Skip to content

CUDA: NAN #466

@Runfa-Zhang

Description

@Runfa-Zhang

If dont set CUDA, It's working well. but just let intΘ=CuArray。。。,then the NAN come out.

using NeuralPDE, Flux, ModelingToolkit, GalacticOptim, Optim, DiffEqFlux
using Quadrature, Cuba, CUDA, QuasiMonteCarlo
import ModelingToolkit: Interval, infimum, supremum
@parameters t, x
@variables u1(..), u2(..), v1(..), v2(..)
Dt = Differential(t)
Dtt = Differential(t)^2
Dx = Differential(x)
Dxx = Differential(x)^2
u1_extract(t,x) = (1/(13*exp(8*t)+720*exp(48*x)-96*exp(24*x+4*t))) * (28 * exp(12*x+2*t)*((exp(4*t)+36*exp(24*x))*cos(3*t-5*x)+(5*exp(4*t)-12*exp(24*x))*sin(3*t-5*x)))
v1_extract(t,x) = -(28 * exp(12*x+2*t)*((-5*exp(4*t)+12*exp(24*x))*cos(3*t-5*x)+(exp(4*t)+36*exp(24*x))*sin(3*t-5*x)))/(13*exp(8*t)+720*exp(48*x)-96*exp(24*x+4*t))
u2_extract(t,x) = -(4 * exp(12*x+2*t)*((-43*exp(4*t)+204*exp(24*x))*cos(3*t-5*x)-(7*exp(4*t)-36*exp(24*x))*sin(3*t-5*x)))/(13*exp(8*t)+720*exp(48*x)-96*exp(24*x+4*t))
v2_extract(t,x) = (4 * exp(12*x+2*t)*((-7*exp(4*t)+252*exp(24*x))*cos(3*t-5*x)+(43*exp(4*t)-204*exp(24*x))*sin(3*t-5*x)))/(13*exp(8*t)+720*exp(48*x)-96*exp(24*x+4*t))
eqs = [0. ~ Dx(u1(t,x))-Dtt(v1(t,x))-2 * u1(t,x)^2 * v1(t,x)-2*v1(t,x)^3+4*v1(t,x)*(u2(t,x)^2+v2(t,x)^2)+4*v2(t,x)*u1(t,x)*u2(t,x)+2*v1(t,x)*u2(t,x)^2-2*v1(t,x)*v2(t,x)^2,
       0. ~ Dx(v1(t,x))+Dtt(u1(t,x))+2 * v1(t,x)^2 * u1(t,x)+2*u1(t,x)^3-4*u1(t,x)*(u2(t,x)^2+v2(t,x)^2)-4*v2(t,x)*u2(t,x)*v1(t,x)+2*u1(t,x)*u2(t,x)^2-2*u1(t,x)*v2(t,x)^2,
       0. ~ Dx(u2(t,x))-2*v2(t,x)*(u2(t,x)^2+v2(t,x)^2-2*u1(t,x)^2-2*v1(t,x)^2)+4*u1(t,x)*u2(t,x)*v1(t,x)+2*v2(t,x)*(u1(t,x)^2-v1(t,x)^2),
       0. ~ Dx(v2(t,x))+2*u2(t,x)*(u2(t,x)^2+v2(t,x)^2-2*u1(t,x)^2-2*v1(t,x)^2)-4*u1(t,x)*v2(t,x)*v1(t,x)+2*u2(t,x)*(u1(t,x)^2-v1(t,x)^2)]
bcs = [u1(0,x) ~ u1_extract(0,x),
       u2(0,x) ~ u2_extract(0,x),
       v1(0,x) ~ v1_extract(0,x),
       v2(0,x) ~ v2_extract(0,x),
       u1(t,0) ~ u1_extract(t,0),
       u2(t,0) ~ u2_extract(t,0),
       v1(t,0) ~ v1_extract(t,0),
       v2(t,0) ~ v2_extract(t,0),
       u1(t,1) ~ u1_extract(t,1),
       u2(t,1) ~ u2_extract(t,1),
       v1(t,1) ~ v1_extract(t,1),
       v2(t,1) ~ v2_extract(t,1)]
# Space and time domains
domains = [t ∈ Interval(0.0,1.0),
           x ∈ Interval(0.0,1.0)]
# Neural network
input_ = length(domains)
n = 2
chain =[FastChain(FastDense(input_,n,Flux.σ),FastDense(n,n,Flux.σ),FastDense(n,1)) for _ in 1:4]


###cuda
initθ = map(c -> Float64.(c), DiffEqFlux.initial_params.(chain))
#initθ = map(c -> CuArray(Float64.(c)), DiffEqFlux.initial_params.(chain))


strategy = GridTraining(0.05)
discretization = PhysicsInformedNN(chain,
                                   strategy;
                                   init_params = initθ)

@named pde_system = PDESystem(eqs,bcs,domains,[t,x],[u1(t, x),u2(t, x),v1(t, x),v2(t, x)])
prob = discretize(pde_system,discretization)
sym_prob = symbolic_discretize(pde_system,discretization)

pde_inner_loss_functions = prob.f.f.loss_function.pde_loss_function.pde_loss_functions.contents
bcs_inner_loss_functions = prob.f.f.loss_function.bcs_loss_function.bc_loss_functions.contents

cb = function (p,l)
    println("loss: ", l )
    println("pde_losses: ", map(l_ -> l_(p), pde_inner_loss_functions))
    println("bcs_losses: ", map(l_ -> l_(p), bcs_inner_loss_functions))
    return false
end
@time res = GalacticOptim.solve(prob,ADAM(0.01);cb=cb,maxiters=2500)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions