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Applications of DAEs
DAEs arise in the mathematical modeling of a wide variety of
problems from engineering and science, such as
> multibody problem
flexible mechanics
electrical circuit design
optimal control
incompressible fluids
molecular dynamics
chemical kinetics (quasi steady state, partial equilibrium
approximations, chemical process control).
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Differential-algebraic systems (DAEs)

In general, we can write any system of differential equations in
implicit form as
F(t,x,x')=0

where x and x’ may be vectors. For a system of ordinary
differential equations, the matrix OF /Ox’ is not singular. A
differential-algebraic system arises when OF /Ox’ is singular.

Another way to think about this is that some equations in F are
purely algebraic; they contain no derivative terms with respect to
t, so some rows of F /0x’ are zero, producing a singular matrix.



Differential-algebraic systems (DAEs)

One important class of DAEs are those written in semi-explicit
form: .

y'=f(t,y,2)

0=gl(t,y,2)
where y are the differential variables, and z are algebraic variables.

Decoupling y and z has nicer implications for numerical
integration. The DAE

Yy +ysh+2y,=0
yvi+y,—t2=0

is not in semi-explicit form, but can be converted through variable

substitution. We'll restrict our discussion today to semi-explicit
DAEs.



Differential-algebraic systems (DAEs)

Setting
y =y1+y» (differential variable)
zZ=1y (algebraic variable)
we may obtain
y' = -2z
0=y —t°

This is indeed in the form of

y' =f(t,y,z2)
0=g(t,y,2)



Differential-algebraic systems (DAEs)

In some cases, DAEs arise naturally as limits of singularly
perturbed ODEs:

y'=f(t,y,2)
ez =g(t,y,z)

where € is small. The limit of ¢ — 0 results in a DAE.

Since z will change rapidly for small ¢, our integration scheme
must resolve widely disparate time scales - a stiff problem. Since
the underlying problem is stiff, we'll see that it's a good idea to
consider implicit methods for integrating DAEs as well.



Example: The simple pendulum

For a pendulum of unit mass and length, the system of equations
which describes its evolution in Cartesian coordinates is

x = u,
e
6 Yy =v,
1 u = —Mx,
V, = _)\y_ga
u‘v x’y O:X2+y2_1,

where x, y are the position coordinates of the pendulum, u, v the
velocities, A the tension per unit length, and g = 9.80665 the
acceleration due to gravity.



Hidden constraints

» This system has 5 unknowns to solve for: x,y, u, v, A.

P It appears to have 4 independent degrees of freedom, due to
the single constraint.

» However, there are in fact only 2 independent degrees of
freedom in this problem, due to hidden constraints that must
be satisfied.

» How do we obtain the hidden constraints?



Differentiation index

» Differentiate the algebraic constraint, 0 = x? + y% — 1,
repeatedly with respect to t:

once: 0 =2xx" +2yy’ — 0= xu+ yv
twice: 0= 1?2 + vZ — \(x® + y?) — gy
3 times: \' = —3gv

P> Reveals new constraint equations, for a total of 3 constraints
that govern our consistent initial conditions.

> 3 differentiations were needed to obtain a pure ODE system -
this is known as the differentiation index of the DAE, and is a
measure of how close the DAE system is to its corresponding
ODE.



Differentiation index

» Any intermediate equation is a valid substitute for our
algebraic constraint:

index 3: 0 = x? + y? — 1 (length constraint)

index 2: 0 = xu + yv (tangential motion)

index 1: 0 = v + v — A\(x® + y°) — gy (centripetal accel.)
index 0: \' = —3gv (ODE)

» However, we forego guaranteeing one constraint by choosing
another; the total length would be susceptible to numerical
drift, for example, if we use the index 2 formulation, but we
would guarantee tangential motion.



Differentiation index

The index 3 pendulum DAE can in fact be regarded as a reduced
form of a singularly perturbed index 1 DAE in which the rod is
replaced by a stiff spring of spring constant k = e 1:

X' = u,
f—vy
6 .y - Y
v = —)\x,
% V,:_)\y_ga
1
X,y A=1—
u,v /X2+y2
g

Here, A is the spring force per unit length. In the limit € — 0, the
last equation can be rearranged into our length constraint.



