

BC SW – Style Guide

24.01.2021 Seite 2 von 21

Version overview

Version Author Chapter Remarks/Changes

1.0 Lucka First version

Shortcuts und glossary

24.01.2021 Seite 3 von 21

Contents

1 Naming Rules 4

1.1 Requirement 1: Use of prefixes 4

1.2 Requirement 2: Use of capitalization 6

1.3 Requirement 3: Names to avoid 7

1.4 Requirement 4: Acceptable name length 8

1.5 Requirement 5: Acceptable character set 9

1.6 Requirement 6: Similarity of names 9

2 Coding Practice 10

2.1 Requirement 7: All variables shall be initialized before being used 10

2.2 Requirement 8: Direct addressing should be done in one location to avoid
overlapping 11

2.3 Requirement 9: Avoid external variables in functions, function blocks and
classes 12

2.4 Requirement 10: Floating point comparison shall not be equality or inequality
 13

2.5 Requirement 11: Time and physical measures comparison shall not be
equality or inequality 13

2.6 Requirement 12: Physical inputs and outputs shall be read and written once
per plc cycle 14

2.7 Requirement 13: POUs shall have a single point of exit 14

2.8 Requirement 14: Read a variable written by another task once per cycle 15

2.10 Requirement 15: Usage of parameters shall match their declaration mode 16

2.11 Requirement 16: Function Block instances should only be called once 17

2.12 Requirement 17: Define maximum Input/Output/In-Out variables for a POU 17

2.13 Requirement 18: Do not declare variables that are not used 17

2.14 Requirement 19: Datatype conversion should be explicit 17

2.15 Requirement 20: A global variable shall be written by only one program 17

2.16 Requirement 21: Call timer outside of switch-cases or if-instructions 18

3 Language 19

3.1 Requirement 22: Indentation 19

3.2 Requirement 23: Loop variables should not be modified inside a FOR loop 19

3.3 Requirement 24: Use parenthesis to explicitly express operation precedence
 20

3.4 Requirement 25: Each IF instruction should have an ELSE clause 21

24.01.2021 Seite 4 von 21

1 Naming Rules

1.1 Requirement 1: Use of prefixes

Priority: High

Description: To improve readability and to reduce programming mistakes the use of prefixes shall be

introduced. A variable should include several types of information which include the scope,
datatype, and control information.

Following prefixes shall be used to provide the information mentioned above.

Datatype indication:

Type Prefix

BOOL bo

SINT si

USINT usi

INT i

DINT di

UINT ui

UDINT udi

REAL r

LREAL lr

TIME t

DATE dt

TIME_OF_DAY tod

DATE_AND_TIME dtt

STRING str

WSTRING wstr

BYTE by

WORD w

DWORD dw

Custom datatype indication:

Type Prefix

STRUCT st

ARRAY a

FUNCTION BLOCK fb

PROGRAM prg

Scope indication:

Type Prefix

Global glb

Retain ret

Temporary tmp

24.01.2021 Seite 5 von 21

Control indication:

Type Prefix
software

Prefix
hardware

Input i I

Output o O

If the use of multiple prefixes is required, they shall be used as followed:

<Scope>_<Control>_<Datatype><Name>
Example: glb_I_boStartButton

Example:

DON’T:

VAR_GLOBAL

 Error : BOOL;
END_VAR

VAR_INPUT

 Enable : BOOL;

END_VAR

VAR

 Start : BOOL;
 Count : INT;
 State : UINT;

 Autoload : AUTOLOAD_FB;
END_VAR

DO:

VAR GLOBAL

 glb_boError : BOOL;
END_VAR

VAR_INPUT

 i_boEnable : BOOL;

END_VAR

VAR

 boStart : BOOL;
 iCount : INT;
 uiState : UINT;

 fbAutoload : AUTOLOAD_FB;
END_VAR

24.01.2021 Seite 6 von 21

1.2 Requirement 2: Use of capitalization

Priority: High

Description: To further improve readability and understanding of code the use of capitalization is a small

but powerful way of naming all variables, constants, functions, function blocks, etc.
From now on CamelCase shall be used for all non-constant objects. For constant objects use
UPPER_SNAKE_CASE.

Exception: When beginning an object name with a prefix, the prefix is all lowercase.

