Skip to content

Seanseattle/SMIS

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Semantically Multi-modal Image Synthesis

Project page / Paper / Demo

gif demo
Semantically Multi-modal Image Synthesis(CVPR2020).
Zhen Zhu, Zhiliang Xu, Ansheng You, Xiang Bai

Requirements


  • torch>=1.0.0
  • torchvision
  • dominate
  • dill
  • scikit-image
  • tqdm
  • opencv-python

Getting Started


Data Preperation

DeepFashion
Note: We provide an example of the DeepFashion dataset. That is slightly different from the DeepFashion used in our paper due to the impact of the COVID-19.

Cityscapes
The Cityscapes dataset can be downloaded at here

ADE20K
The ADE20K dataset can be downloaded at here

Test/Train the models

Download the tar of the pretrained models from the Google Drive Folder. Save it in checkpoints/ and unzip it. There are deepfashion.sh, cityscapes.sh and ade20k.sh in the scripts folder. Change the parameters like --dataroot and so on, then comment or uncomment some code to test/train model. And you can specify the --test_mask for SMIS test.

Acknowledgments


Our code is based on the popular SPADE

About

Semantically Multi-modal Image Synthesis(CVPR 2020)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published