
Best Buy Search Final Report
Seth Cram

University of Idaho
Moscow, Idaho, USA

cram1479@vandals.uidaho.edu

Chadwick Goodall
University of Idaho
Moscow, Idaho, USA

good0206@vandals.uidaho.edu

ABSTRACT
This document focuses on the creation and development of a Best
Buy service matching database project assigned in CS 360 at the
University of Idaho. The overarching goal of the project was to
implement a web-service that would match products and services
offered by vendors to a customer, through the creation of a web-
site. This was accomplished using the Django web framework, the
MySQL relational database management system and several other
web development tools and frameworks.

Brief Disclaimers: Thewords "product" and "item" are used nearly
interchangeably below. Since there’s a category labeled as "services",
all products should be assumed as "items". This has been an ongoing
struggle to settle on the proper wording. Additionally, the words
"model" and "table" are used interchangeably and should be treated
as referring to the same structure.

CCS CONCEPTS
• Information systems→ Relational database model; Entity
relationship models; Structured Query Language; Autonomous
database administration; Database views; Database web servers.

KEYWORDS
RDMS (Relational Database Management System), ER (Entity Rela-
tion) diagram, MySQL, Django, Bootstrap, PHPMyAdmin, Python,
HTML, JS, CSS, items, products
ACM Reference Format:
Seth Cram and Chadwick Goodall. 2022. Best Buy Search Final Report.
In Proceedings of May 5-5-22, 2022. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
In today’s modern world almost all software is a service and most

companies implement some form of web-service to conduct business.
The students of CS360 were given the task of creating a database
solution for a product/service matching third party service provided
for Best Buy. The stipulations of the project description included that
a customer must be able to anonymously (relative to vendors) dis-
close their product/service requirements under terms and conditions
of service and then customers should be able to receive a "wish-list"
of their items. This wish-list, which for our particular application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
May 5-5-22, 2022, Moscow, Idaho, USA,
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

was implemented in the form of search pages, was required to dis-
play a perfect match to the customer’s search and a closest similar
match. A requirement match was achieved through a different type
of page, a recommendations page based on customer cart items. With
this in mind, similar to many businesses, the approach taken was to
implement a web-service application. Therefore, the Best Buy Search
website was developed.

This service implements account registration under a binding con-
tract of terms and conditions of service, as well as several searching
and filtering capabilities that are provided to the user of the website,
either customer or vendor, as well as a cart for customers to add and
remove items from for checkout. Additionally, vendors are able to
fully utilize the CRUD operations in order to Create, Read, Update, or
Delete listed products on the site.

1.1 Design

Figure 1: Pre 3NF Decomposition Diagram

The design of the Best Buy Search database consists of five tables:
User, Vendor, Customer, CustomerProduct and VendorProduct. The
first three tables serve as determining what permissions a site visitor
should have. The CustomerProduct table links customers to what items

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

May 5-5-22, 2022, Moscow, Idaho, USA,
Seth Cram and Chadwick Goodall

they’ve decided to add to their cart. Finally, the VendorProduct table
contains all information related to published items and necessary for
display.

Figure 2: Post 3NF Decomposition Diagram

As seen above, the design modeling of Best Buy Search adheres to
the pre-3NF decomposition, rather than the post-3NF decomposition
schema. Throughout the rest of the report, several reasons are given
for this discrepancy. The main reason being that for future expand-
ability, keeping the Customer table is crucial. To dissuade possible
doubt, the separation of the Customer id into its own table shouldn’t
enable update, insertion, or deletion anomalies, since the post-3NF
decomposition schema can be ordered in several ways, one being
equivalent to the ER Diagram used in the Best Buy Search database.

Database design began at a strictly abstract level and the ER
diagram initially contained around eight tables. Upon realizing that a
variety of tables needed to fulfill the search requirements were derive-
able and not contained within the database, the diagram shrunk in
size.

1.2 Tools used for development
Throughout the development of this project, several software tools

were necessary for the completion of the Best Buy Search web-service.
Some of these tools that were used include the XAMPP web server
solution for locally hosting the MySQL database and providing the
PHPMyAdmin service. PHPMyAdmin was an integral tool, providing
visibility into the database and its tables over the course of devel-
opment and was used to view resulting table changes and test the
functionality of pages within the website. This was primarily nec-
essary to ensure that the website was properly interacting with the

database and vice versa. The actual coding environments used for
programming the project primarily relied upon Spyder, Visual Studio,
and Visual Studio Code. Git, as well as the accompanying webservice
Github, were used for version control of the project to ensure project
files were in sync between both developers at all times.

The backend framework, which is the driving force behind most
of the project, was the Django web framework which is implemented
using Python3. Django allows for the implementation of a model-
template-view architectural pattern and, with a basic knowledge of
Python classes, allows for the rapid development of web based appli-
cations. The template aspect of Django’s development architecture
allowed for the inheritance of structure and style when developing
the UI. This greatly assisted in speeding up the development of the
website. Furthermore, Django was also chosen for the development of
this project since it was written in Python, which both team members
have experience coding in.

The frontend framework used to design and implement the user
interface was the free and open source Bootstrap CSS framework. With
ample documentation and boilerplate code, Bootstrap facilitated the
development of the UI (User Interface) and expedited the creation of
the webpages themselves tremendously. Utilizing bootstrap’s available
resources enabled both developers, with minimal knowledge of most
web development languages such as HTML, CSS, and JavaScript, to
create a sleek, modern, and feature-rich interface for the Best Buy
Search service.

1.3 Languages used for development
The languages used to develop the Best Buy Search were primarily

dictated by the tools (frameworks) that were used to develop it. As
such, Python was the main language used for programming the fa-
cilitated functionality of the website built on Django. Python, being
a rather human readable and vastly practical and applicable pro-
gramming language, was chosen due to its ease of use as well as both
programmers having extensive experience with the language. HTML,
CSS, and Javascript were primarily imported from the Bootstrap fron-
tend framework and enabled the website’s ease-of-use and stylization
which included buttons, the navigation bar, search bar, forms, drop-
down menus, etc. As stated previously, with both developers having
rather minimal experience in web development, the framework facili-
tated design and vastly abstracted the nuances behind a majority of
the process.

2 BEST BUY SEARCH DATABASE
As with most databases, the Best Buy Search database schema

is composed of several tables containing data relevant to the imple-
mentation and functionality of the project. With the given criteria
that the project is supposed to implement a product/service matching
service for Best Buy, tables were constructed to properly implement
such a project that involved keeping track of the users and items. To
manage all of the necessary data, product vendors, and customers,
the following tables were constructed in order to manage their related
information: user, customer, customer products (implements the cus-
tomer’s shopping cart), vendor, and vendor products. The following

Best Buy Search Final Report
May 5-5-22, 2022, Moscow, Idaho, USA,

text describes and discusses the implementation, contents, and im-
portance of each of these tables in the overall design of the Best Buy
Search service.

2.1 User table
The user table contains information shared by both customer and

vendor user types. It contains the user ID, password, username, is_vendor,
and is_customer. Both is_vendor and is_customer are boolean fields
used to determine a whether a user is a vendor or customer. ID and
username serve as two primary keys in the user table, which may
seem redundant. An argument for keeping both primary keys is that
username needs to be unique for verification purposes and cannot
contain null values, and ID was kept as a primary key in the event of
converting over to using email for login verification instead of user-
name. Email itself wouldn’t necessarily have to be a primary key, and
it would make resetting passwords much easier to implement.

In retrospect, the is_vendor and is_customer fields seem fairly re-
dundant, since the vendor and customer tables can also serve the
purpose of differentiating whether a user is a customer or not. Thus it
makes sense why these fields were removed from the left-hand-side
of all the functional dependencies during the 3NF Decomposition.
Therefore, a recommendation for further development would be to
entirely remove the is_vendor and is_customer fields, and rewrite the
decorators that use these fields to take advantage of all three user
tables.

