recalculated after a given event.517

Most of the algorithms implemented in JumpProcesses.jl518

come from the biochemistry literature. There has been less em-519

phasis on implementing processes commonly studied in statis-520

tics such as self-exciting point processes characterized by time-521

varying and history-dependent intensity rates. Our latest ag-522

gregator, Coevolve, which is an implementation of Algo-523

rithm 5, addresses this gap. This is the first aggregator that sup-524

ports VariableRateJumps. Compared with the current inverse525

method-based approach that relies on ODE integration, the new526

aggregator substantially improves the performance of simulations527

with time-dependent intensity rates and/or coupled with differential528

equations from DifferentialEquations.jl.529

Coevolve also employs several enhancements compared to Al-530

gorithm 5. First, we avoid the re-computation of unused random531

numbers. When updating processes that have not yet fired, we532

can transform the unused time of constant rate processes to ob-533

tain the next candidate time for the first round of iteration of the534

thinning procedure in Algorithm 3. This saves one round of sam-535

pling from the exponential distribution, which translates into a536

faster algorithm. Second, it adapts to processes with constant inten-537

sity between jumps which reduces the loop in Algorithm 3 to the538

equivalent implemented in NRM for ConstantRateJumps and539

MassActionJumps.540

6. Empirical evaluation541

This section conducts some empirical evaluation of the542

JumpProcesses.jl aggregators described in Section 5.543

First, since Coevolve is a new aggregator, we test its correctness544

by conducting statistical analysis. Second, we conduct the jump545

benchmarks available in SciMLBenchmarks.jl. We have546

added new benchmarks that assess the performance of the new547

aggregators under settings that could not be simulated with548

previous aggregators.549

6.1 Statistical analysis of Coevolve550

To simulate a process intended for a discrete solver with Jump-551

Processes.jl, we define a discrete problem, initialize the552

jumps and define the jump problem which takes the aggregator as553

an argument. The jump problem can then be solved with the dis-554

crete stepper provided by JumpProcesses.jl, SSAStepper.555

On the one hand, we can think of the stepper as the routine that556

determines how the numerical solver advances time. On the other557

hand, the aggregator is the algorithm for sampling the path of a558

jump process. The aggregator provides stopping times to the step-559

per.560

The code for simulating the homogeneous Poisson process with561

Direct is reproduced in Listing 1.562

Listing 1: Simulation of the homogeneous Poisson process.� �
563

using JumpProcesses564

rate (u, p, t) = p[1]565

affect !(integrator) = (integrator .u[1] += 1;566

nothing)567

jump = ConstantRateJump (rate , affect !)568

u, tspan , p = [0.], (0., 200 .), (0 .2 5,)569

dprob = DiscreteProblem (u, tspan , p)570

jprob = JumpProblem (dprob , Direct (), jump ;571

dep_graph =[[1]])572

sol = solve (jprob , SSAStepper ())573 � �574

The simulation of a Hawkes process — see Subsection 6.2 for a575

definition — requires a VariableRateJump along with the rate576

bounds and the interval for which the rates are valid. Also, since577

the Hawkes process is history dependent, we close the rate and578

affect! function with a vector containing the history of events.579

The code for simulating the Hawkes process is reproduced in List-580

ing 2. Note that it is possible to simplify the computation of the581

rate — see Subsection 6.2 —, but we keep the code here as close582

as possible to its usual definition for illustration purposes.583

Listing 2: Simulation of the Hawkes process.� �
584

using JumpProcesses585

h = Float64 []586

rate (u, p, t) = p[1] +587

p[2]* sum (exp (-p[3]*(t- _t)) for _t in h; init =0)588

lrate (u, p, t) = p[1]589

urate = rate590

rateinterval (u, p, t) = 1/(2* urate (u,p,t))591

affect !(integrator) = (push !(h, integrator .t);592

integrator .u[1] += 1; nothing)593

jump = VariableRateJump (rate , affect !; lrate ,594

urate , rateinterval)595

u, tspan , p = [0.], (0., 200 .), (0 .2 5, 0 .5 , 2 .0)596

dprob = DiscreteProblem (u, tspan , p)597

jprob = JumpProblem (dprob , Coevolve (), jump ;598

dep_graph =[[1]])599

sol = solve (jprob , SSAStepper ())600 � �601

To assess the correctness of Coevolve, we add it to the Jump-602

Processes.jl test suite. Some tests check whether the aggrega-603

tors are able to obtain empirical statistics close to the expected in604

a number of simple biochemistry models such as linear reactions,605

DNA repression, reversible binding and extinction. The test suite606

was missing a unit test for a self-exciting process. Thus, we have607

added a test for the univariate Hawkes model that checks whether608

7

Proceedings of JuliaCon 1(1), 2023

algorithms that accept VariableRateJump are able to produce609

an empirical distribution of trajectories whose first two moments of610

the observed rate are close to the expected ones.611

In addition to that, the correctness of the implemented algorithm612

can be visually assessed using a Q-Q plot. As discussed in Sub-613

section 4.1, every simple point process can be transformed to a614

Poisson process with unit rate. This implies that the interval be-615

tween points for any such transformed process should match the616

exponential distribution. Therefore, the correctness of any aggre-617

gator can be assessed as following. First, transform the simulated618

intervals with the appropriate compensator. Let tni
be the time in619

which the n-th event of sub-process i took place and t0i ≡ 0, the620

compensator for sub-process i is given by the following:621

Λ∗i (tni
) ≡ Λ∗ni

≡
∫ tni

0

λ∗i (u)du (6.1)