Example:

DON’T:

VAR_CONSTANT

 Numberofagvs : INT;

END_VAR

FORK_REG();
HydraulicPressure();
AUTOLOAD_FB();

DO:

VAR_CONSTANT

 iNUMBER_OF_AGVS : INT;
END_VAR

fbForkReg();
fbHydraulicPressure();
fbAutoload();

24.01.2021 Seite 7 von 21

1.3 Requirement 3: Names to avoid

Priority: High

Description: The use of keywords and reserved words must be avoided to prevent build errors. Even

words the currently used compiler does not mark as a keyword or reserved word should not
be used to maintain portability. To prevent the use of such words the following table lists all
words that are prohibited to be used as an object name (not for use in a name):

ABS

ABSTRACT

ACOS

ACTION

ADD

AND

ARRAY

ASIN

AT

ATAN

ATAN2

BOOL

BY

BYTE

CASE

CHAR

CLASS

CONCAT

CONFIGURATION

CONSTANT

CONTINUE

COS

CTD

CTU

CTUD

DATE

DATE_AND_TIME

DELETE

DINT

DIV

DO

DT

DWORD

ELSE

ELSIF

END_ACTION

END_CASE

END_CLASS

END_CONFIGURATION

END_FOR

END_FUNCTION

END_FUNCTION_BLOCK

END_IF

END_INTERFACE

END_METHOD

END_NAMESPACE

END_PROGRAM

LTOD

END_REPEAT

END_RESOURCE

END_STEP

END_STRUCT

END_TRANSITION

END_TYPE

END_VAR

END_WHILE

EQ

EXIT

EXP

EXPT

EXTENDS

F_EDGE

F_TRIG

FALSE

FINAL

FIND

FOR

FROM

FUNCTION

FUNCTION_BLOCK

GE

GT

IF

IMPLEMENTS

INITIAL_

STEP

INSERT

INT

INTERFACE

INTERNAL

INTERVAL

LD

LDATE

LDATE_AND_TIME

LDT

LE

LEFT

LEN

LIMIT

LINT

LN

LOG

LREAL LT LTIME

LTIME_OF_DAY

LTOD

LWORD

MAX

METHOD

MID

MIN

MOD

MOVE

MUL

MUX

NAMESPACE

NE

NON_RETAIN

NOT

NULL

OF

ON

OR

OVERLAP

OVERRIDE

PRIORITY

PRIVATE

PROGRAM

PROTECTED

PUBLIC

R_EDGE

R_TRIG

READ_ONLY

READ_WRITE

REAL

REF

REF_TO

REPEAT

REPLACE

RESOURCE

RETAIN

RETURN

RIGHT

ROL

ROR

RS

SEL

SHL

SHR

SIN

SINGLE

SINT

SQRT

SR

STEP

STRING

STRING#

STRUCT

SUB

SUPER

T

TAN

TASK

THEN

THIS

TIME

TIME_OF_DAY

TO

TOD

TOF

TON

TP

TRANSITION

TRUE

TRUNC

TYPE

UDINT

UINT

ULINT

UNTIL

USING

USINT

VAR

VAR_ACCESS

VAR_CONFIG

VAR_EXTERNAL

VAR_GLOBAL

VAR_IN_OUT

VAR_INPUT

VAR_OUTPUT

VAR_TEMP

WCHAR

WHILE

WITH

WORD

WSTRING

XOR

24.01.2021 Seite 8 von 21

1.4 Requirement 4: Acceptable name length

Priority: Medium

Description: To further ensure an easier understanding and a better maintainability of code this rule

defines mnemonics and a maximum and a minimum length range for object names to use.
 The following guidelines should be followed:

1. Don’t use less than
a. 8 characters for object names
b. 3 characters for local variables

2. A maximum length of 25 characters for objects should not be exceeded
3. The average length of names should be around 15 characters
4. Abbreviations should only be used if well known
5. Names shouldn’t be very similar

The following table shows a list of well-known abbreviations:

Abbrev. Meaning

Min Minimum

Max Maximum

Act Actual, Current

Next Next value

Prev Previous value

Avg Average

Sum Total sum

Diff Difference

Cnt Count

Len Length

Pos Position

Ris Rising edge

Fal Falling edge

Old Old value

Sim Simulated

Dir Direction

Err Error

Warn Warning

Cmd Command

Addr Address

Exceptions: This rule can be ignored if for example loop indexes are used.

