
Solving differential-algebraic systems of equations
(DAEs)

AM 205

Jovana Andrejevic, Catherine Ding

November 4, 2020

Table of Contents

Motivation

What are DAEs?
Definition
Example: The simple pendulum

How can we solve DAEs?
Backward differentiation formulae
Newton’s method
Practical considerations

The double pendulum (Exercise)

Applications of DAEs
DAEs arise in the mathematical modeling of a wide variety of
problems from engineering and science, such as
▶ multibody problem
▶ flexible mechanics
▶ electrical circuit design
▶ optimal control
▶ incompressible fluids
▶ molecular dynamics
▶ chemical kinetics (quasi steady state, partial equilibrium

approximations, chemical process control).

Differential-algebraic systems (DAEs)

In general, we can write any system of differential equations in
implicit form as

F (t, x , x ′) = 0

where x and x ′ may be vectors. For a system of ordinary
differential equations, the matrix ∂F/∂x ′ is not singular. A
differential-algebraic system arises when ∂F/∂x ′ is singular.

Another way to think about this is that some equations in F are
purely algebraic; they contain no derivative terms with respect to
t, so some rows of ∂F/∂x ′ are zero, producing a singular matrix.

Differential-algebraic systems (DAEs)

One important class of DAEs are those written in semi-explicit
form:

y ′ = f (t, y , z)

0 = g(t, y , z)

where y are the differential variables, and z are algebraic variables.
Decoupling y and z has nicer implications for numerical
integration. The DAE

y ′1 + y ′2 + 2y2 = 0

y1 + y2 − t2 = 0

is not in semi-explicit form, but can be converted through variable
substitution. We’ll restrict our discussion today to semi-explicit
DAEs.

Differential-algebraic systems (DAEs)

Setting
y = y1 + y2 (differential variable)

z = y2 (algebraic variable)

we may obtain
y ′ = −2z
0 = y − t2

This is indeed in the form of

y ′ = f (t, y , z)

0 = g(t, y , z)

.

Differential-algebraic systems (DAEs)

In some cases, DAEs arise naturally as limits of singularly
perturbed ODEs:

y ′ = f (t, y , z)

ϵz ′ = g(t, y , z)

where ϵ is small. The limit of ϵ→ 0 results in a DAE.

Since z will change rapidly for small ϵ, our integration scheme
must resolve widely disparate time scales - a stiff problem. Since
the underlying problem is stiff, we’ll see that it’s a good idea to
consider implicit methods for integrating DAEs as well.

Example: The simple pendulum

For a pendulum of unit mass and length, the system of equations
which describes its evolution in Cartesian coordinates is

x ′ = u,

y ′ = v ,

u′ = −λx ,
v ′ = −λy − g ,

0 = x2 + y2 − 1,

where x , y are the position coordinates of the pendulum, u, v the
velocities, λ the tension per unit length, and g = 9.80665 the
acceleration due to gravity.

Hidden constraints

▶ This system has 5 unknowns to solve for: x , y , u, v , λ.

▶ It appears to have 4 independent degrees of freedom, due to
the single constraint.

▶ However, there are in fact only 2 independent degrees of
freedom in this problem, due to hidden constraints that must
be satisfied.

▶ How do we obtain the hidden constraints?

Differentiation index

▶ Differentiate the algebraic constraint, 0 = x2 + y2 − 1,
repeatedly with respect to t:

once: 0 = 2xx ′ + 2yy ′ → 0 = xu + yv

twice: 0 = u2 + v2 − λ(x2 + y2)− gy

3 times: λ′ = −3gv

▶ Reveals new constraint equations, for a total of 3 constraints
that govern our consistent initial conditions.

▶ 3 differentiations were needed to obtain a pure ODE system -
this is known as the differentiation index of the DAE, and is a
measure of how close the DAE system is to its corresponding
ODE.

Differentiation index

▶ Any intermediate equation is a valid substitute for our
algebraic constraint:

index 3: 0 = x2 + y2 − 1 (length constraint)

index 2: 0 = xu + yv (tangential motion)

index 1: 0 = u2 + v2 − λ(x2 + y2)− gy (centripetal accel.)

index 0: λ′ = −3gv (ODE)

▶ However, we forego guaranteeing one constraint by choosing
another; the total length would be susceptible to numerical
drift, for example, if we use the index 2 formulation, but we
would guarantee tangential motion.

Differentiation index

The index 3 pendulum DAE can in fact be regarded as a reduced
form of a singularly perturbed index 1 DAE in which the rod is
replaced by a stiff spring of spring constant k = ϵ−1:

x ′ = u,

y ′ = v ,

u′ = −λx ,
v ′ = −λy − g ,

ϵλ = 1− 1√
x2 + y2

.