2.2 Customer table
The customer table within the database schema manages and keeps

track of the customer accounts that have been registered to the Best
Buy Search site. As a result, this table is a rather simple list of customer
IDs.

When performing the 3NF decomposition, it was possible to combine
this table into other pre-existing tables, but it was kept apart simply
for future expansion when the customer has more fields unique to
them. Credit card and address information are important fields for
the creation of a fully-functioning checkout page and may be unique
to the customer user type.

2.3 Customer products table
The customer products table is used to implement a user’s cart

within the database schema. The vendor product IDs that the customer
is checking out as well as the customer ID is stored within this table.
By using this method to store this data, it allows a specific product or
products to be associated with a particular customer. Since this data is
then managed by the database, the customer is free to browse through
all of the products and leave the website without losing the items in
their cart.

2.4 Vendor table
The vendor table includes the pieces of information required to

identify a vendor which includes the user ID as well as the vendor
brand. The brand name information is provided by the user upon ven-
dor account creation within the system, however, it is not functionally
implemented across the website. In future development, it would be
possible to use the brand name for item display and as a search field.

2.5 Vendor product table
The vendor product table keeps track of all of the products that

are listed on the Best Buy Search site. This is easily the largest table
managed by the database as each product registered to this table
contains information such as the product ID number, name, cost, and
type of payment for the product. Additional miscellaneous information
is also stored for each product, which includes the date the item was
published on the site, the date of its most recent update, the vendor
ID that it was created by, and information for displaying itself on the
shop page such as the quantity available, a brief and long product
description, as well as display images. In further project expansion
the "brand" field could also be stored in this table in order to allow
the customer to filter the products displayed in the shop by a specific
brand.

With the general concepts of the different tables necessary in order
to implement the project, the next major portion to discuss is the user
interaction with the service through the web interface.

3 BEST BUY SEARCH INTERFACE
An application user interface, when compared to the implemen-

tation of an application backend, is an equally important aspect to
consider when developing a software service as it is the primary ab-
straction through which standard users will be able to accomplish
varying tasks and go about their business.

3.1 Login page

Figure 3: User login homepage

The login page is rather self explanatory and allows users, either
customer or vendor, to login to their accounts. If the user does not yet
have an account registered to the Best Buy Search database, they are
provided the options to create an account as either a customer or item
vendor to the site.

3.2 Customer account creation page
The customer account creation page prompts the user for pertinent

user information necessary for creating a Best Buy Search account,
which includes a username and password. The page also states that the
user’s password must follow certain parameters for security purposes.
Lastly, before creating an account, the user must agree to the terms
and conditions of the Best Buy Search site.

May 5-5-22, 2022, Moscow, Idaho, USA,
Seth Cram and Chadwick Goodall

Figure 4: Customer Sign up Page

Inclusion of the user’s requirement to agree to the terms and service
of the site fulfills the project requirement of listing items under a
"binding contract" that needs to be accepted by both the customer and
vendor [1].

3.3 Vendor account creation page
The vendor account creation page is similar to the customer account

creation page, however, it requires additional information from the
user in order to properly register an account. This additional informa-
tion, on top of the username and password, is the brand name that
will be associated with this vendor account. This is implemented in
the Vendor table of the Best Buy Search database. As specified in the
customer account creation page, the terms and conditions for the site
must also be accepted by the vendor to create an account.

Figure 5: Vendor Sign up Page

Although not implemented, the brand name’s original purpose was
for displaying on each item. It would show the user who was selling
the item, so they could make a more informed decision on what to
purchase. Putting this concept into practice proved challenging, since
the brand name is in the Vendor table and not the VendorProduct table.
So, it never made it into the final product but should be considered for
future development, which is why it was left in the website.

3.4 Home store page

Figure 6: Store Homepage

The home store page is kept intentionally bare to accommodate
for quicker site navigation. It displays the four most recently updated
vendor products and a link to the terms and conditions document users
agreed to at the bottom of the page. The home page is the user’s first
introduction to the site after successfully creating and logging into an
account, so their focus should be on the navigation bar. Depending on
what type of user they’ve signed in as, they’ll be able to navigate to a
variety of different pages that’ll be discussed in more detail below.

As seen at the bottom of the page, there’s two other unused links
surround "terms". Future expansion should consider activating these
and bringing up external pages relevant to user privacy rights and a
support page for users with issues to contact IT or answer commonly
asked questions.

3.5 Searches
All three searches have multiple aspects in common. They are ac-

cessible to both user types, have a pagination of 20, display products
across the page, and use a button to initiate searching. Searches are
performed across the entire VendorProduct table. The Exact and Sim-
ilar searches use a search bar with user input to find items through
their name or category. When navigating to the exact and similar
search pages, they display the results of a search by empty string.
Meanwhile, the requirement search utilizes drop-down fields with
various predetermined choices, and displays all products that fit the
default specifications when the page is navigated to.

3.5.1 Exact search.

Best Buy Search Final Report
May 5-5-22, 2022, Moscow, Idaho, USA,

Figure 7: Exact Search

The exact search uses a case-insensitive SQL query to return the
precisely searched for item through name or category.

Searching through exact specification fulfills the customer’s desire
for a "specific product they want" as outlined in the Course Project
description [1]. Development for the exact search was merely following
a tutorial on how to implement a search bar in Django. Although,
after implementing the requirement search, the category search had
to be altered since the category was now an integer field.

3.5.2 Similar search.

Figure 8: Similar Search

Similar search uses a case-insensitive "contains" SQL query to
return searched for items through name or category. The SQL query
essentially acts as a sub-string search ignoring case.

Although not completely necessary according to the Project De-
scription, the similar search helps the user find a closely matched item.
More will be discussed about fulfilling the closest match wish-list be-
low, since that requirement is more closely related to the Requirement
search section.

Developing the similar search meant copying and altering the ex-
act search implementation. Similarly to the exact search, the category
search was also changed after implementation of the requirement
search. Which resulted in only one category being matched at a time.
For example, if we had the categories "Editing" and "Edition Manage-
ment", a similar search given the input "ed" would arbitrarily pick
one of the two categories to display items from. Even though both
categories have "ed" as a sub string. Ideally, both categories would be
displayed, but this was one of the downfalls of implementing choice
fields as integers instead of strings.

3.5.3 Requirement Search.

Figure 9: Requirements Search

The requirement search combs through multiple columns with a
single button-press. It serves as a "closest match of product or service
description based on a priority criteria on multiple axes," since that’s
what’s requested in the Course Project description [1]. Additionally, it
also allows for different item orderings through user input.

Development was much different than the exact and similar
searches, since a direct tutorial on how to implement a multiple axis
search was difficult to come across. So, experimentation along with
scouring the Django documentation was performed. A big portion
of the VendorProduct model, such as the category and payment type
fields, was changed to accommodate for user choice selection. Imple-
menting the fields as integers mapped to words within Django allowed
for easier searching through these fields and creating fake data. More-
over, the addition of predetermined choices made vendor creation of
new items simplistic.

May 5-5-22, 2022, Moscow, Idaho, USA,
Seth Cram and Chadwick Goodall

3.6 Recommendations page

Figure 10: Recommendations Page

The recommendations page is only accessible to customer users. It
works in a relatively simple fashion. It takes all the products within
the customer’s cart and recommends products that are mentioned, by
name, within the brief or full product description of those cart items.
It does this through performing a case insensitive sub-string search.
Other recommended items are items not within the customer’s cart,
that mention or contain any cart item’s name within their brief or full
product description. The retrieved products for recommendation are
then ordered by price from low to high to assist customers in saving
money.

The purpose of the recommendations page was to fill the need
for the "requirements wish-list" as outlined in the Course Project re-
quirements [1]. Although, it admittedly loosely fits the specifications.
The product matching service independently finds the customer more
products, but the recommended products don’t necessary match with
customer needs. Despite that, Best Buy Search does "protect the cus-
tomers from overpaying for a service or product" through its ordering
of products by price from low to high [1]. It also recommends items
related to the ones the customer shows interest in.

The above outlined approach may seem primitive, but it’s justifi-
able when considering the other complex aspects of the project. When
initially approaching the "requirement wish-list" project requirement,
extensive research was performed. The best and proper way to develop
a recommendations page was through creating a machine learning
model for deploying a recommendation system. Scouring the internet
brought up little in regards to pre-made, general purpose systems.
So, the crafting of it would have been from scratch. Weighing the
pros and cons, it was decided that fleshing out the rest of the project
was more important. For future development, implementing such a
recommendation system, along with several other model fields to work
alongside it, should be considered.

3.7 Customer cart and checkout page

Figure 11: Cart and Checkout Page

The customer cart is displayed underneath the checkout page,
so they’re both discussed in this section. Another reason for their
grouping is the lack of functionality concerning the checkout page.
The checkout page currently serves as a method for displaying vendor
products that the customer has added to their cart, but it also plays
the role of a placeholder for future website expansion. The "checkout"
button and the rest of the fields on the checkout page are merely a
bootstrap template. No functionality for saving user-entered data or
actually "checking out" is implemented.

3.8 Vendor action
Vendors can perform a variety of actions and have a "higher"

permission level than customer type users. According to the presented
specifications, the website for CS360 needed to perform all four of the
CRUD operations. The CRUD operations are Create, Read, Update,
and Delete. Reading of vendor products is accessible through either
user type using one of the mentioned search methods. Deletion is also
accessible to both users through customers removing items from their
cart, and, as will be seen shortly, vendors can delete products from the
database. The incorporation of the CRUD operations of Create and
Update are restricted to only vendor level personnel.

3.8.1 Add items.

Best Buy Search Final Report
May 5-5-22, 2022, Moscow, Idaho, USA,

Figure 12: Vendor Add Product Page

Only vendors can add items to Best Buy Search. When they create
a new item, they’re linked to it through the automatic filling out
of the "created_by" field within the VendorProduct table. Another
automated feature of new item creation is the "update_date" and the
"publish_date", which the vendor cannot manually set and are filled
in for them when the new item is created.

3.8.2 Edit/Delete items.

In addition to adding new items to the product table, vendors can
also edit the items that they have listed on the site, which accounts
for the update operation of CRUD. From the shop menu drop-down,
a vendor can select a vendor action option to edit/delete an item.
Selecting this option will then bring the vendor to a page listing all of
their current published items present on the site. For each of the listed
items, the vendor will then be able to choose to edit or delete the item
individually. All of this vendor’s created items are displayed with a
pagination of 40, with the ordering of them as arbitrary. Such a large
pagination is used in comparison to the search pages since the vendor
item can’t be searched through unless done manually.

Figure 13: Vendor Edit/Delete Interface

Future expansion of this page should implement a mechanism such
as a search bar or drop-down options to sift through the items created
by this vendor. With the given time constraints, this objective wasn’t
high on the priority list since it isn’t expected for each vendor to
publish a large quantity of items. Therefore, the search capability on
this page isn’t of utmost importance.

3.8.3 Edit items.

Figure 14: Vendor Edit Page

If editing the item is selected, the vendor is brought to the item’s
corresponding edit page, show below. Only the vendor who created the
item has access to this or the deletion page for their particular items.

3.8.4 Delete items.

Figure 15: Vendor Deletion Confirmation Page

Furthermore, deletion being one of the simpler operations to imple-
ment, the implementation of this within the user interface is rather
straightforward. The website requests a confirmation from the vendor
that they would like to remove the product from the database and the
store homepage before executing the deletion.

4 DATABASE POPULATIONWITH FAKER
Faker was used to populate the database with randomized fake

data through running a custom command. The custom command can
be run through typing "python manage.py createdata" with a given
integer argument. The given number of products are created in the
database linked to a newly created fake vendor.

May 5-5-22, 2022, Moscow, Idaho, USA,
Seth Cram and Chadwick Goodall

4.1 Data generation script
Manufacturing the data generation script "createdata.py" involved

the creation of a custom Command class extending from the pre-
established BaseCommand class. Implementation of the "add_argument"
method was used to allow registration of additional arguments passed
in through the command-line. In addition, the "handle" method was
necessary to enact the command’s functionality of creating a ran-
domized new vendor user and the desired number of vendor products.
As seen in the provided images, most items have reasonable and de-
scriptive names. Such naming couldn’t be achieved using default
Faker Providers, so a third part provider called "faker-ecommerce" was
installed.

Figure 16: Vendor Created Product Vs. Faker Generated Prod-
uct Comparison

One of the downfalls of using Faker for the data generation script
concerns how amethod for generating fake images wasn’t found. Since
each vendor product requires both a small and large display image,
the image field for the fake products are filled with manufactured
image urls that don’t link to actual images. Therefore, displaying the
fake test data on the website is rather lackluster since image fields
are left blank. This shortcoming is made obvious when looking at the
images below. This problem affects both the normal product display
and the product detail pages.

5 PAGINATION
After populating the database with fake data, handling big amounts

of vendor items became a more relevant issue. In response to this, each
view displaying items, besides the home page, needed to be paginated
by a certain amount. Otherwise, huge amounts of display data would
slow down the load time of the Best Buy Search website’s pages. Car-
rying out pagination was simple since it’s a common solution in web
development. Although, the method used didn’t seem to work when
unordered data was presented. Therefore, all data not already ordered
was organized by product id in descending order.

6 MYSQL QUERIES
The only database queries dealt with were those generated by

Django migrations. These migrations were created through making
changes to, or adding new, database models. Which would then be
translated into a MySQL query applied to the local database in PH-
MyAdmin when migrating changes. These migrations helped both
team members stay on the same page, since even without putting the
project onto a website, both people’s databases were structured the
same.

7 DECORATORS
Throughout the Best Buy Search site, user permissions play a cru-

cial role in how the site is structured and can be navigated. Therefore,
implementing security to ensure that web pages can’t be accessed by
those without the correct permissions is crucial to database integrity.
For example, if a user without a vendor or customer id tried deleting an
item from the database, the database should fail to delete the item but
Django may not recognise that and stop displaying it anyways. Two
decorators were designed with this specific purpose in-mind, and each
serve to redirect unauthorized users to the login page if the user tries
to manually enter a protected web page’s url. They’re implemented as
apart of each web page’s view. One decorator is needed for each user
type, but a third built-in decorator that checks if users are logged-in
also helps protect web pages accessible to both vendor and customer
users.

Early on in project development, a third "guest" user type was
theorized. In concept, they wouldn’t need a login or model, but because
of that, the decorator for such a user was difficult to construct. It
was dismissed because of the before mentioned and various other
complications, and since it isn’t explicitly requested by the project
description.

8 PROJECT DIFFICULTIES
Most imposing of all, the one project difficulty that affected initial

project growth most was figuring out how to approach the project.
Laying out a comprehensive plan at the start was nearly impossible,
since neither group member had any prior experience with Django
or web development. Eventually, this problem was overcome through
consulting with the class TA, Kallol, and through independent research.
Because of the lack of experience, several features created at the start
needed reworking for compatibility with multiple user types.

Another big issue concerned group member involvement. With a
lack of structure and infrequent deadlines for the project, it was easy
to put off and focus on more pressing matters. As a result, work was
heavily disproportionate between group members.