Example:

DON’T:

abc : INT;
Go : BOOL;

MaximumTemepratureForThermocoupleOutput : REAL;

DO:
boStart : BOOL;

rMaxTCTemeperature : REAL;

24.01.2021 Seite 9 von 21

1.5 Requirement 5: Acceptable character set

Priority: Medium

Description: The use of special characters could lead to problems in portability of developing

environments or platforms and leads to worse readability. To prevent those problems only
alphanumeric and underscore characters should be used.

Example:

DON’T:

boDépart : BOOL;

boBöse : BOOL;

DO:
boDepart : BOOL;
boBoese : BOOL;

1.6 Requirement 6: Similarity of names

Priority: Medium

Description: The use of nearly identical names for objects should be avoided even if compilation is

possible. This prevents readability issues.

Example:

DON’T:

VAR_GLOBAL

 MyResult : REAL;
END_VAR

FUNCTION_BLOCK MyResult
 MyResult : REAL;
END_FUNCTION_BLOCK

DO:
VAR_GLOBAL

 glb_rMyResult : REAL;
END_VAR

FUNCTION_BLOCK FBNAME_FB
 rMyResult : REAL;
END_FUNCTION_BLOCK

24.01.2021 Seite 10 von 21

2 Coding Practice

2.1 Requirement 7: All variables shall be initialized before being used

Priority: High

Description: All variables shall be initialized before being read by another part of code. This does not

apply for variables that need to be initialized as 0, because the PLC initializes all variables as
0. Variables that are linked to physical inputs don’t need to be initialized.

Example:

DON’T

VAR

LoadDist : INT := 360;

SavePara : BOOL;

TargetSpeed : INT;

TargetPosition : DINT;

SteerSetAngleEnabled : BOOL := 0;

SteerMethod : DINT := 0;

SteerMethodMan : DINT := 0;
END_VAR

DO

VAR

iLoadDist : INT := 360;
boSavePara : BOOL;
iTargetSpeed : INT;
diTargetPosition : DINT;
boSteerSetAngleEnabled : BOOL;
diSteerMethod : DINT;
diSteerMethodMan : DINT;

END_VAR

24.01.2021 Seite 11 von 21

2.2 Requirement 8: Direct addressing should be done in one location to avoid
overlapping

Priority: High

Description: When assigning a memory location to an object, it should be taken care that the memory is

not already assigned. To ensure no overlapping of memory usage, all direct memory
addressing should be done in one location.

 Direct memory addressing is only allowed in STOPSYMBOLS.POE

Example:

DON’T

PROGRAM StopSymbols

VAR_GLOBAL

 StopButton AT %MX0.0 : BOOL; (* soft stop button is pressed *)

END_VAR

END_PROGRAM

PROGRAM GLOBAL

VAR_GLOBAL

 HostStop AT %MX0.0 : BOOL; (* stop by host *)

END_VAR

END_PROGRAM

DO

PROGRAM prgStopSymbols
VAR_GLOBAL

 glb_O_dwStopWord AT %MX0.0 : DWORD; (*Sum of the four

 first bytes*)

 glb_O_boStopButton AT %MX0.0 : BOOL; (* soft stop button

 is pressed *)
 glb_O_boHostStop AT %MX0.1 : BOOL; (* stop by host *)
END_VAR

END_PROGRAM

24.01.2021 Seite 12 von 21

2.3 Requirement 9: Avoid external variables in functions, function blocks and
classes

Priority: extreme

Description: The use of external variables referencing global variables in functions and function blocks

shall be avoided. This means do not use VAR_EXTERNAL inside the definition of a function
or function block.

 Instead of using external references to global variables, the input and output parameter list
can be extended.

 Encapsulation of data can minimize integration testing and remove functional testing for pre-
tested POUs as the known behavior can’t change.

 Using In- and Output variables can also help grasping the variable access and determine
where a variable is written.

Example:

DON’T

FUNCTION_BLOCK CheckTemperature
VAR_EXTERNAL

 boModeAuto : BOOL; (* AGV is in Automode *)
 iCurrentTemp : INT; (* Temperature of CVC *)
END_VAR;

VAR_INPUT

 i_boEnable : BOOL; (* Enable Function *)
 i_iMaxTemp : INT; (* Maximum CVC Temperature *)
END_VAR;

VAR_OUTPUT

 o_boTempOK : BOOL; (* Temperature Status OK *)
END_VAR;

o_boTempOK := i_boEnable AND boModeAuto AND (iCurrentTemp < i_iMaxTemp);