Here, λ is the spring force per unit length. In the limit ϵ→ 0, the
last equation can be rearranged into our length constraint.

Summary - Pros and Cons of DAEs

+ It’s typically advantageous to work with the DAE directly,
provided we have consistent initial conditions

− Initialization can pose a challenge - have to satisfy hidden
constraints

+ DAEs allow us to explicitly enforce constraints

+ A reduced form higher index DAE is often simpler to solve
than singularly perturbed ODE/lower index DAE that is
stiff/has fast oscillations.

Numerical integration of DAEs

▶ Due to constraints that must be satisfied at each time,
explicit methods are typically not as well-suited for solving
DAEs in general.

▶ Instead, we use implicit methods to discretize the differential
part of DAEs, and solve for the algebraic variables
simultaneously.

▶ We will look at one particular family of implicit methods:
Backward differentiation formulae.

BDF Methods

The backward differentiation formulae (BDF)1 are a family of
implicit multi-step methods which discretize y ′ = f (t, y) as:

yk+1 +

p−1∑
s=0

αk−syk−s = βhf (tk+1, yk+1),

where p is the order of the method.

The first few formulae:

p = 1 : yk+1 − yk = hf (tk+1, yk+1) (backward Euler)

p = 2 : yk+1 −
4

3
yk +

1

3
yk−1 =

2

3
hf (tk+1, yk+1)

p = 3 : yk+1 −
18

11
yk +

9

11
yk−1 −

2

11
yk−2 =

6

11
hf (tk+1, yk+1)

1See: wikipedia.org/wiki/Backward_differentiation_formula

wikipedia.org/wiki/Backward_differentiation_formula

BDF Methods

Consider the DAE system

y ′ = f (t, y , z)

0 = g(t, y , z)

We discretize the differential equations and leave the algebraic
equations, resulting in a root-finding problem at each step:

yk+1 +

p+1∑
s=0

αk−syk−s − βhfk+1 = 0

gk+1 = 0

with yk+1, zk+1 as our unknowns to solve for.

Newton’s method

In general, our discretized system of equations will be nonlinear in
the unknowns, so the equations cannot be rearranged for yk+1,
zk+1 explicitly. Instead, our root-finding problem can be solved via
Newton’s method.

Newton’s method iteratively finds the roots x∗ of a function r(x)
so that r(x∗) = 0 by iterating

xi+1 = xi − J−1(xi)r(xi)

from an initial guess x0 until convergence, where J is the Jacobian
of r . As a matrix equation to solve:

J(xi)∆xi = −r(xi),

where xi+1 = xi +∆xi . It’s natural to think of r as our residual,
measuring the distance from 0.

Newton’s Method

Consider a DAE system with m differential and n algebraic degrees
of freedom, given by:

y ′ = f (t, q) = f (t, y , z)

0 = g(t, q) = g(t, y , z)

where q = (y , z), and f , y ∈ Rm, g , z ∈ Rn. Our root-finding
problem is

rk+1 =

[
yk+1 +

∑p+1
s=0 αk−syk−s − βhfk+1

gk+1

]
= 0

with Jacobian

Jk+1 = ∇qr |k+1 =
[
∂r
∂y

∂r
∂z

]
k+1

=

[
Im×m − βh ∂f

∂y −βh ∂f
∂z

∂g
∂y

∂g
∂z

]
k+1

Newton’s Method

Decompose into two contributions:

Jk+1 = A+ BJdaek+1

=

 0
...

0 · · · 0n×n

Im×m


︸ ︷︷ ︸

A

+

 0
...

0 · · · In×n

−βhIm×m


︸ ︷︷ ︸

B

Jdaek+1

where

Jdaek+1 =

[
∂f
∂y

∂f
∂z

∂g
∂y

∂g
∂z

]
k+1

is the purely problem-specific part of the Jacobian, while Jk+1 will
depend on the details of the integrator.

Newton’s Method

For the simple pendulum:

f (t, q) =


u

v

−λx
−λy − gacc.

g(t, q) =
{
x2 + y2 − 1

where q = x , y , u, v , λ, and

Jdae =


0 0 1 0 0
0 0 0 1 0
−λ 0 0 0 −x
0 −λ 0 0 −y
2x 2y 0 0 0

 ,

Newton’s Method

The complete Jacobian is Jk+1 = A+ BJdaek+1 with

A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 ,B =


−βh 0 0 0 0
0 −βh 0 0 0
0 0 −βh 0 0
0 0 0 −βh 0
0 0 0 0 1



Jdaek+1 =


0 0 1 0 0
0 0 0 1 0

−λk+1 0 0 0 −xk+1

0 −λk+1 0 0 −yk+1

2xk+1 2yk+1 0 0 0



Newton’s iterations for DAE integration

1: To solve for qk+1 at integration step t = tk+1:
2: Initialize guess q = qk
3: Compute the residual r(t, q)
4: i = 0
5: while ||r ||2 > tol and i < maxiter do
6: J = A+ BJdae(t, q)
7: Solve J∆q = −r
8: q ← q +∆q
9: Compute the new residual r(t, q)

10: i ← i + 1
11: end while
12: Solution qk+1 = q

Exercise 1

▶ The provided framework for a DAE solver class sets up a
third-order BDF method with first and second order start-up
steps.