Then the transformed simulated interval is given by:622

∆Λni
≡ Λ∗ni

− Λ∗(n−1)i (6.2)

Compute the empirical quantiles of the transformed intervals. That623

is, the q-th quantile is the interval ∆Λq that divides the sorted in-624

tervals in two sets, those below and above ∆Λq such that q-percent625

of the elements are below it. Plot the empirical quantiles with the626

corresponding quantiles of the exponential distribution. If the sim-627

ulator produces correct trajectories, this plot known as Q-Q plot628

should depict the points aligned around the 45-degree line. We pro-629

duce Q-Q plots for the homogeneous Poisson process as well as the630

compound Hawkes process — see Subsection 6.2 for a definition631

— to attest the correctness of Coevolve. Figure 1 (d) depicts the632

Q-Q plot for a ten-node compound Hawkes process with parame-633

ters λ = 0.5, α = 0.1, β = 2.0 simulated 250 times for 200634

units of time. Figure 1 also depicts the trajectory, the conditional635

intensity and the network structure of a single simulation for three636

random nodes in panels (a), (b) and (c) respectively. We obtained637

similar Q-Q plots for the other algorithms that benchmarked the638

Multivariate Hawkes process below.639

6.2 Benchmarks640

We conduct a set of benchmarks to assess the performance of641

the JumpProcesses.jl aggregators described in Section 5. All642

benchmarks are available in SciMLBenchmarks.jl13. All were643

run in BuildKite14 via the continuous integration facilities provided644

by the package maintainers. We have added two benchmark suites645

to assess the performance of the new aggregators under settings that646

could not be simulated with previous aggregators.647

First, we assess the speed of the aggregators against jump pro-648

cesses whose rates are constant between jumps. There are four such649

benchmarks: a 1-dimensional continuous time random walk ap-650

proximation of a diffusion model (Diffusion), the multi-state model651

from Appendix A.6 [18] (Multi-state), a simple negative feedback652

gene expression model (Gene I) and the negative feedback gene653

expression from [10] (Gene II). We simulate a single trajectory for654

13https://github.com/SciML/SciMLBenchmarks.jl/tree/7d

356203ea107d7343af1ce41d94b64847095d4a/benchmarks/Jumps

and https://github.com/SciML/SciMLBenchmarks.jl/tree/7d

356203ea107d7343af1ce41d94b64847095d4a/benchmarks/Hybrid

Jumps
14https://buildkite.com/julialang/scimlbenchmarks-dot-j

l/builds/1849#018c3980-5247-42ab-a7fe-3145209b26c5

0 5 10 15 20

1

2

3

t

no
de

in
de

x

(a)

0 5 10 15 20

0.5

0.6

0.7

0.8

t

co
nd

it
io

na
l

ra
te

(b)

(c)

0 1 2 3 4 5
0

1

2

3

4

5

Expected quantile
E

m
pi

ri
ca

l
qu

an
ti

le

(d)
Fig. 1: Simulations of 10-nodes compound Hawkes process with parameters
λ = 0.5, α = 0.1, β = 2.0 for 200 units of time. (a) and (b) sampled
trajectory and intensity rate for a single simulation for the three selected
nodes in (c) for the first 20 units of time. (c) underlying 10-nodes network
with three random nodes selected. (d) Q-Q plot of transformed inter-event
time for 250 simulations colored by node.

each aggregator to visually check that they produce similar trajec-655

tories for a given model. The Diffusion, Multi-state, Gene I and656

Gene II benchmarks are then simulated 50, 100, 2000 and 200657

times, respectively. Check the source code for further implementa-658

tion details.659

Benchmark results are listed in Table 1. The table shows that no660

single aggregator dominates suggesting they should be selected ac-661

cording to the task at hand. However, FRM, NRM, Coevolve never662

dominate any benchmark. In common, they all belong to the fam-663

ily of queuing methods.[G: The fact that these are not the fastest664

methods for the constant rate benchmarks shows that improvements665

to thinning algorithms bring substantial performance gains which666

could potentially be explored in queued thinning algorithms. A par-667

ticular issue with queuing methods is the cost of updating the un-668

derlying indexed priority queue data structure which stores the next669

event times. A table-based data-structure would be expected to be670

8

https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/Jumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/Jumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/HybridJumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/HybridJumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/7d356203ea107d7343af1ce41d94b64847095d4a/benchmarks/HybridJumps
https://buildkite.com/julialang/scimlbenchmarks-dot-jl/builds/1849#018c3980-5247-42ab-a7fe-3145209b26c5
https://buildkite.com/julialang/scimlbenchmarks-dot-jl/builds/1849#018c3980-5247-42ab-a7fe-3145209b26c5