DO

FUNCTION_BLOCK CheckTemperature
VAR_INPUT

 i_boEnable : BOOL; (* Enable Function *)
 i_iMaxTemp : INT; (* Maximum CVC Temperature *)

i_boModeAuto : BOOL; (* AGV is in Automode *)
 i_iCurrentTemp : INT; (* Current Temperature of CVC *)

END_VAR;

VAR_OUTPUT

 o_boTempOK : BOOL; (* Temperature Status OK *)
END_VAR;

o_boTempOK := i_boEnable AND i_boModeAuto AND (i_iCurrentTemp < i_iMaxTemp);

24.01.2021 Seite 13 von 21

2.4 Requirement 10: Floating point comparison shall not be equality or inequality

Priority: High

Description: Using equality or inequality operators to detect a threshold with floating point variable is

prohibited. Instead use only the following operators:

• strict less than (<)

• less than or equal (<=)

• strict greater than (>)

• greater than or equal (>=).

2.5 Requirement 11: Time and physical measures comparison shall not be equality
or inequality

Priority: High

Description: Using equality or inequality operators to detect a threshold with time information or physical

measure even in Integer format is prohibited. Instead use only the following operators:

• strict less than (<)

• less than or equal (<=)

• strict greater than (>)

• greater than or equal (>=).

24.01.2021 Seite 14 von 21

2.6 Requirement 12: Physical inputs and outputs shall be read and written once
per plc cycle

Priority: High

Description: The physical inputs shall be read only once per PLC cycle. Reading the physical inputs at the

beginning of the task ensures that every POU uses the same information each cycle.

The physical outputs shall be written only once per PLC cycle. The physical outputs should
be written in one location at the end of the task.

2.7 Requirement 13: POUs shall have a single point of exit

Priority: High

Description: For testability, readability, and maintainability reasons and to provide easy debugging there

should only be one point of exit in any POU created. This rule prohibits the use of RETURN
and forces to create conditional instructions.

Example:

DON’T:

IF iResult = 1 THEN
 RETURN;
END_IF;

…some more code

DO:
IF iResult = 1 THEN
 boDone := TRUE;
END_IF;

IF NOT boDone THEN
 …some more code
END_IF;

24.01.2021 Seite 15 von 21

2.8 Requirement 14: Read a variable written by another task once per cycle

Priority: High

Description: To avoid reading the same variable of one task in a cycle of another task more than once and

therefore getting different results, objects of another task should only be read once in the
beginning of a cycle. This prevents an unexpected change in value during the same cycle of
program execution. Those variables should be treated as inputs or outputs.

Example:

DON’T

fbDoSomething(iValue := glb_iTask2Value);

…some more code

fbDoMore(iValue := glb_iTask2Value);

DO

tmp_iTask2Value := glb_iTask2Value;
fbDoSomething(iValue := tmp_iTask2Value);

…some more code

fbDoMore(iValue := tmp_iTask2Value);

24.01.2021 Seite 16 von 21

2.10 Requirement 15: Usage of parameters shall match their declaration mode

Priority: High

Description: When using input, output, or in-out variables they must be used as declared. The following

rules must be followed when using such variables:

• Each input variable must be read at least once in a cycle

• No input variable should be written

• Each output variable must be written once in a cycle

• Each in-out-variable should be either written or read once a cycle

Example:

DON’T

VAR INPUT

 i_iValue : INT;
END_VAR

VAR OUTPUT

 o_boDone : BOOL;
END_VAR

FUNCTION_BLOCK MYFB_FB
 i_iValue := 10;
END_FUNCTION_BLOCK

DO

VAR INPUT

 i_iValue : INT;
END_VAR

VAR OUTPUT

 o_boDone : BOOL;
END_VAR

FUNCTION_BLOCK MYFB_FB
 IF i_iValue = 10 THEN
 o_boDone := TRUE;
 END_IF;
END_FUNCTION_BLOCK

24.01.2021 Seite 17 von 21

2.11 Requirement 16: Function Block instances should only be called once

Priority: Medium

Description: It is advised to call function block instances only once per program cycle to keep code

maintainable. During development by frequently using the copy and paste function the
occasions of error increases which may lead to the use of an instance twice and therefore
unwanted behavior within the code.

Exceptions: There may be scenarios where the call of the same instance could be efficient. If such a use

of function block instances is well sophisticated it can be used.

