| project | type | status | beth_topics | tags | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
genesisgraph |
software |
active |
|
|
v0.3.0 β November 2025
An open standard for cryptographically proving how things were made.
GenesisGraph provides verifiable provenance for AI pipelines, manufacturing, scientific research, and any workflow where "prove how you made this" matters. The three-level selective disclosure model (A/B/C) enables proving compliance without revealing trade secretsβsolving the "certification vs IP protection" dilemma.
# Python
pip install genesisgraph
# JavaScript/TypeScript
npm install @genesisgraph/sdk
# CLI Tool
pip install genesisgraph[cli]from genesisgraph import GenesisGraph, Entity, Operation, Tool
# Create a document
gg = GenesisGraph(spec_version="0.1.0")
# Add a tool
tool = Tool(id="freecad", type="Software", version="0.21.2")
gg.add_tool(tool)
# Add entities
input_file = Entity(id="model.fcstd", type="CADModel", version="1.0",
hash="sha256:a1b2...")
output_file = Entity(id="model.stl", type="Mesh3D", version="1.0",
hash="sha256:e5f6...", derived_from=["model.fcstd@1.0"])
gg.add_entity(input_file)
gg.add_entity(output_file)
# Record the operation
op = Operation(id="export_stl", type="mesh_export",
inputs=["model.fcstd@1.0"], outputs=["model.stl@1.0"],
tool="freecad@0.21.2")
gg.add_operation(op)
# Export provenance
gg.save_yaml("workflow.gg.yaml")Learn more: 5-Minute Quickstart
graph LR
subgraph "Level A: Full"
A[ποΈ All visible<br/>Complete transparency]
end
subgraph "Level B: Partial"
B[π Claims verified<br/>Details hidden]
end
subgraph "Level C: Sealed"
C[π‘οΈ ZK proofs<br/>Zero disclosure]
end
A -.increasing privacy.-> B -.-> C
style A fill:#90EE90
style B fill:#FFD700
style C fill:#87CEEB
| Level | What You Share | Use When |
|---|---|---|
| A: Full | All details visible | Internal audits, open research |
| B: Partial | Policy claims visible, parameters hidden | Regulatory compliance |
| C: Sealed | Merkle commitments + TEE attestations | High-value IP, supply chains |
Example: Prove ISO 9001 compliance without revealing manufacturing toolpaths, or AI safety compliance without exposing proprietary prompts.
Learn more: Disclosure Levels Guide
GenesisGraph is a production component of the Semantic Infrastructure Lab (SIL) β building the semantic substrate for intelligent systems.
Role in the Semantic OS:
- Cross-Cutting: Provenance infrastructure (enables verifiable transformations across all layers)
SIL Principles Applied:
- β Clarity β Explicit process representation, no hidden transformations
- β Simplicity β Minimal standard (graphs, hashes, signatures)
- β Composability β Graphs compose, selective disclosure composes
- β Correctness β 666+ tests, cryptographic verification
- β Verifiability β Core mission: provable computational correctness
Quick Links: SIL Manifesto β’ Unified Architecture β’ Project Index
Full documentation: scottsen.github.io/genesisgraph
| Role | Start Here |
|---|---|
| π¨βπ» Developers | Quickstart β Examples β Architecture |
| π’ Decision-Makers | FAQ β Use Cases β Vision |
| π€ AI/ML Engineers | Disclosure Levels β AI Examples β AI Validators |
| π¬ Researchers | Specification β Selective Disclosure β ZKP Templates |
- Getting Started (5-10 min) - Installation, quickstart, examples
- User Guide (15-30 min) - Features, disclosure levels, advanced topics
- Developer Guide (30-60 min) - Architecture, contributing, security
- Strategic Context (20-45 min) - Vision, roadmap, critical gaps
- β Three-level selective disclosure (A/B/C)
- β Cryptographic signatures (Ed25519)
- β Hash verification (SHA256, SHA512, Blake3)
- β Python & JavaScript SDKs
- β
CLI tool (
ggcommand)
- β DID resolution (did:key, did:web, did:ion, did:ethr)
- β Certificate Transparency log integration (RFC 6962)
- β Selective Disclosure JWT (SD-JWT)
- β BBS+ signatures for privacy
- β Zero-knowledge proof templates
- β Profile validators (AI Basic, CAM, ISO 9001, FDA 21 CFR 11)
- 666+ comprehensive tests
- ~76% test coverage (up from 63% in v0.2)
- Production-ready cryptographic features (98%+ coverage)
- CI/CD with GitHub Actions (Python 3.9-3.12)
See: Implementation Status for complete details.
- AI Pipelines: Track model training, validate datasets, prove compliance
- Manufacturing: CAD provenance, ISO 9001 compliance, supply chain verification
- Scientific Research: Reproducible science, data lineage, peer review
- Healthcare: Medical data processing chains, HIPAA compliance
- Supply Chains: Verify product origins, track transformations
See: Use Cases & Examples
Current Version: v0.3.0 (November 2025) Target: v1.0 Production Release (March 2027)
Next Milestones:
- v0.4.0 (Jan 2026) - 90% test coverage, API docs site, strict typing
- v0.5.0 (Mar 2026) - Formal threat model, lifecycle & revocation
- v0.6.0 (May 2026) - Delegation & authorization framework
- v0.7.0 (Aug 2026) - AI agent provenance
See: Complete Roadmap
We welcome contributions! Please see our Contributing Guide for details.
Quick Links:
- Specification: CC-BY 4.0
- Code & SDKs: Apache 2.0
- Documentation: scottsen.github.io/genesisgraph
- Issues: github.com/scottsen/genesisgraph/issues
- Discussions: github.com/scottsen/genesisgraph/discussions
- Security: See SECURITY.md for vulnerability reporting
GenesisGraph β Proving how things were made, without revealing how to make them.