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1. Introduction     

Particle swarm optimization, PSO, is an evolutionary computation technique inspired in the 
behavior of bird flocks. PSO algorithms were first introduced by Kennedy & Eberhart (1995) 
for optimizing continuous nonlinear functions. The fundamentals of this metaheuristic 
approach rely on researches where the movements of social creatures were simulated by 
computers (Reeves, 1983; Reynolds, 1987; Heppner & Grenander, 1990). The research in PSO 
algorithms has significantly grown in the last few years and a number of successful 
applications concerning single and multi-objective optimization have been presented 
(Kennedy& Eberhart, 2001; Coello et al., 2004). This popularity is partially due to the fact 
that in the canonical PSO algorithm only a small number of parameters have to be tuned 
and also due to the easiness of implementation of the algorithms based on this technique. 
Motivated by the success of PSO algorithms with continuous problems, researchers that deal 
with discrete optimization problems have investigated ways to adapt the original proposal 
to the discrete case. In many of those researches, the new approaches are illustrated with the 
Traveling Salesman Problem, TSP, once it has been an important test ground for most 
algorithmic ideas.  
Given a graph G = (N,E), where N = {1,...,n} and E = {1,...,m}, and costs, cij, associated with 
each edge linking vertices i and j, the TSP consists in finding the minimal total length 
Hamiltonian cycle of G. The length is calculated by the summation of the costs of the edges 
in the considered cycle.  If for all pairs of nodes {i,j}, the costs cij and cji are equal then the 
problem is said to be symmetric, otherwise it is said to be asymmetric. The main importance 
of TSP regarding applicability is due to its variations, nevertheless some applications of the 
basic problem in real world problems are reported for different areas such as VLSI chip 
fabrication, X-ray crystallography, genome map and broadcast schedule, among others. 
Although, a great research effort has been done to accomplish the task of adapting PSO to 
discrete problems, many approaches still obtain results very far from the best results known 
for the TSP. Some of those works are summarized in section 2.  
An effective PSO approach for the TSP is presented by Goldbarg et al. (2006a), where 
distinct types of velocity operators are considered, each of them concerning one movement 
the particles are allowed to do. This proposal is presented and extended in this chapter, 
where search strategies for Combinatorial Optimization problems are associated with the 
velocity operators. Rather than a metaheuristic technique, the PSO approach in this context O
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can be thought as a framework for heuristics hybridization. The extension of the approach 
proposed previously comprehends methods to combine the distinct velocity operators. 
Computational experiments with a large set of benchmark instances show that the proposed 
algorithms produce high quality solutions when compared with effective heuristics for the 
TSP.  
The chapter begins with a brief review of Particle Swarm Optimization. Some proposals for 
applying this metaheuristic technique to discrete optimization problems and, in particular, 
to the Traveling Salesman Problem are presented in section 2.  In section 3, our proposal for 
velocity operators in the discrete context is presented. Computational experiments compare 
the results of the proposed approach with other PSO heuristics presented previously for the 
TSP. In section 4, the combination of velocity operators is investigated. Conclusions and 
directions for future works are presented in sections 5 and 6, respectively.  

2. Particle swarm optimization 

Kennedy & Eberhart (1995) proposed the bio-inspired PSO approach, which can be seen as a 
population-based algorithm that performs a parallel search on a space of solutions. In the 
optimization context, several solutions of a given problem constitute a population (the 
swarm). Each solution is seen as a social organism, also called particle. The method attempts 
to imitate the behavior of real creatures making the particles “fly” over a solution space. 
These particles search the problem’s solution space balancing the intensification and the 
diversification efforts. Each particle has a value associated with it. In general, particles are 
evaluated with the objective function of the considered optimization problem. A velocity is 
also assigned to each particle in order to direct the “flight” through the problem’s solution 
space. The artificial creatures have a tendency to follow the best ones among them. At each 
iteration step, a new velocity value is calculated for each particle. This velocity value is used 
to update the particle’s position. The process iterates until reaching a stopping condition. 
In the classical PSO algorithm, each particle 

• has a position and a velocity 

• knows its own position and the value associated with it 

• knows the best position it has ever achieved, and the value associated with it 

• knows its neighbors, their best positions and their values 
The best position a given particle has ever achieved is called pbest. In some versions of 
particle swarm algorithms the particles also track the best position achieved so far by any 
particle of the swarm. This position is called gbest. By changing their velocities with 
individualistic moves or toward pbest and gbest, the particles change their positions. The 
move of a particle is a composite of three possible choices (Onwubolu & Clerc, 2004): 