Proceedings of JuliaCon 1(1), 2023

Diffusion Multi-state Gene I Gene II

Direct 7.14 s 0.16 s 0.24 ms 0.59 s
FRM 15.76 s 0.25 s 0.29 ms 0.77 s
SortingDirect 1.06 s 0.11 s 0.24 ms 0.53 s
NRM 0.76 s 0.25 s 0.39 ms 0.90 s
DirectCR 0.50 s 0.22 s 0.49 ms 1.09 s
RSSA 1.42 s 0.10 s 0.43 ms 0.66 s
RSSACR 0.46 s 0.15 s 0.91 ms 1.06 s
Coevolve 0.88 s 0.34 s 0.53 ms 1.29 s

Table 1. : Median execution time. A 1-dimensional continuous time ran-
dom walk approximation of a diffusion model (Diffusion), the multi-state
model from Appendix A.6 [18] (Multi-state), a simple negative feedback
gene expression model (Gene I) and the negative feedback gene expres-
sion from [10] (Gene II). Fastest time is bold, second fastest underlined.
Benchmark source code and dependencies are available in SciMLBench-

marks.jl, see first paragraph of Section 6.2 for source references.

more competitive such as proposed in [25].] We also note that the671

performance of Coevolve lags that of NRM despite the fact that672

Coevolve should take the same number of steps as NRM when673

no VariableRateJump is used. The reason behind this discrep-674

ancy is likely due to implementation differences, but left for future675

investigation.676

Second, we add a new benchmark which simulates the compound677

Hawkes process for an increasing number processes. Consider a678

graph with V nodes. The compound Hawkes process is character-679

ized by V point processes such that the conditional intensity rate680

of node i connected to a set of nodes Ei in the graph is given by681

λ∗i (t) = λ+
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]
. (6.3)

This process is known as self-exciting, because the occurrence of682

an event j at tnj
will increase the conditional intensity of all the683

processes connected to it by α. The excited intensity then decreases684

at a rate proportional to β.685

dλ∗i (t)

dt
= −β

∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]

= −β (λ∗i (t)− λ)

(6.4)

The conditional intensity of this process has a recursive formulation686

which can significantly speed the simulation. The recursive formu-687

lation for the univariate case is derived in [15] which also provides688

additional discussion and results on the Hawkes process. We derive689

the compound case here. Let tNi
= max{tnj

< t | j ∈ Ei}690

and φ∗i (t) below.691

φ∗i (t) =
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tNi

+ tNi
− tnj

)
]

= exp [−β(t− tNi
)]
∑
j∈Ei

∑
tnj
≤tNi

α exp
[
−β(tNi

− tnj
)
]

= exp [−β(t− tNi
)] (α+ φ∗i (tNi

))
(6.5)

Then the conditional intensity can be re-written in terms of692

φ∗i (tNi
).693

λ∗i (t) = λ+ φ∗i (t) = λ+ exp [−β(t− tNi
)] (α+ φ∗i (tNi

))
(6.6)

A random graph is sampled from the Erdős-Rényi model. This694

model assumes the probability of an edge between two nodes is in-695

dependent of other edges, which we fix at 0.2. Note that this setup696

implies an increasing expected node degree with the graph size.697

We fix the Hawkes parameters at λ = 0.5, α = 0.1, β = 5.0698

ensuring the process does not explode and simulate models in the699

range from 1 to 95 nodes for 25 units of time. We simulate 50700

trajectories with a limit of ten seconds to complete execution. For701

this benchmark, we save the state of the system exactly after each702

jump.703

We assess the benchmark in eight different settings. First, we run704

the inverse method, Coevolve and CHV simple using the brute705

force formula of the intensity rate which loops through the whole706

history of past events — Equation 6.3. Second, we simulate the707

same three methods with the recursive formula — Equation 6.6.708

Next, we run the benchmark against CHV full. All CHV spec-709

ifications are implemented with PiecewiseDeterministic-710

MarkovProcesses.jl which is developed by Veltz, the author711

of the CHV algorithm discussed in Subsection 4.1. Finally, we run712

the benchmark using the Python library Tick15. This library imple-713

ments a version of the thinning method for simulating the Hawkes714

process and implements a recursive algorithm for computing the715

intensity rate.716

Table 2 shows that the Inverse method which relies on root finding717

is the most inefficient of all methods for any system size. For large718

system size this method is unable to complete all 50 simulation719

runs because it needs to find an ever larger number of roots of an720

ever larger system of differential equations.721

The recursive implementation of the intensity rate brings a consid-722

erable boost to the simulations, placing Coevolve as one of the723

fastest algorithms. As shown in Algorithm 5, every sampled point724

in Coevolve requires a number of expected updates equal to the725

expected degree of the dependency graph. Therefore, it is able to726

complete non-exploding simulations efficiently.727

The Python library Tick remains competitive for smaller prob-728

lems, but gets considerably slower for bigger ones. Also, it is only729

specialized to the Hawkes process. Another drawback is that the730

library wraps the actual C++ implementation. In contrast, Jump-731

Processes.jl can simulate many other point processes with a732

relatively simple user-interface provided by the Julia language.733

There is substantial difference between the performance of recur-734

sive CHV simple and CHV full. The former does not make use735

of the derivative of the intensity function in Equation 6.4 which is736

more efficient to compute than the recursive rate in Equation 6.6.737

On the one hand, Coevolve clearly dominates CHV simple.738

On the other hand, CHV full is slower for smaller networks, but739

slightly faster than Coevolve for larger models. This change in740

relative performance occurs due to the rate of rejection in Coe-741

volve increasing in model size for this particular model. We com-742

pute the rejection rate as one minus the ratio between the number743

of jumps and the number of calls to the upper-bound. A system744

with a single node sees a rejection rate of around 8 percent which745

rapidly increases to 80 percent when the system reaches 20 nodes746

and plateaus at around 95 percent with 95 nodes.747

Finally, we introduce a new benchmark which is intended to assess748

the performance of algorithms capable of simulating the stochastic749

model of hippocampal synaptic plasticity with geometrical read-750

out of enzyme dynamics proposed in [23]. For short, we denote it751

as the synapse model. We chose to benchmark this model as it is752

representative of a complex biochemical model. It couples a jump753

15https://github.com/X-DataInitiative/tick

9

https://github.com/X-DataInitiative/tick

Proceedings of JuliaCon 1(1), 2023

problem containing 98 jumps affecting 49 discrete variables with754

a stiff, ordinary differential equation problem containing 34 con-755

tinuous variables. Continuous variables affect jump rates while the756

discrete variables affect the continuous problem. There are 3 stages757

to the simulation: pre-synaptic evolution, glutamate release, and758

post-synaptic evolution. Among the algorithms considered, only759

the inverse method implemented in JumpProcesses.jl, Co-760

evolve and CHV are theoretically able to simulate the synapse761

model. However, in practice, only the last two complete at least one762

benchmark run. The original synapse problem was described as a763

PDMP, so we do not make the distinction between CHV simple764

and full in this benchmark.765

Benchmark results are displayed in Table 3. We observe that CHV766

is the fastest algorithm completing the synapse evolution in about767

half of the time it takes Coevolve with less than half of the allo-768

cations. Further investigation reveals that the thinning procedure in769

Coevolve reaches an average of 70 percent over all jumps which770

then leads to 2 to 3 times more function evaluations and Jaco-771

bians created compared to CHV. Our implementation adds stop-772

ping times via a call to register_next_jump_time! even for773

rejected jumps — we do not know a jump will be rejected until774

evaluated. This then leads the ODE solver to step to those times and775

make additional function evaluations and Jacobians. Lemaire et776

al. [16] performs a similar benchmark in which they compare the777

Hodgkin-Huxley model against different thinning conditions and778

against an ODE approximation. They find that a thinned algorithm779

with optimal boundary conditions can run significantly faster than780

the ODE approximation. Thus, there could be plenty of room to781

improve the performance of Coevolve in our setting.782

