-
-
Notifications
You must be signed in to change notification settings - Fork 239
Do not compose with the default diagonal preconditioner if a prec is … #1808
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
2e89671 to
5d58581
Compare
Member
Author
using OrdinaryDiffEq, LinearSolve, Test, IncompleteLU, ModelingToolkit
import AlgebraicMultigrid
# Required due to https://github.com/JuliaSmoothOptimizers/Krylov.jl/pull/477
Base.eltype(::IncompleteLU.ILUFactorization{Tv, Ti}) where {Tv, Ti} = Tv
Base.eltype(::AlgebraicMultigrid.Preconditioner) = Float64
const N = 32
const xyd_brusselator = range(0, stop = 1, length = N)
brusselator_f(x, y, t) = (((x - 0.3)^2 + (y - 0.6)^2) <= 0.1^2) * (t >= 1.1) * 5.0
limit(a, N) = a == N + 1 ? 1 : a == 0 ? N : a
const iter = Ref(0)
function brusselator_2d_loop(du, u, p, t)
global iter[] += 1
A, B, alpha, dx = p
alpha = alpha / dx^2
@inbounds for I in CartesianIndices((N, N))
i, j = Tuple(I)
x, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]]
ip1, im1, jp1, jm1 = limit(i + 1, N), limit(i - 1, N), limit(j + 1, N),
limit(j - 1, N)
du[i, j, 1] = alpha * (u[im1, j, 1] + u[ip1, j, 1] + u[i, jp1, 1] + u[i, jm1, 1] -
4u[i, j, 1]) +
B + u[i, j, 1]^2 * u[i, j, 2] - (A + 1) * u[i, j, 1] +
brusselator_f(x, y, t)
du[i, j, 2] = alpha * (u[im1, j, 2] + u[ip1, j, 2] + u[i, jp1, 2] + u[i, jm1, 2] -
4u[i, j, 2]) +
A * u[i, j, 1] - u[i, j, 1]^2 * u[i, j, 2]
end
end
p = (3.4, 1.0, 10.0, step(xyd_brusselator))
function init_brusselator_2d(xyd)
N = length(xyd)
u = zeros(N, N, 2)
for I in CartesianIndices((N, N))
x = xyd[I[1]]
y = xyd[I[2]]
u[I, 1] = 22 * (y * (1 - y))^(3 / 2)
u[I, 2] = 27 * (x * (1 - x))^(3 / 2)
end
u
end
u0 = init_brusselator_2d(xyd_brusselator)
prob_ode_brusselator_2d = ODEProblem(brusselator_2d_loop,
u0, (0.0, 11.5), p)
du0 = copy(u0)
jac = ModelingToolkit.Symbolics.jacobian_sparsity((du, u) -> brusselator_2d_loop(du, u, p,
0.0), du0,
u0)
prob_ode_brusselator_2d_sparse = ODEProblem(ODEFunction(brusselator_2d_loop,
jac_prototype = float.(jac)),
u0, (0.0, 11.5), p)
function incompletelu(W, du, u, p, t, newW, Plprev, Prprev, solverdata)
if newW === nothing || newW
Pl = ilu(convert(AbstractMatrix, W), τ = 50.0)
else
Pl = Plprev
end
Pl, nothing
end
function algebraicmultigrid(W, du, u, p, t, newW, Plprev, Prprev, solverdata)
if newW === nothing || newW
Pl = AlgebraicMultigrid.aspreconditioner(AlgebraicMultigrid.ruge_stuben(convert(AbstractMatrix,
W)))
else
Pl = Plprev
end
Pl, nothing
end
function algebraicmultigrid2(W, du, u, p, t, newW, Plprev, Prprev, solverdata)
if newW === nothing || newW
A = convert(AbstractMatrix, W)
Pl = AlgebraicMultigrid.aspreconditioner(AlgebraicMultigrid.ruge_stuben(A,
presmoother = AlgebraicMultigrid.Jacobi(rand(size(A,
1))),
postsmoother = AlgebraicMultigrid.Jacobi(rand(size(A,
1)))))
else
Pl = Plprev
end
Pl, nothing
end
iter[] = 0
sol1 = solve(prob_ode_brusselator_2d, KenCarp47(linsolve = KrylovJL_GMRES()),
save_everystep = false);
iter1 = iter[];
iter[] = 0;
sol2 = solve(prob_ode_brusselator_2d_sparse,
KenCarp47(linsolve = KrylovJL_GMRES(), precs = incompletelu,
concrete_jac = true), save_everystep = false);
iter2 = iter[];
iter[] = 0;
sol3 = solve(prob_ode_brusselator_2d_sparse,
KenCarp47(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid,
concrete_jac = true), save_everystep = false);
iter3 = iter[];
iter[] = 0;
sol4 = solve(prob_ode_brusselator_2d_sparse,
KenCarp47(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid2,
concrete_jac = true), save_everystep = false);
iter4 = iter[];
iter[] = 0;
@test iter2 < iter1
@test iter3 < iter1
@test iter4 < iter1
@show iter1, iter2, iter3, iter4
# Before
(iter1, iter2, iter3, iter4) = (21367, 3025, 1646, 2145)
# After
(iter1, iter2, iter3, iter4) = (21367, 2649, 1402, 1884) |
Member
Author
function incompletelu(W, du, u, p, t, newW, Plprev, Prprev, solverdata)
if newW === nothing || newW
Pl = ilu(convert(AbstractMatrix, W), τ = 0.5)
else
Pl = Plprev
end
Pl, nothing
end
# Before
iter2 = 1580
# After
iter2 = 1372Convergence of iLU improves. This is clearly better. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
…chosen