Summary - Pros and Cons of DAEs

+

It's typically advantageous to work with the DAE directly,
provided we have consistent initial conditions

Initialization can pose a challenge - have to satisfy hidden
constraints

DAEs allow us to explicitly enforce constraints

A reduced form higher index DAE is often simpler to solve
than singularly perturbed ODE/lower index DAE that is
stiff/has fast oscillations.



Numerical integration of DAEs

» Due to constraints that must be satisfied at each time,
explicit methods are typically not as well-suited for solving
DAEs in general.

> Instead, we use implicit methods to discretize the differential
part of DAEs, and solve for the algebraic variables
simultaneously.

> We will look at one particular family of implicit methods:
Backward differentiation formulae.



BDF Methods

The backward differentiation formulae (BDF)! are a family of
implicit multi-step methods which discretize y' = f(t,y) as:

p—1

Yir1+ D Ok-syk-s = BhF(tes1, Y1),
s=0

where p is the order of the method.

The first few formulae:
p=1:ykr1 — yk = hf(tks1,Yk+1) (backward Euler)

4 1 2
P=2:yky1— 3k + Y1 = ghf(tk+1,)/k+1)

3 - e = A= b )
P=95>Yk+1 11)/k 11)/k—1 11)/k—2—11 k415 Yk+1

1 : wikipedia.org/wiki/Backward_differentiation_formula


wikipedia.org/wiki/Backward_differentiation_formula

BDF Methods

Consider the DAE system

/

y' =f(t,y,z)
0=g(t,y,2)

We discretize the differential equations and leave the algebraic
equations, resulting in a root-finding problem at each step:

p+1

Yir1+ D Qk—sYk-s — Bhfii1 =10
s=0

gk+1 =20

with yk11,Zk+1 as our unknowns to solve for.



Newton's method

In general, our discretized system of equations will be nonlinear in
the unknowns, so the equations cannot be rearranged for yj.1,
Zk+1 explicitly. Instead, our root-finding problem can be solved via
Newton's method.

Newton's method iteratively finds the roots x* of a function r(x)
so that r(x*) = 0 by iterating

xiy1 = x; — J7H(x:)r(x)

from an initial guess xp until convergence, where J is the Jacobian
of r. As a matrix equation to solve:

J(xi)Ax; = —r(x;),

where xj11 = x;j + Ax;. It's natural to think of r as our residual,
measuring the distance from 0.



Newton's Method

Consider a DAE system with m differential and n algebraic degrees
of freedom, given by:

y/ = f(t, C]) = f(t7Y>Z)
0 :g(t, q) :g(ta)/az)

where ¢ = (v, z), and f,y € R™, g,z € R". Our root-finding
problem is

Fert — [)/k+1+25 0 Yk—sYk—s ﬁhfkﬂ} _0
8k+1

with Jacobian

of of
St = Vorloay = [20 2] _ |lmxm —Bhg, =fha;
k1= Vgr|kp1 = dy 0z k+1 og og
Oy 0z lky1



Newton's Method

Decompose into two contributions:

Jkp1 = A+ BITS

where

of | of
Jdae _ 0 0z
kt1 = | 9g | 9g

Oy | 9z lyp1

is the purely problem-specific part of the Jacobian, while Ji1 will
depend on the details of the integrator.



Newton's Method

For the simple pendulum:

fltba)=9_,

=AY — Gace.

g(t,q) = {x2 +y?—1

where ¢ = x,y, u,v, A, and

0 0 10
0 0 01
J9e—_Xx 0 00
0 -\ 00
2x 2y 0 O



Newton's Method

The complete Jacobian is i1 = A+ BJES with

10000 —Bh 0 0
01000 0 —Bh 0
A=(0 010 0/,B=]| 0 0 —ph
00010 0 0 0
00000 0 0 0

0 0 10

0 0 01
Je = -Ms1 0 0 0 —xxpa

0 —My1 00

2xk41 2yk+1 0 0

= O O O O



Newton's iterations for DAE integration

=
N =

© o N O RN

,_.
e

To solve for gk+1 at integration step t = tx11:
Initialize guess ¢ = gk
Compute the residual r(t, q)
i=0
while ||r||2 > tol and i < maxiter do
J= A+ BJ%(t,q)
Solve JAqg = —r
g+ g+ Ag
Compute the new residual r(t, q)
i+—i+1

: end while
: Solution qx1+1 = ¢q




Exercise 1

» The provided framework for a DAE solver class sets up a
third-order BDF method with first and second order start-up
steps.