A disadvantage of CHV compared with Coevolve is that it sup-783

ports limited saving options by design. To save at pre-specified784

times would require using the fact that solutions are piecewise con-785

stant to determine solutions at times in-between jumps — and for786

coupled ODE-jump problems would require root-finding to deter-787

mine when s(u) = sn for each desired saving time sn in Equa-788

tion 4.8. The alternative proposed in [30] is to introduce an artificial789

jump to the model such as the homogeneous Poisson process with790

unit rate to sample the system at regular intervals. Alternatively,791

Coevolve allows saving at any arbitrary point. A common work-792

flow in simulating jump processes, particularly when interested in793

calculating statistics over time, is to pre-specify a precise set of794

times at which to save a simulation. In theory, this reduces mem-795

ory pressure, particularly for systems with large numbers of jumps,796

and can give increased computational performance relative to sav-797

ing the state at the occurrence of every jump. However, in the case798

of the synapse model, the number of candidate time rejections far799

surpasses the number of jumps. Therefore, reducing the number of800

saving points — e.g. only saving at start and end of the simulation801

— does not significantly reduce allocations or running time. Given802

these considerations, we decided to save after every jump and at803

regular pre-specified intervals that occur at the same frequency as804

the artificial saving jump used by CHV.805

Another parameter that can affect the precision and speed of the806

synapse benchmark is the ODE solver. The author of Piece-807

wiseDeterministicMarkovProcesses.jl discuss some808

of these issues in Discourse16. Some ODE solvers can be faster and809

more precise. Due to time constraints, we have not investigated this810

matter. The synapse benchmark uses the AutoTsit5(Rosen-811

16https://discourse.julialang.org/t/help-me-beat-lsoda

/88236

brock23()) solver in both Coevolve and CHV. Further inves-812

tigation of this matter is left to future research.813

7. Conclusion814

This paper demonstrates that JumpProcesses.jl is a fast,815

general-purpose library for simulating TPPs. With the addition of816

Coevolve, any point process on the real line with a non-negative,817

left-continuous, history-adapted and locally bounded intensity rate818

can be simulated with this library. The objective of this paper was to819

bridge the gap between the point process simulation in statistics and820

biochemistry. We demonstrated that many of the algorithms devel-821

oped in biochemistry which served as the basis for the JumpPro-822

cesses.jl aggregators can be mapped to three general methods823

developed in statistics for simulating TPPs. We showed that the824

existing aggregators mainly differ in how they update and sample825

from the intensity rate and mark distribution. As we performed this826

exercise, we noticed the lack of an efficient aggregator for variable827

intensity rates, a gap which Coevolve is meant to fill.828

There are still a number of ways forward. First, given the perfor-829

mance of the CHV algorithm in our benchmarks, we should con-830

sider adding it to JumpProcesses.jl as another aggregator so831

that it can benefit from tighter integration with the SciML orga-832

nization and libraries. The saving behavior of CHV might pose a833

challenge when bringing this algorithm to the library.834

Second, the new aggregator depends on the user providing bounds835

on the jump rates as well as the duration of their validity. In prac-836

tice, it can be difficult to determine these bounds a priori, particu-837

larly for models with many ODE variables. Moreover, determining838

such bounds from an analytical solution or the underlying ODEs839

does not guarantee their holding for the numerically computed so-840

lution (which is obtained via an ODE discretization), and so modi-841

fications may be needed in practice. A possible improvement would842

be for JumpProcesses.jl to determine these bounds automati-843

cally taking into account the derivative of the rates. The approach of844

ZigZagBoomerang.jl [2] that combines Taylor approximation845

of the conditional intensity with automatic differentiation could be846

explored. Deriving efficient bounds require not only knowledge of847

the problem and a good amount of analytical work, but also knowl-848

edge about the numerical integrator. At best, the algorithm can per-849

form significantly slower if a suboptimal bound or interval is used,850

at worst it can return incorrect results if a bound is incorrect —851

i.e. it can be violated inside the calculated interval of validity.852

Third, JumpProcesses.jl would benefit from further develop-853

ment in inexact methods. At the moment, support is limited to pro-854

cesses with constant rates between jumps and the only solver avail-855

able SimpleTauLeaping does not support marks. Inexact meth-856

ods should allow for the simulation of longer periods of time when857

only an event count per time interval is required. Hawkes processes858

can be expressed as a branching process. There are simulation algo-859

rithms that already take advantage of this structure to leap through860

time [15]. It would be important to adapt these algorithms for gen-861

eral, compound branching processes to cater for a larger number of862

settings.863

Finally, JumpProcesses.jl also includes algorithms for jumps864

over two-dimensional spaces. It might be worth conducting a sim-865

ilar comparative exercise to identify algorithms in statistics for 2-866

and N -dimensional processes that could also be added to Jump-867

Process.jl as it has the potential to become the go-to library for868

general point process simulation.869

10

https://discourse.julialang.org/t/help-me-beat-lsoda/88236
https://discourse.julialang.org/t/help-me-beat-lsoda/88236

