-
-
Notifications
You must be signed in to change notification settings - Fork 227
Open
Description
I am trying to solve a PDE with variables [t, z1, …, zn]. Here’s my code:
using Test, Flux, Optim, DiffEqFlux, Optimization
using Random, NeuralPDE, DifferentialEquations
using Statistics, Distributions, LinearAlgebra
import ModelingToolkit: Interval
import DomainSets: UnitInterval
Random.seed!(100)
order = 3
@parameters t z[1:order]
@variables u(..)
Dt = Differential(t)
z = collect(z)
α = 1.2
β = 1.1
function dW(t, z...)
val = 0
for i in 1:length(z)
val += z[i]*cos((i-1/2)π*t)
end
val = √2*val
end
eq = Dt(u(t,z...)) ~ α*u(t,z...) + β*u(t,z)*dW(t,z...)
bcs = [u(0, z...) ~ 1.0]
# Space and time domains
domains = Vector{Symbolics.VarDomainPairing}(undef, order + 1)
domains[1] = t ∈ Interval(0.0, 1.0)
for i in 1:order
domains[i+1] = z[i] ∈ Interval(0.0, 1.0)
end
# number of dimensions
dim = order + 1
chain = Flux.Chain(Dense(dim,16,Flux.σ),Dense(16,16,Flux.σ),Dense(16,1))
# Initial parameters of Neural network
initθ = Float64.(DiffEqFlux.initial_params(chain))
# Discretization
dx = 0.05
discretization = PhysicsInformedNN(chain,GridTraining(dx),init_params =initθ)
@named pde_system = PDESystem(eq,bcs,domains,[t,z...],[u(t,z...)])
prob = discretize(pde_system,discretization)This gives the error
ERROR: MethodError: no method matching nameof(::Term{Real, Base.ImmutableDict{DataType, Any}})
Closest candidates are:
nameof(::Sym) at ~/.julia/packages/SymbolicUtils/vnuIf/src/types.jl:144
nameof(::ModelingToolkit.AbstractSystem) at ~/.julia/packages/ModelingToolkit/iHLWM/src/systems/abstractsystem.jl:139
nameof(::DataType) at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/reflection.jl:223
...
Stacktrace:
[1] (::NeuralPDE.var"#131#132")(argument::Term{Real, Base.ImmutableDict{DataType, Any}})
@ NeuralPDE ./none:0
[2] iterate
@ ./generator.jl:47 [inlined]
[3] collect_to!(dest::Vector{Symbol}, itr::Base.Generator{Vector{SymbolicUtils.Symbolic{Real}}, NeuralPDE.var"#131#132"}, offs::Int64, st::Int64)
@ Base ./array.jl:782
[4] collect_to_with_first!
@ ./array.jl:760 [inlined]
[5] collect(itr::Base.Generator{Vector{SymbolicUtils.Symbolic{Real}}, NeuralPDE.var"#131#132"})
@ Base ./array.jl:734
[6] get_vars(indvars_::Vector{Num}, depvars_::Vector{Num})
@ NeuralPDE ~/Documents/Julia-fork/NeuralPDE.jl/src/pinns_pde_solve.jl:757
[7] discretize_inner_functions(pde_system::PDESystem, discretization::PhysicsInformedNN{GridTraining{Float64}, Vector{Float64}, NeuralPDE.Phi{Optimisers.Restructure{Chain{Tuple{Dense{typeof(σ), Matrix{Float32}, Vector{Float32}}, Dense{typeof(σ), Matrix{Float32}, Vector{Float32}}, Dense{typeof(identity), Matrix{Float32}, Vector{Float32}}}}, NamedTuple{(:layers,), Tuple{Tuple{NamedTuple{(:weight, :bias, :σ), Tuple{Int64, Int64, Tuple{}}}, NamedTuple{(:weight, :bias, :σ), Tuple{Int64, Int64, Tuple{}}}, NamedTuple{(:weight, :bias, :σ), Tuple{Int64, Int64, Tuple{}}}}}}}}, typeof(NeuralPDE.numeric_derivative), Bool, Nothing, NonAdaptiveLoss{Float64}, Nothing, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}})
@ NeuralPDE ~/Documents/Julia-fork/NeuralPDE.jl/src/pinns_pde_solve.jl:1257
[8] discretize(pde_system::PDESystem, discretization::PhysicsInformedNN{GridTraining{Float64}, Vector{Float64}, NeuralPDE.Phi{Optimisers.Restructure{Chain{Tuple{Dense{typeof(σ), Matrix{Float32}, Vector{Float32}}, Dense{typeof(σ), Matrix{Float32}, Vector{Float32}}, Dense{typeof(identity), Matrix{Float32}, Vector{Float32}}}}, NamedTuple{(:layers,), Tuple{Tuple{NamedTuple{(:weight, :bias, :σ), Tuple{Int64, Int64, Tuple{}}}, NamedTuple{(:weight, :bias, :σ), Tuple{Int64, Int64, Tuple{}}}, NamedTuple{(:weight, :bias, :σ), Tuple{Int64, Int64, Tuple{}}}}}}}}, typeof(NeuralPDE.numeric_derivative), Bool, Nothing, NonAdaptiveLoss{Float64}, Nothing, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}})
@ NeuralPDE ~/Documents/Julia-fork/NeuralPDE.jl/src/pinns_pde_solve.jl:1512
[9] top-level scope
@ ~/Documents/Julia-fork/NeuralPDE.jl/test/NNSDE_wp_tests.jl:47
@ChrisRackauckas says that going through the parser and expanding z is a possible fix.
Metadata
Metadata
Assignees
Labels
No labels