The rest of the project difficulties were mainly discussed in their
respective sections above. As an overview, some of the difficulties
mentioned were implementing the requirements search to query across
multiple field, the similar search in relation to the category sub-string
search, reasonable data with Faker, and an accurate recommendations
page.

9 CONCLUSION AND SUGGESTIONS
In conclusion, Best Buy Search is a product and service matching

site with a variety of search features, a recommendations page, and
checkout page. Logging in is required for site access, and visitors can
create accounts as either a vendor or customer user under a binding
agreement. Vendors can create, edit, and delete items, while customers
can add/remove items to/from their carts. As discussed above, Best
Buy Search meets all requirements outlined in the project description
for CS360, Database Systems.

Most suggestions for improvements concerning the Best Buy Search
site were made above. An overview is given to consolidate all of the
suggestions in one place. Major suggestions for project improvement

Best Buy Search Final Report
May 5-5-22, 2022, Moscow, Idaho, USA,

include: switching out the username for an email field, removing the
is_vendor and is_customer fields in the User model, including credit
card and address fields in the Customer model, using the brand name
for item display and filtering, support and privacy links, allowing
multiple category searches in the similar search, adding search capa-
bilities to the display page for the logged in vendor’s items, developing
a more accurate recommendations page, granting the checkout page
functionality, manifesting images to correspond to the faker-generated
image urls, and incorporating a third guest user type.

The final recommendation for further development involves storing
and altering item quantity. Currently, when customers add an item
to their cart, only a single item is ever added. Ideally, there would be
an integer input field for customers to decide how many of a product
they’d like to add to their cart. Then, that amount would be displayed
on the checkout page and be multiplied by the cost of a single item
to show how much x number of items will cost the customer. Once
checked out, the specified number of items the customer checked out
with would be removed from the quantity left of the item in the
database. If this quantity ever reached zero, the item would stop being
displayed on the website. This idea for future improvement is why
vendors can currently publish items with a quantity of zero.

A suggestion for future classes would be to have more deadlines for
project development. Some points could be moved from the final demo
or the first big intermediate demo and contributed toward a couple
more "check-in" like presentations earlier on in the course. During the
additional demos or check-ins, each group member should be required
to point out their contribution since the previous presentation. This
is a similar strategy to how the semester long project is conducted
in Software Engineering CS 383. Additionally, further instruction or
reference material, as could be provided in a lab, for the development
of the project would be greatly beneficial.

10 SOURCE CODE
The source code for this project is available at

https://github.com/SethCram/NoMigrations.

11 REFERENCES
[1] Hasan Jamil. CS 360: Database Systems. Retrieved May 4, 2022
from https://canvas.uidaho.edu/courses/6701 [2] Anon. Documenta-
tion. RetrievedMay 4, 2022 fromhttps://docs.djangoproject.com/en/4.0/
[3] Anon. Documentation. RetrievedMay 4, 2022 fromhttps://www.python.org/doc/
[4] Anon. XAMPP FAQ/Documentation. RetrievedMay 4, 2022 from
https://www.apachefriends.org/index.html

	Abstract
	1 Introduction
	1.1 Design
	1.2 Tools used for development
	1.3 Languages used for development

	2 Best Buy Search Database
	2.1 User table
	2.2 Customer table
	2.3 Customer products table
	2.4 Vendor table
	2.5 Vendor product table

	3 Best Buy Search Interface
	3.1 Login page
	3.2 Customer account creation page
	3.3 Vendor account creation page
	3.4 Home store page
	3.5 Searches
	3.6 Recommendations page
	3.7 Customer cart and checkout page
	3.8 Vendor action

	4 Database population with Faker
	4.1 Data generation script

	5 Pagination
	6 MySQL Queries
	7 Decorators
	8 Project Difficulties
	9 Conclusion and Suggestions
	10 Source Code
	11 REFERENCES