• To follow its own way 

• To go back to its best previous position 

• To go towards its best neighbor’s previous or present position  
The neighborhood may be physical or social. Physical neighborhoods take distances into 
account, thus a distance metric has to be established. This approach tends to be time 
consuming, since each iteration distances must be computed. In general, social 
neighborhoods are based upon “relationships” defined at the very beginning of the 
algorithm. 
A general framework of a particle swarm optimization algorithm is presented in figure 1. 
Initially, a population of particles is generated. After, all particles are evaluated and, if 
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necessary, pbestp is replaced by xp, p’s position. The best position achieved so far by any of 
the p’s neighbors is set to gbestp. Finally, the velocities and positions of each particle are 
updated. The procedure compute_velocity( ) receives three inputs. This is done to show that, 
in general, p’s position, xp, pbestp and gbestp are used to update p’s velocity, vp. The process is 
repeated until some stopping condition is satisfied.  
 

procedure PSO 
     Initialize a population of particles 
     do  
            for each particle p with position xp do 
                  if (xp is better than pbestp) then 

                      pbestp ← xp 
                  end_if 
            end_for 
            Define gbestp as the best position found so far by any of p’s neighbors 
            for each particle p do 

                vp ← Compute_velocity(xp, pbestp, gbestp) 

                xp ← update_ position(xp, vp) 
           end_for 
     while (a stop criterion is not satisfied)      

Fig. 1. Framework of a particle swarm optimization algorithm 

Kennedy & Eberhart (1995) suggest equations (1) and (2) to update the particle’s velocity 
and position, respectively. In these equations, xp(t) and vp(t) are the particle’s position and 
velocity at instant t, pbestp(t) is the best position the particle achieved up to instant t, gbestp(t) 
is the best position that any of p’s neighbors has achieved up to instant t, c1 is a cognitive 
coefficient that quantifies how much the particle trusts its experience, c2 is a social coefficient 
that quantifies how much the particle trusts its best neighbor, rand1 and rand2 are random 
numbers. 

 vp(t) = vp(t-1) + c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))  (1) 

 xp(t)  = xp(t-1) + vp(t)  (2) 

An inertia factor is introduced in equation (1) by Shi & Eberhart (1998). Considering the 
inertia factor w, equation (3) replaces equation (1). The inertia factor multiplies the velocity 
of the previous iteration. It is decreased throughout the algorithm execution. The inertia 
factor creates a tendency for the particle to continue moving in the same direction it was 
going previously.  The motivation for the use of the inertia factor was to be able to better 
control intensification and diversification. Shi & Eberhart (1998) observed that suitable 
values for the inertia factor yielded a good trade-off between exploration and exploitation. 

 vp(t) = wvp(t-1) + c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))  (3) 

Constriction factors were introduced by Clerc (1999) who observed that the use of a 
constriction factor was necessary to insure the convergence of the PSO algorithm. A simple 
way to incorporate a constriction factor in PSO algorithms is to replace equation (1) by 
equations (4) and (5), where K is the constriction factor. In equation (5), c1 and c2 are usually 
set to 1.49445 (Eberhart & Shi, 2001). 
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 vp(t) = K[vp(t-1) + c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))]  (4) 

 
1 2

2

2
, , 4

2 4
K c cα αα α α= = + >− − −  (5) 

The canonical PSO algorithm, however, needs an adaptation in order to be applied to 
discrete optimization problems. Kennedy & Eberhart (1997) propose a discrete binary PSO 
version, defining particles’ trajectories and velocities in terms of changes of probabilities that 
a bit is set to 0 or 1 (Shi et al., 2007). The particles move in a state space restricted to 0 and 1 
with a certain probability that is a function of individual and social factors. The probability 
of xp(t) = 1, Pr(xp = 1), is a function of xp(t-1), vp(t-1), pbestp(t-1) and gbestp(t-1). The probability 
of xp(t) = 0 equals 1 - Pr(xp = 1). Thus equation (2) is replaced by equation (6), where rand3 is 