2.12 Requirement 17: Define maximum Input/Output/In-Out variables for a POU

Priority: Medium

Description: To increase the readability of code a maximum amount of 10 Input/Output/In-Out variables

overall should not be exceeded for a single function block or function. If there is a need to
exceed this amount the use of user defined structures to group information is advised.

2.13 Requirement 18: Do not declare variables that are not used

Priority: Medium

Description: During program development it may occur that removal of unused objects after removal of

the same object in the code is not as important. Nevertheless, the removal of such unused
object should be done at the latest before deployment. Unremoved and unused object take
up unnecessary memory which can be avoided.

2.14 Requirement 19: Datatype conversion should be explicit

Priority: Medium

Description: If operations between different datatypes are used the conversion of the different datatypes

should be done by the developer and not the compiler to avoid precision loss where precision
is needed. The developer should keep that in mind, keep the original datatype as long as
possible, and purposefully use conversions.

Example:

DON’T

iValue1 := REAL_TO_INT(rValue1);

iValue2 := REAL_TO_INT(rValue2);

iResult := (iValue1 + iValue2) / iValue3;

DO

iResult := REAL_TO_INT(rValue1 + rValue2) / iValue3;

2.15 Requirement 20: A global variable shall be written by only one program

Priority: Medium

Description: If global variables are used in different Programs each global variable should only be written

by one program to keep an easy understanding of dataflow.

24.01.2021 Seite 18 von 21

2.16 Requirement 21: Call timer outside of switch-cases or if-instructions

Priority: High

Description: Timer should always be called outside of switch-cases or if-instructions. Only the start

condition and initial time value should be used inside a switch-case or if-instruction.

Example:

DON’T:

CASE iState OF
0 :
 IF iHeight < iMaxHeight THEN

iState := 1;
 END_IF;

1 : (* move up *)
T_Up(IN := TRUE, PT := T#1000MS);
IF T_Up.Q THEN
 (* do move up *)
 iState := 0;

 END_IF;
END_CASE;

DO:

T_Up(IN := boUp, PT := T#1000MS);

CASE iState OF
0 :
 IF iHeight < iMaxHeight THEN

boUp := TRUE;
iState := 1;

 ELSE
boUp := FALSE;

 END_IF;

1 : (* move up *)
IF T_Up.Q THEN
 (* do move up *)
 iState := 0;

 END_IF;
END_CASE;

24.01.2021 Seite 19 von 21

3 Language

3.1 Requirement 22: Indentation

Priority: Medium

Description: To keep the code readable especially for nested cases and loops an indentation level of 4

spaces or one Tab should be used for each case or loop.

Example:

DON’T

IF boEnable THEN

…some code

ELSE

IF boTest THEN

…some code

END_IF;

END_IF;

DO

IF boEnable THEN
 …some code

ELSE

 IF boTest THEN
 …some code

 END_IF;

END_IF;

3.2 Requirement 23: Loop variables should not be modified inside a FOR loop

Priority: Medium

Description: Modifying loop variables inside a FOR loop is forbidden. The FOR statement is used if the

number of iterations can be determined in advance; otherwise, the WHILE or REPEAT
constructs are used. Modifying during execution can cause unexpected behavior, including
infinite loops, and can be difficult to debug and maintain.

Example:

DON’T

FOR i := 0 TO 100 DO
 IF a_array[i] = i_value THEN
 i := 100;

 END_IF;
END_FOR;

DO

WHILE i <= 100 AND a_array[i] <> i_value DO
 i := i + 1;

END_WHILE;

24.01.2021 Seite 20 von 21

3.3 Requirement 24: Use parenthesis to explicitly express operation precedence

Priority: Medium

Description: When using operators with a similar precedence, like AND/OR/= or +/-, use parenthesis to

clarify the intention of the code.

Example:

DON’T

IF A AND B OR C AND D THEN

… Do something

END_IF;

DO

IF (A AND B) OR (C AND D) THEN
… Do something

END_IF;

24.01.2021 Seite 21 von 21

3.4 Requirement 25: Each IF instruction should have an ELSE clause

Priority: Low

Description: For every IF/SWITCH-CASE instruction in the code, an ELSE clause should be added to

ensure that all cases are managed. The developer should always take into account what will
happen if the condition is false.

Example:

DON’T

IF iValue = 1 THEN
… Do something

ELSIF iValue = 5 THEN

… Do something else

END_IF;

DO

IF iValue = 1 THEN
… Do something

ELSIF iValue = 5 THEN

… Do something else

ELSE

 … Handle unexpected values

END_IF;