Proceedings of JuliaCon 1(1), 2023

Brute Force Recursive
V Inverse Coevolve CHV Inverse Coevolve CHV CHV Tick

simple simple full

Time

1 74.1 µs 4.8 µs 203.1 µ s 76.6 µs 5.0 µs 201.5 µs 197.9 µs 30.7 µs

10 10.0 ms 205.2 µs 5.1 ms 3.8 ms 73.5 µs 471.6 µs 607.3 µs 175.0 µs

20 89.6 ms 1.5 ms 48.9 ms 16.2 ms 265.8 µs 964.1 µs 902.3 µs 1.2 ms

30 274.2 ms 3.3 ms 129.5 ms 45.7 ms 502.9 µs 1.6 ms 1.3 ms 3.7 ms
n=37

40 1.9 s 8.4 ms 320.8 ms 1.2 s 913.5 µs 2.5 ms 1.6 ms 9.3 ms
n=7 n=31 n=9

50 3.6 s 16.8 ms 681.0 ms 2.4 s 1.5 ms 3.6 ms 2.0 ms 21.7 ms
n=3 n=15 n=5

60 6.7 s 37.9 ms 1.3 s 4.1 s 2.2 ms 5.1 ms 2.6 ms 46.9 ms
n=2 n=8 n=3

70 10.6 s 58.5 ms 2.2 s 6.8 s 3.0 ms 6.9 ms 3.0 ms 89.5 ms
n=1 n=5 n=2

80 15.5 s 138.8 ms 3.3 s 10.6 s 4.0 ms 9.1 ms 3.2 ms 147.1 ms
n=1 n=4 n=1

90 27.86 s 139.7 ms 5.6 s 16.0 s 5.3 ms 11.8 ms 3.9 ms 233.4 ms
n=1 n=2 n=1

Table 2. : Median execution time for the compound Hawkes process, V is the number of nodes and n is the total number of successful
executions under ten seconds. Brute force refers to the implementation of the intensity rate looping through the whole history of past events.
Recursive refers to a recursive implementation that only requires looking at the previous state of each node. Inverse and Coevolve are
algorithms from JumpProcesses.jl, CHV is an algorithm from PiecewiseDeterministicMarkovProcesses.jl. See Subsection 4.1
for the distinction between CHV simple and CHV full. Tick is a Python library. All simulations were run 50 times except when stated
otherwise under the running time. Fastest time is bold, second fastest underlined. Benchmark source code and dependencies are available in
SciMLBenchmarks.jl, see first paragraph of Section 6.2 for source references.

Time Allocation

Inverse - -
Coevolve 4.9 s 94.0 Mb
CHV 2.7 s 43.5 Mb

Table 3. : Median execution time and memory allocation. All simulations
were run 50 times, a dash indicates that no runs were successful. Fastest
time is bold, second fastest underlined. Benchmark source code and de-
pendencies are available in SciMLBenchmarks.jl, see first paragraph of
Section 6.2 for source references.

8. Acknowledgements870

This project has been made possible in part by grant number 2021-871

237457 from the Chan Zuckerberg Initiative DAF, an advised fund872

of Silicon Valley Community Foundation. SAI was also partially873

supported by NSF-DMS 1902854 and 2325185.874

9. References875

[1] Emmanuel Bacry, Martin Bompaire, Stéphane Gaïffas, and876

Soren Poulsen. Tick: A Python library for statistical learn-877

ing, with a particular emphasis on time-dependent modelling,878

March 2018. doi:10.48550/arXiv.1707.03003. 1707.03003.879

[2] Joris Bierkens, Paul Fearnhead, and Gareth Roberts. The Zig-880

Zag process and super-efficient sampling for Bayesian analy-881

sis of big data. The Annals of Statistics, 47(3), June 2019.882

doi:10.1214/18-AOS1715.883

[3] Daryl J. Daley and David Vere-Jones. An Introduction to884

the Theory of Point Processes: Volume I: Elementary885

Theory and Methods. Probability and Its Applications,886

An Introduction to the Theory of Point Processes. Springer-887

Verlag, New York, 2 edition, 2003. doi:10.1007/b97277.888

[4] Guillaume Dalle. PointProcesses.jl. Zenodo, January 2024.889

doi:10.5281/zenodo.10477603.890

[5] Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-891

Rodriguez, Shuang Li, Hongyuan Zha, and Le Song.892

COEVOLVE: A joint point process model for information893

diffusion and network evolution. The Journal of Machine894

Learning Research, 18(1), January 2017.895

[6] Michael A. Gibson and Jehoshua Bruck. Efficient Exact896

Stochastic Simulation of Chemical Systems with Many897

Species and Many Channels. The Journal of Physical898

Chemistry A, 104(9), March 2000. doi:10.1021/jp993732q.899

[7] Daniel T Gillespie. A general method for numerically simu-900

lating the stochastic time evolution of coupled chemical reac-901

tions. Journal of Computational Physics, 22(4), Decem-902

ber 1976. doi:10.1016/0021-9991(76)90041-3.903

[8] Daniel T. Gillespie. Exact stochastic simulation of coupled904

chemical reactions. The Journal of Physical Chemistry,905

81(25), December 1977. doi:10.1021/j100540a008.906

[9] Daniel T. Gillespie. Approximate accelerated stochas-907

tic simulation of chemically reacting systems. The908

Journal of Chemical Physics, 115(4), July 2001.909

doi:10.1063/1.1378322.910

11

http://dx.doi.org/10.48550/arXiv.1707.03003
http://dx.doi.org/10.1214/18-AOS1715
http://dx.doi.org/10.1007/b97277
http://dx.doi.org/10.5281/zenodo.10477603
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1063/1.1378322