a random number, ψ(vp(t)) is a logistic transformation which can constrain vp(t) to the 
interval [0,1] and can be considered as a probability. 
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⎧ <=
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PSO for permutation problems is investigated by several researchers. In several of these 
research works the TSP is the target problem.  
Hu et al. (2003) define velocity as a vector of probabilities in which each element 
corresponds to the probability of exchanging two elements of the permutation vector that 
represents a given particle position. Pairwise exchanging operations, also called 2-swap or 2-
exchange, are very popular neighborhoods in local search algorithms for permutation 
problems. Let V be the velocity of a particle whose position is given by the permutation 
vector P. Given integers i and j, V[i] is the probability of elements P[i] and P[j] be exchanged. 
The element P[j] corresponds to Pnbest[i], where Pnbest is the vector that represents the 
permutation associated with the position of the best neighbor of the considered particle.    
The authors introduce a mutation operator in order to avoid premature convergence of their 
algorithm. The mutation operator does a 2-swap move with two elements chosen at random 
in the considered permutation vector. 
Another approach is proposed by Clerc (2004) that utilizes the Traveling Salesman Problem 
to illustrate the PSO concepts for discrete optimization problems. In the following we list the 
basic ingredients Clerc (2004) states that are necessary to construct a PSO algorithm for 
discrete optimization problems:  

• a search space, S = {si} • an objective function f on S, such that f(si) = ci • a semi-order on C = {ci} , such that for every ci, cj ∈ C, we can establish whether ci ≥ cj  or 

cj ≥ ci   • a distance d in the search space, in case we want to consider physical neighborhoods. 
S may be a finite set of states and f a discrete function, and, if it is possible to define 
particles’ positions, velocity and ways to move a particle from one position to another, it is 
possible to use PSO. Clerc (2004) presents also some operations with position and velocity 
such as: the opposite of a velocity, the addition of position and velocity (move), the 
subtraction of two positions, the addition and subtraction of two velocities and the 
multiplication of velocity by a constant. A distance is also defined to be utilized with 
physical neighborhoods. To illustrate his ideas about tackling discrete optimization 
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problems with PSO, Clerc (2004) develops several algorithm variants with those operations 
and methods and applies them to the asymmetric TSP instance br17.atsp. In his algorithm 
the positions are defined as TSP tours represented in vectors of permutations of the |N| 
vertices of the graph correspondent to the considered instance. These vertices are also 
referred as cities, and the position of a particle is represented by a sequence (n1, …, n|N|, 
n|N|+1), n1 = n|N|+1. The value assigned to each particle is calculated with the TSP objective 
function, thus corresponding to the tour length. The velocity is defined as a list of pairs (i,j), 
where i and j are the indices of the elements of the permutation vector that will be 
exchanged. This approach was applied to tackle the real problem of finding out the best 
path for drilling operations (Onwubolu & Clerc, 2004) . 
Wang et al. (2003) present a PSO algorithm for the TSP utilizing, basically, the same 
structure proposed by Clerc (2004) and apply their algorithm to the benchmark instance 
burma14.  
Hendtlass (2003) proposes the inclusion of a memory for the particles in order to improve 
diversity. The memory of each particle is a list of solutions (target points) that can be used as 
an alternative for the current local optimal point. There is a probability of choosing one of 
the points of the particle’s memory instead of the current gbestp. The size of the memory list 
and the probability are new parameters added to the standard PSO algorithm. The 
algorithm is applied to the benchmark TSP instance burma14. The results obtained with 
algorithmic versions with several parameter settings are compared with the results of an 
Ant Colony Optimization algorithm. The author shows that his algorithm outperformed the 
PSO version without the use of memory and presented quality of solution comparable to the 
results produced by the ACO algorithm, for instance burma14.  
Pang et al. (2004a) extend the work of Wang et al. (2003). Their algorithm alternates among 
the continuous and the discrete (permutation) space. |N|-dimensional vectors in the 
continuous Cartesian space are used for positions and velocities. The discrete representation 
of the particles’ positions is done in the permutation space. They present methods to 
transform the positions from one space to the other. They alternate between the two spaces 
until a stopping condition is reached. The particle’s position and velocity are updated in the 
continuous space. Then, they move to the discrete space, where a local search procedure is 
applied to all particles’ positions. Two local search procedures are tested in their algorithms: 
the 2-swap and the 2-opt (Flood, 1956). After that, they make the reverse transformation to 
the continuous space. In order to avoid premature convergence, Pang et al. (2004a) use a 
chaotic operator. This operator changes randomly the position and velocity in the 
continuous space, multiplying these vectors by a random number. Four versions of their 
algorithm are applied to four benchmark instances with 14 to 51 cities: burma14, eil51, eil76 
and berlin52. The algorithm variations comprise the presence or not of chaotic variables and 
the two local search procedures. In the set of instances tested, the results showed that the 
version that includes chaotic variables and the 2-opt local search presented the best results.   
Pang et al. (2004b) present a fuzzy-based PSO algorithm for the TSP. The position of each 
particle is a matrix P = [pij], where pij ∈ (0,1) represents the degree of membership of the i-th 
city to the j-th position of a given tour. The velocity is also defined as a matrix and the 
operations resulting from equations (2) and (3) are defined accordingly. A method to decode 
the matrix position to a tour solution is presented. The value associated with each particle is 
the length of the tour represented by the particle’s position. They apply their algorithm to 
instances burma14 and berlin52. No average results or comparisons with other algorithms 
are reported. 
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A hybrid approach that joins PSO, Genetic Algorithms and Fast Local Search is presented by 
Machado & Lopes (2005) for the TSP. The positions of the particles represent TSP tours as 
permutations of |N| cities. The value assigned to each particle (fitness) is the rate between a 
constant Dmin and the cost of the tour represented in the particle’s position.  If the optimal 
solution is known, then Dmin equals the optimal tour cost. If the optimum is not known, Dmin 
is set to 1. Velocity is defined regarding only pbestp and gbestp and the equation of velocity is 
reduced to equation (7). The distance between two positions is calculated with a version of 
the Hamming distance for permutations. With the use of equation (7) for velocity, the 
particles tend to converge to pbestp and gbestp. At each iteration step, the average distance 
between all particles and the best global solution is computed. If this distance is lower than 
0.05|N|, then random positions are generated for all particles. The same occurs when some 
subset of particles is close enough. If a subset of particles is close enough to the best local 
solution, then the positions of the particles of the considered subset are generated randomly. 
The solutions are recombined by means of the OX operator and then submitted to the fast 
local search procedure introduced by Voudouris & Tsang (1999). The hybrid PSO is applied 
to the following symmetric TSP benchmark instances: pr76, rat195, pr299, pr439, d657, 
pr1002, d1291, rl1304, d2103. 

 vp(t) = c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))  (7) 

Goldbarg et al. (2006a) present a PSO algorithm for the TSP where the idea of distinct 
velocity operators is introduced. The velocity operators are defined according to the possible 
movements a particle is allowed to do. In the previous section, three alternatives for 
movements are identified. The three alternatives can be divided into two categories: 
independent and dependent moves. The independent move concerns the first parcel of 
equations (1) and (3). The other two parcels of those equations depend on pbestp and gbestp, 
thus referring to dependent moves. Based on those movement classes, Goldbarg et al. 
(2006a) use local search procedures as velocity operators for independent moves and path-
relinking (Glover et al., 2000) for dependent moves. At each iteration step, one of the three 
alternative moves is assigned to a particle and the correspondent velocity operator is 
applied in order to modify the particles position. For each particle, only one type of 
movement is allowed per iteration. A probability is assigned to each movement alternative. 
Initially, independent moves are more likely to occur than dependent moves. During the 
algorithm execution, the probabilities are modified, such that the probabilities assigned to 
the dependent moves are increased and the probability assigned to independent moves is 
decreased.  This algorithmic proposal obtained very promising results. It was applied to 35 
benchmark TSP instances with 51 to 7397 cities. The results were comparable to the results 
of state-of-the-art algorithms for the TSP. A detailed discussion of this approach and the 
results it obtained is presented in section 3. 
Yuan et al. (2007) and Shi et al. (2007) propose extensions for the approach presented by 
Wang et al. (2003). Both algorithms define subtraction in terms of sequences of 2-swap 
operations as defined in the path-relinking velocity operator presented by Goldbarg et al. 
(2006a), including some uncertainty for the exchange of two elements.   
Yuan et al. (2007) propose new concepts for “chaos variables” and memory for particles. The 
memory of each particle is an |N|-dimensional vector of chaos variables. The chaos 
variables are numbers in the interval (0,1) and are generated with a method proposed by the 
authors. Based on the memory list of a particle p, they define the permutation that 
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represents p’s position. They sort the elements of the memory list. The resulting order leads 
to a permutation of the elements in the memory list. This permutation is the representation 
of p’s position. They apply their algorithm to four benchmark instances with 14 to 51 cities: 
burma14, oliver30, att48, eil51. The results obtained for instances oliver30 and att48 are 
compared with the results obtained by algorithms based on: Simulated Annealing, Genetic 
Algorithm and Ant Colony Systems. Their algorithm outperforms the others regarding 
quality of solution of these two instances. 
Shi et al. (2007) adds to their algorithm a procedure that aims at eliminating edge crossings 
in the TSP tours represented by the particles’ positions. They apply their algorithm to five 
benchmark instances: eil51, berlin52, st70, eil76 and pr70.   
Zhong et al. (2007) present a PSO approach where a mutation factor (c3) is introduced in the 
formula that updates the particle’s position (equation (2)). The new formula is presented in 
equation (8). The factor introduces some diversity in the algorithm. The position of a particle 
is represented as a set of edges instead of a permutation as in the previous approaches. The 
velocity is defined as a list of edges with a probability associated with each element of the 
list. During the iterations if pbestp is identical to gbestp then, pbestp is not replaced by the 
current position of p. The authors apply their algorithm to six benchmark TSP instances: 
burma14, eil51, eil76, berlin52, kroA100 and kroA200. The results are compared with the 
results of Pang et al. (2004a) and with an Ant Colony Optimization algorithm. They show 
that their algorithm outperforms the others regarding average solutions. 

 xp(t)  = c3.rand.xp(t-1) + vp(t)  (8) 

Fang et al. (2007) present a PSO algorithm for the TSP where an annealing scheme is used to 
accept the movement of a particle. They apply their algorithm to instances oliver30 and 
att48. The results are compared with the results of algorithms based on: Simulated 
Annealing, Genetic Algorithms and Ant Colony. In the two instances tested, their algorithm 
presents the best average results. 
A comparison among some of the previous algorithms and the approach proposed in this 
chapter is presented in the next section. 

3. New velocity operators for discrete PSO 

In PSO algorithms the velocity is the basic mechanism for accomplishing the search in the 
space of solutions of optimization problems. In most applications, the particles’ positions 
represent the solutions of the investigated problem. The positions are updated by means of 
velocity operators that direct the search to promising regions of the space of solutions. There 
are two classes of movement a particle is allowed to do: independent and dependent moves. 
Independent moves are those in which the particle moves without knowing any other 
positions besides its own on the current instant. This type of movement depends only on the 
current particle position and on a velocity operator. The other case arises when the particle 
needs to know the position of pbest or gbest. This distinction between the movements leads 
us to a unary and a binary concept for velocity operators. In the unary operations only one 
particle is accepted as input.  The particle’s position is transformed according to a unary 
velocity operator. The binary operations accept two particles and alter the position of one of 
them considering the position of the other. In this context, m-ary operations can be defined 
where m particles are accepted and the position of one of them is altered considering the 
positions of the remaining m-1 particles, in accordance with an m-ary velocity operator. 
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In order to modify the position of a given particle, the velocity operators are identified with 
heuristic methods. Basically, two approaches are utilized for designing the search strategies: 
the improvement methods and the metaheuristic techniques. As defined by Burkard (2002), 
the local search algorithms constitute the class of improvement methods. Given a 
neighborhood structure defined over a search space, a local search procedure begins with a 
solution and search the neighborhood of the current solution for an improvement. The 
metaheuristics are general frameworks for heuristics design. A review of the TSP and some 
well known methods utilized to solve it are presented by Gutin & Punnen (2002). 
In this chapter, any search strategy where a given solution is transformed with no 
knowledge of other solutions is a unary velocity operator.  Search strategies where a 
solution interacts with other m-1 solutions are classified as m-ary velocity operators. For 
example, local search and mutation are defined as unary velocity operators, recombination 
of two solutions, such as crossover in Genetic Algorithms, and path-relinking are defined as 
binary velocity operators and recombination operations among m solutions, such as in 
Scatter Search algorithms (Glover et al., 2000), are defined as m-ary velocity operators.    
The proposed approach is illustrated with unary and binary velocity operators utilizing 
local search and path-relinking strategies, respectively. 
Path-relinking is an intensification technique which ideas were originally proposed by 

Glover (1963) in the context of methods to obtain improved local decision rules for job shop 

scheduling problems (Glover et al., 2000). The strategy consists in generating a path between 

two solutions creating new intermediary solutions. This idea is very close to the movement 

of a particle from one position to another. Given an origin solution, x1, and a target solution, 

x2, a path from x1 to x2 leads to a sequence x1, x1 (1), x1 (2), …, x1 (r) = x2, where x1(i+1) is 

obtained from x1(i) by a move that introduces in x1(i+1) an attribute that reduces the distance 

between attributes of the origin and target solutions. 

The framework of PSO for discrete optimization problems proposed by Goldbarg et al. 