» Your task is to implement the Newton's method routine
performed at each integration step.

» Then, test your solver on the provided simple pendulum
problem.



Index comparison

We can look at how well all constraints are maintained when
varying the index of the simple pendulum example:

Xyt —1 XU+ yv F = AE +yP) gy
. 19*1.5 = = — . IT*B 75 le-7
: s0].
o —— ] .
index 3 of —m | o1
. -25
2] e————— -5.0

index 2 *°

0.0

-0.4
index 1-°¢
-0.

-1.0

“12 -12 -5.0

Notice drift in constraints that are not explicitly enforced.



Practical considerations

> Newton's method initialization: We can improve our initial
guess to Newton's iterations by constructing a
of our prior solutions (featured as optional
extension).

» Convergence: Error convergence for DAEs can be
complicated, though there are analytical results for index < 2
and special index 3 examples. Strict tolerance on Newton
iterations is critical to achieving expected BDF convergence
(See references for more detail on this topic).



Convergence

There is a two-variable ODE system - the state-space form - of the
pendulum which can be solved explicitly:

¢ ¢ =w,
C W' = —gcos o,
-/
6

and maps as

X = COS @,
y =sin ¢,
w‘/. u= —wsin @,
V = wcos ¢,
A =w?—gsing.

We can use an adaptive step method with strict tolerance (using
odeint) as a reference solution.



Convergence

Our error turns out to be O(h?):

1073

1074

10-°

Error

10757 ¢

1077

In general, the convergence of algebraic variables can differ from
differential variables, and be lower order.



Practical considerations

» Step size adaptivity: Start-up steps for fixed step integrators
incur larger errors; in practice, we can solve DAEs with an
method, and take small initial steps to avoid the
larger error penalty.

» Conditioning: The Jacobian

mxm — Bh3E —BhL
og

Jiv1 = og o
Oy 9z k41
can become for very small h particularly for
higher index DAEs, when 0g/0z = 0. May call for better
approaches to solve JAqg = —r (e.g. regularization,

preconditioned conjugate gradient methods).



Example: Crumpling a thin sheet

» A thin sheet may be modeled as a network of masses and

springs:

e B STrfES ETv out-of-plane rigidity
internal damping

The equations of motion for a node i of mass m are given by
Xi =V
m\'/,- = F,'

where the net force F; includes contributions from stretching,
damping, bending, self-avoidance, and external forces.



Example: Crumpling a thin sheet

>

>

Typically, these equations form an ODE system that we can
solve, e.g. using the classic RK4 method.

However, when acceleration is small, the equations of motion
can be approximated as the DAE

X,'ZV,'
Fi=0

Solved using a 3rd order adaptive step BDF method (implicit)

Turns out to be very efficient for this problem - can take large
integration steps

Integrator automatically detects when DAE formulation is
appropriate, and switches to ODE formulation otherwise



The double pendulum

Once we have a general solver in place, we can easily swap out the
DAE system. As an extension, consider the double pendulum:

—_—
6,
M
X1, Y1
A
U, 7y 0, X2, Y2
g Up, U2
g

= u,

n=
U]_:
Vi =

Xo =

Vi,

—A1x1 — A2(x1 — x2),
A — Ae(y1 — y2) — &,
u,

V2,

—X2(x2 — x1),

=—-X(y2—»n)— &,

O:X12+y]?_17

0=

(e —x1)’+ (2 —y1)° — L.



Exercise 2

» Implement the DAE system for the double pendulum, and
derive and implement its Jacobian.

» Use your DAE solver from Exercise 1 to integrate the double
pendulum, and visualize its chaotic motion!
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