Proceedings of JuliaCon 1(1), 2023

[10] Abhishekh Gupta and Pedro Mendes. An Overview of911

Network-Based and -Free Approaches for Stochastic Simu-912

lation of Biochemical Systems. Computation, 6(1), March913

2018. doi:10.3390/computation6010009.914

[11] David Harte. PtProcess : An R Package for Modelling Marked915

Point Processes Indexed by Time. Journal of Statistical916

Software, 35(8), 2010. doi:10.18637/jss.v035.i08.917

[12] Júlio Hoffimann, Fredrik Ekre, Martijn Visser, Anshul918

Singhvi, Durand D’souza, M. A. Siddique, Morten Piibeleht,919

Tony Kelman, and Zlatan Vasović. JuliaEarth/GeoStats.jl:920

V0.11.7. Zenodo, June 2020. doi:10.5281/zenodo.3875233.921

[13] Petter Holme. Fast and principled simulations of the SIR922

model on temporal networks. PLOS ONE, 16(2), February923

2021. doi:10.1371/journal.pone.0246961.924

[14] Günter Last and Mathew Penrose. Lectures on the Pois-925

son Process. Cambridge University Press, 1st edition edi-926

tion, October 2017.927

[15] Patrick J. Laub, Young Lee, and Thomas Taimre. The Ele-928

ments of Hawkes Processes. Springer International Pub-929

lishing, 2021. doi:10.1007/978-3-030-84639-8.930

[16] Vincent Lemaire, Michèle Thieullen, and Nicolas Thomas.931

Exact Simulation of the Jump Times of a Class of Piece-932

wise Deterministic Markov Processes. Journal of Scien-933

tific Computing, 75(3), June 2018. doi:10.1007/s10915-017-934

0607-4.935

[17] P. A. W. Lewis and G. S. Shedler. Simulation of936

nonhomogeneous poisson processes by thinning.937

Naval Research Logistics Quarterly, 26(3), 1979.938

doi:10.1002/nav.3800260304.939

[18] Luca Marchetti, Corrado Priami, and Vo Hong Thanh. Sim-940

ulation Algorithms for Computational Systems Biol-941

ogy. Texts in Theoretical Computer Science. An EATCS942

Series. Springer International Publishing, Cham, 2017.943

doi:10.1007/978-3-319-63113-4.944

[19] James M. McCollum, Gregory D. Peterson, Chris D. Cox,945

Michael L. Simpson, and Nagiza F. Samatova. The sort-946

ing direct method for stochastic simulation of biochemical947

systems with varying reaction execution behavior. Compu-948

tational Biology and Chemistry, 30(1), February 2006.949

doi:10.1016/j.compbiolchem.2005.10.007.950

[20] James Meiss. Differential Dynamical Systems, Revised951

Edition. Mathematical Modeling and Computation. Soci-952

ety for Industrial and Applied Mathematics, January 2017.953

doi:10.1137/1.9781611974645.954

[21] Y. Ogata. On Lewis’ simulation method for point processes.955

IEEE Transactions on Information Theory, 27(1), Jan-956

uary 1981. doi:10.1109/TIT.1981.1056305.957

[22] Christopher Rackauckas and Qing Nie. DifferentialEqua-958

tions.jl – A Performant and Feature-Rich Ecosystem for959

Solving Differential Equations in Julia. 5(1), May 2017.960

doi:10.5334/jors.151.961

[23] Yuri E. Rodrigues, Cezar M. Tigaret, Hélène Marie,962

Cian O’Donnell, and Romain Veltz. A stochastic963

model of hippocampal synaptic plasticity with geo-964

metrical readout of enzyme dynamics, March 2021.965

doi:10.1101/2021.03.30.437703.966

[24] Howard Salis and Yiannis Kaznessis. Accurate hybrid967

stochastic simulation of a system of coupled chemical or968

biochemical reactions. The Journal of Chemical Physics,969

122(5), February 2005. doi:10.1063/1.1835951.970

[25] Kevin R. Sanft and Hans G. Othmer. Constant-complexity971

Stochastic Simulation Algorithm with Optimal Binning.972

The Journal of Chemical Physics, 143(7), August 2015.973

doi:10.1063/1.4928635. 1503.05832.974

[26] Moritz Schauer, Frank van der Meulen, and Shota Gugushvili.975

Mschauer/PointProcessInference.jl: V0.2.2. Zenodo, March976

2020. doi:10.5281/zenodo.3716127.977

[27] Alexander Slepoy, Aidan P. Thompson, and Steven J.978

Plimpton. A constant-time kinetic Monte Carlo algorithm979

for simulation of large biochemical reaction networks.980

The Journal of Chemical Physics, 128(20), May 2008.981

doi:10.1063/1.2919546.982

[28] Vo Hong Thanh, Corrado Priami, and Roberto Zunino. Ef-983

ficient rejection-based simulation of biochemical reactions984

with stochastic noise and delays. The Journal of Chemical985

Physics, 141(13), October 2014. doi:10.1063/1.4896985.986

[29] Vo Hong Thanh, Roberto Zunino, and Corrado Priami. Ef-987