(2006a, 2006b) is shown in figure 2. In this proposal equation (3) is replaced by equation (9), 

where v1 is a unary velocity operator, v2 and v3 are binary velocity operators. The 

coefficients c0, c1 and c2 have the same meaning stated previously and the signal ⊕ 

represents a composition.  

 vp(t) = c0v1(xp(t-1)) ⊕ c1v2(pbestp(t-1),xp(t-1)) ⊕ c2v3(gbestp(t-1),xp(t-1))  (9) 

In initial applications of the proposed approach, only one of the three primitive moves is 

associated to each particle of the swarm at each iteration step (Goldbarg et al., 2006a, 2006b). 

Thus, c0, c1, c2 ∈ {0,1} and c0 + c1 + c2 = 1 in equation (9).  The assignment is done randomly. 

Initial probabilities are associated with each possible move and, during the execution, these 

probabilities are updated. Initially, a high value is set to pr1, the probability of particle p to 

follow its own way, a lower value is set to pr2, the probability of particle p goes towards 

pbestp and the lowest value is associated with the third option, to go towards gbestp. The 

algorithm utilizes the concept of social neighborhood and the gbestp of all particles is 

associated with the best current solution, gbest. The initial values set to pr1, pr2 and pr3 are 

0.9, 0.05 and 0.05, respectively. As the algorithm runs, pr1 is decreased and the other 

probabilities are increased. At the final iterations, the highest value is associated with the 

option of going towards gbest and the lowest probability is associated with the first move 

option.  
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procedure Discrete_PSO 
      /* Define initial probabilities for particles’ moves:*/ 
      pr1 ← a1 /*to follow its own way*/  
      pr2 ← a2 /*to go towards pbest*/  
      pr3 ← a3  /*to go towards gbest*/ 
      /* a1+ a2+ a3=1 */ 
      Initialize the population of particles 
      do  
         for each particle p 
                valuep  ← Evaluate(xp) 
                if (value(xp) < value(pbestp)) then 
                    pbestp ← xp 
                if (value(xp) < value(gbest) ) then 
                    gbest ← xp 

          end_for 
          for each particle p 
               velocityp  ←  define_velocity(pr1, pr2, pr3)  
               xp  ← update(xp,velocityp) 
          end_for 
          /* Update probabilities*/ 
          pr1 = pr1×0.95; pr2 = pr2×1.01; pr3 = 1-( pr1+ pr2)      
      while (a stop criterion is not satisfied) 

Fig. 2. Pseudo-code of PSO for discrete optimization problems 

In the application to the TSP, Goldbarg et al. (2006a) implement two versions of the PSO 
algorithm defined by two local search procedures utilized to implement v1. In the first 
version a local search procedure based on an inversion neighborhood is used. The Lin-
Kernighan (Lin & Kernighan, 1973) neighborhood is used in the second version.  In both 
versions v2 and v3 are implemented with the same path-relinking procedure. The particles’ 
positions are represented as permutations of the |N| cities.  
In the inversion neighborhood, given a sequence x1 = (n1, …, ni, ni+1,…, nj-1, nj, …, n|N|) and 
two indices i and j, the sequence x2 is x1’s neighbor if x2 =  (n1, …, nj, nj-1,…, ni+1, ni, …, n|N|) . 
The difference between indices i and j varies from 1 to |N|-1. When v1 is applied to a 
particle p, the local search procedure starts inverting sequences of two elements in p’s 
position, then sequences of three elements are inverted, and so on.  
The Lin-Kernighan neighborhood is a recognized efficient improvement method for the 
TSP. The basic LK algorithm has a number of decisions to be made and depending on the 
strategies adopted by programmers distinct implementations of this algorithm may result 
on different performances. The literature contains reports of many LK implementations with 
widely varying behavior (Johnson & McGeoch, 2002). The work of Goldbarg et al. (2006a) 
uses the LK implementation of Applegate et al. (1999). 
The path-relinking implemented for the binary velocity operators exchanges adjacent 
elements of the origin solution. The permutations are considered as circular lists. At first, the 
origin solution is rotated until its first element be equal the first element of the target 
solution. Then the second element of the target solution is considered. The correspondent 
element in the origin solution is shifted left until reaching the second position in the 
sequence that represents the solution. The process continues until the origin solution reaches 
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the target solution. This procedure leads to time complexity O(n2). The path-relinking is 
applied simultaneously from the origin to the target solution and vice-versa (back and 
forward). Swap-left and swap-right operations are used. The permutation sequence 
representing the best solution found replaces the position of the considered particle. An 
example of the path-relinking procedure is shown in figure 3. 
 