▶ Your task is to implement the Newton’s method routine
performed at each integration step.

▶ Then, test your solver on the provided simple pendulum
problem.

Index comparison

We can look at how well all constraints are maintained when
varying the index of the simple pendulum example:

Notice drift in constraints that are not explicitly enforced.

Practical considerations

▶ Newton’s method initialization: We can improve our initial
guess to Newton’s iterations by constructing a Lagrange
interpolant of our prior solutions (featured as optional
extension).

▶ Convergence: Error convergence for DAEs can be
complicated, though there are analytical results for index ≤ 2
and special index 3 examples. Strict tolerance on Newton
iterations is critical to achieving expected BDF convergence
(See references for more detail on this topic).

Convergence

There is a two-variable ODE system - the state-space form - of the
pendulum which can be solved explicitly:

ϕ′ = ω,

ω′ = −g cosϕ,

and maps as

x = cosϕ,

y = sinϕ,

u = −ω sinϕ,

v = ω cosϕ,

λ = ω2 − g sinϕ.

We can use an adaptive step method with strict tolerance (using
odeint) as a reference solution.

Convergence

Our error turns out to be O(h2):

In general, the convergence of algebraic variables can differ from
differential variables, and be lower order.

Practical considerations

▶ Step size adaptivity: Start-up steps for fixed step integrators
incur larger errors; in practice, we can solve DAEs with an
adaptive step method, and take small initial steps to avoid the
larger error penalty.

▶ Conditioning: The Jacobian

Jk+1 =

[
Im×m − βh ∂f

∂y −βh ∂f
∂z

∂g
∂y

∂g
∂z

]
k+1

can become ill-conditioned for very small h particularly for
higher index DAEs, when ∂g/∂z = 0. May call for better
approaches to solve J∆q = −r (e.g. regularization,
preconditioned conjugate gradient methods).

Example: Crumpling a thin sheet

▶ A thin sheet may be modeled as a network of masses and
springs:

The equations of motion for a node i of mass m are given by

ẋi = vi

mv̇i = Fi ,

where the net force Fi includes contributions from stretching,
damping, bending, self-avoidance, and external forces.

Example: Crumpling a thin sheet

▶ Typically, these equations form an ODE system that we can
solve, e.g. using the classic RK4 method.

▶ However, when acceleration is small, the equations of motion
can be approximated as the DAE

ẋi = vi

Fi = 0

▶ Solved using a 3rd order adaptive step BDF method (implicit)

▶ Turns out to be very efficient for this problem - can take large
integration steps

▶ Integrator automatically detects when DAE formulation is
appropriate, and switches to ODE formulation otherwise

The double pendulum

Once we have a general solver in place, we can easily swap out the
DAE system. As an extension, consider the double pendulum:

x ′1 = u1,

y ′1 = v1,

u′1 = −λ1x1 − λ2(x1 − x2),

v ′1 = −λ1y1 − λ2(y1 − y2)− g ,

x ′2 = u2,

y ′2 = v2,

u′2 = −λ2(x2 − x1),

v ′2 = −λ2(y2 − y1)− g ,

0 = x21 + y21 − 1,

0 = (x2 − x1)
2 + (y2 − y1)

2 − 1.

Exercise 2

▶ Implement the DAE system for the double pendulum, and
derive and implement its Jacobian.

▶ Use your DAE solver from Exercise 1 to integrate the double
pendulum, and visualize its chaotic motion!

References

1. Campbell, Stephen L., Vu Hoang Linh, and Linda R. Petzold.
”Differential-algebraic equations.” Scholarpedia 3.8 (2008):
2849.

2. Ascher, Uri M., and Linda R. Petzold. Computer Methods for
Ordinary Differential Equations and Differential-Algebraic
Equations. Vol. 61. Siam, 1998.

3. Eich-Soellner, Edda, and Claus Führer. Numerical Methods in
Multibody Dynamics. Vol. 45. Stuttgart: Teubner, 1998.

4. Hairer, Ernst. and Wanner, Gerhard. Solving Ordinary
Differential Equations II. Springer, 1996.

	Motivation
	What are DAEs?
	Definition
	Example: The simple pendulum

	How can we solve DAEs?
	Backward differentiation formulae
	Newton's method
	Practical considerations

	The double pendulum (Exercise)