ficient Constant-Time Complexity Algorithm for Stochastic988

Simulation of Large Reaction Networks. IEEE/ACM Trans-989

actions on Computational Biology and Bioinformatics,990

14(3), May 2017. doi:10.1109/TCBB.2016.2530066.991

[30] Romain Veltz. A new twist for the simulation of hy-992

brid systems using the true jump method, April 2015.993

doi:10.48550/arXiv.1504.06873. 1504.06873.994

[31] Hongteng Xu. PoPPy: A Point Process Toolbox Based995

on PyTorch, October 2019. doi:10.48550/arXiv.1810.10122.996

1810.10122.997

Annex998

12

http://dx.doi.org/10.3390/computation6010009
http://dx.doi.org/10.18637/jss.v035.i08
http://dx.doi.org/10.5281/zenodo.3875233
http://dx.doi.org/10.1371/journal.pone.0246961
http://dx.doi.org/10.1007/978-3-030-84639-8
http://dx.doi.org/10.1007/s10915-017-0607-4
http://dx.doi.org/10.1007/s10915-017-0607-4
http://dx.doi.org/10.1007/s10915-017-0607-4
http://dx.doi.org/10.1002/nav.3800260304
http://dx.doi.org/10.1007/978-3-319-63113-4
http://dx.doi.org/10.1016/j.compbiolchem.2005.10.007
http://dx.doi.org/10.1137/1.9781611974645
http://dx.doi.org/10.1109/TIT.1981.1056305
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.1101/2021.03.30.437703
http://dx.doi.org/10.1063/1.1835951
http://dx.doi.org/10.1063/1.4928635
http://dx.doi.org/10.5281/zenodo.3716127
http://dx.doi.org/10.1063/1.2919546
http://dx.doi.org/10.1063/1.4896985
http://dx.doi.org/10.1109/TCBB.2016.2530066
http://dx.doi.org/10.48550/arXiv.1504.06873
http://dx.doi.org/10.48550/arXiv.1810.10122

Proceedings of JuliaCon 1(1), 2023

Jump types
Aggregator Name Description Sample Update MA Con. Var. Source

from

Direct Direct
Rates kept in a non-sorted
array. Sample on ground
process.

ground all x x [7]

DiretFW
Direct with
FunctionWrapper

Same as Direct, but wraps
rate functions with
FunctionWrapper for type
stability and better
performance in system with
many jumps.

ground all x x [7]

SortingDirect Sorting direct
Rates kept in a loosely sorted
array. Sample on ground
process.

ground graph x x [19]

RDirect Rejection-based direct

Sample next time using the
maximum rate of the system,
then randomly selects a
candidate and confirms the
jump only if its rate is above a
random proportion of the
maximum rate.

ground graph x x ours*

DirectCR

Direct with
composition-rejection
search

Rates in group with similar
rates using a priority table.
Group rates are the sum of
rates in group.

ground graph x x [27]

RSSA

Rejection-based
stochastic simulation
algorithm

Processes are assigned lower-
and upper-bounds. Sample on
upper-bounds.

ground graph x x [28]

RSSACR

Rejection-based
stochastic simulation
algorithm with
composition-rejection
search

Rates in group with similar
rates using a priority table.
Groups and processes are
assigned lower- and
upper-bounds. Sample on
group upper-bounds.

ground graph x x [29]

FRM First reaction method Selects the minimum time
from all samples. sub all x x [7]

FRMFW
First reaction method
with FunctionWrapper

Same as FRM, but wraps rate
functions with
FunctionWrapper for type
stability and better
performance in systems with
many jumps.

sub all x x [7]

NRM Next reaction method
Keeps a priority queue of
times. Next event is the
earliest in queue.

sub graph x x [6]

Coevolve Coevolve

Synced with model time.
Keeps a priority queue of
candidate times. Next stop
time is the earliest in the
queue.

sub graph x x x ours

Table 4. : JumpProcesses.jl aggregators. Sample from indicates whether the algorithm samples the ground process (or some composition
of it), or each sub-process separately. Update indicates whether the algorithm updates all rates, or only those affected by the realization of a
process via a dependency graph. Jump types indicates whether aggregators support MassActionJump (MA), ConstantRateJump (Con.), or
VariableRateJump (Var.). In source, ours* indicates that the algorithm was developed by the maintainers of the library prior to this paper.

13

	Introduction
	The temporal point process
	The homogeneous process
	Exact simulation methods
	Inverse methods
	Thinning methods
	Queuing methods for multivariate processes

	Implementation
	Inverse implementation
	Thinning implementation
	Queued thinning implemeentation

	Empirical evaluation
	Statistical analysis of Coevolve
	Benchmarks

	Conclusion
	Acknowledgements
	References