54321 54321 24153 24153

Origin Target

21543 21543

Rotation

21453 21453

24153 24153

21543 21543

 

Fig. 3. Path-relinking 

In the following, a discussion about the results obtained by PSO proposals for the TSP is 
presented. PSO-INV and PSO-LK denote the two algorithmic versions of the proposed 
approach with the inversion and the LK neighborhoods, respectively. These algorithms run 
on a Pentium IV with 3.0 GHz, 1 Gb using Linux. The maximum processing times are 60 
seconds for instances with |N| < 1000 and 300 seconds for instances with 
1000 ≤ |N| < 5000. Other three stop criteria are used: to find the optimal solution, to reach a 
maximum number of iterations (200) or to reach a maximum number of iterations with no 
improvement of the best current solution (20). The population has 20 particles. Once most 
papers report results for instance eil51, berlin52 and eil76, table 1 shows a comparison 
between the proposed approach and other PSO algorithms concerning these instances. The 
compared algorithms are listed in the first column of table 1. The traced lines represent 
results not reported in the correspondent work. Results in table 1 are given in terms of the 
percent difference from the optimal solution (gap), calculated with equation (10), where av 
and optimal denote, respectively, the average solution found by the investigated algorithm 
and the best solution known for the correspondent instance. 

 100
av optimal

gap
optimal

−= ×  (10) 

Only Pang et al. (2004) and Zhong et al. (2007) report average processing times. Pang et al. 
(2004) use a Pentium IV with 2 GHz, 256 Mb running Windows 2000. Zhong et al. (2007) use 
a Celeron with 2.26 GHz, 256 Mb, running Windows XP.  Running time comparisons are, in 
general, difficult to make, even when the codes are developed in the same machines and the 
same compiler options are used. A re-implementation of those algorithms could introduce 
errors and the results obtained with the new implementations could produce results that 
differ largely from the published ones. The proposed algorithm was executed in a platform 
superior than the other algorithms of table 1. Nevertheless, even if the processing times of 
the other algorithms were divided by a factor of 3 (an estimate that favors those algorithms), 
table 1 shows that the two versions of the proposed algorithm exhibit processing times 
significantly lower than the others. 
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Instance Algorithm Min Average T(s) 

Pang et al. (2004a) --- 3.498 30 
Shi et al. (2007) 0.235 2.575 --- 

Zhang et al. (2007) --- 2.529 --- 
Zhong et al. (2007) 0.235 1.793 4.06 

PSO-INV 0.704 2.582 0.16 

eil51 

PSO-LK 0 0 < 0.01 

Pang et al. (2004a) --- 2.151 120 
Shi et al. (2007) 0 3.846 --- 

Zhong et al. (2007) 0 0.753 4.12 
PSO-INV 0 2.592 0.17 

berlin52 

PSO-LK 0 0 < 0.01 

Pang et al. (2004a) --- 4.222 60 
Shi et al. (2007) 1.487 4.167 --- 

Zhong et al. (2007) 0.372 2.550 11.59 
PSO-INV 2.416 4.656 0.40 

eil76 

PSO-LK 0 0 0.01 

Table 1. Results of distinct PSO approaches 

Although the inversion neighborhood is not specialized for the TSP, table 1 shows that PSO-
INV exhibits better average results than the algorithms of Pang et al. (2004) and Shi et al. 
(2007) for instances eil51 and berlin52, respectively. Concerning the group of tested 
instances PSO-INV presents results that are comparable with the results presented by Pang 
et al. (2004a), Zhang et al. (2007) and Shi et al. (2007). Except for the PSO-LK, the algorithm 
presented by Zhong et al. (2007) outperforms the others regarding quality of solution. A 
comparison between the results obtained for instances with more than 50 cities by the PSO-
LK and the algorithm presented by Zhong et al. (2007) is shown in table 2. The proposed 
algorithm outperforms the algorithm of Zhong et al. (2007) regarding quality of solution and 
processing times in the five tested instances. 
 

Zhong et al. (2007) PSO-LK 
Instance 

Min Average T(s) Min Average T(s) 

eil51 0.002 1.793 4.06 0 0 0 
berlin52 0 0.753 4.12 0 0 0 

eil76 0.004 2.550 11.59 0 0 0.01 
kroA100 0.001 1.914 23.95 0 0 0.02 
kroA200 0.007 3.427 198.55 0 0 0.08 

Table 2. Comparison between PSO-LK and the algorithm of Zhong et al (2007) 

PSO-INV performs poorly when compared with PSO-LK. Table 3 presents a comparison, in 
terms of percent deviation from the optimal solution, between the best and average results 
found by these two algorithms for 8 instances with 195 to 2103 cities. Table 3 shows that the 
PSO-LK outperforms PSO-INV with a significant difference among the results reported. 
This is not a surprise, since the local search procedure embedded in the former version is 
more powerful than the local search procedure of the latter. 
Among the PSO approaches for the TSP, the hybrid algorithm presented by Machado & 

Lopes (2005) presents results for the largest instances. A comparison between the quality of 
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solutions obtained by this algorithm (M&L) and the PSO-LK is shown in table 4, where is 

shown that the proposed approach outperforms the algorithm of Machado & Lopes (2005) 

in all tested instances. The average differences from the optimal solution obtained by 

Machado & Lopes (2005) and the PSO-LK regarding the tested instances are, respectively, 

3.832 and 0.005. 

 

PSO-INV PSO-LK 
Instances

Min Av Min Av 

rat195 5.8114 8.7581 0 0 
pr299 5.8476 7.9952 0 0 
pr439 4.4200 8.0111 0 0 
d657 6.9656 9.6157 0 0 

pr1002 9.8574 11.1900 0 0 
d1291 13.2104 15.5505 0 0.0113 
rl1304 10.4432 11.9942 0 0 
d2103 16.7383 18.4180 0.0087 0.0267 

Table 3. Quality of solutions obtained by the two versions of the proposed algorithm 

 

Instance M & L PSO-LK 

rat195 0.983 0 
pr299 0.590 0 
pr439 2.956 0 
d657 3.849 0 

pr1002 6.699 0 
d1291 4.581 0.0113 
rl1304 3.245 0 
d2103 7.749 0.0267 

Table 4. Quality of solutions obtained by Machado & Lopes (2005) and PSO-LK 

Although the LK is a powerful neighborhood for the TSP, the good performance exhibited 

by the PSO-LK is not only due to the use of this neighborhood. The differences between the 

results obtained by the LK procedure and the PSO-LK algorithm are shown in table 4. This 

experiment aimed at finding out if the proposed PSO approach was able to improve the LK 

results. Table 5 shows the results for 30 symmetric instances. The cells with dark 

background show the results where an improvement with the PSO approach is obtained. 

Twenty independent runs of each algorithm were performed. Table 5 shows that all average 

solutions are improved. A statistical analysis shows that, in average, improvements of 88% 

and 89% were achieved on the best and average results, respectively. The Mann-Whitney U-

test was applied to verify if the average solutions are statistically different. The Mann-

Withney U-test, also called Mann-Whitney-Wilcoxon test or Wilcoxon rank-sum test, is a 

non-parametric test used to verify the null hypothesis that two samples come from the same 

population (Conover, 1971). The p-values obtained are shown in the last column of table 5. 

Let avLK and avPSO-LK denote the average solution obtained by the LK and the PSO-LK 

algorithms, respectively, then the p-values show that, with a level of significance of 0.05, the 

null hypothesis that verifies if avLK = avPSO-LK is rejected for all instances.  
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LK PSO-LK 
Instance 

Min Average Min Average
p-value 

pr439 0.0000 0.0463 0.0000 0.0000 0.004233 

pcb442 0.0000 0.1119 0.0000 0.0000 0.018562 

d493 0.0029 0.1216 0.0000 0.0000 0.000000 

rat575 0.0295 0.1277 0.0000 0.0052 0.000000 

p654 0.0000 0.0078 0.0000 0.0000 0.001932 

d657 0.0020 0.1500 0.0000 0.0000 0.000000 

rat783 0.0000 0.0704 0.0000 0.0000 0.000000 

dsj1000 0.0731 0.2973 0.0027 0.0041 0.000000 

pr1002 0.0000 0.1318 0.0000 0.0000 0.000000 

u1060 0.0085 0.1786 0.0000 0.0049 0.000000 

vm1084 0.0017 0.0669 0.0000 0.0052 0.000000 

pcb1173 0.0000 0.1814 0.0000 0.0003 0.000000 

d1291 0.0039 0.4333 0.0000 0.0113 0.000000 

rl1304 0.0202 0.3984 0.0000 0.0000 0.000000 

rl1323 0.0463 0.2300 0.0000 0.0079 0.000001 

nrw1379 0.0547 0.1354 0.0018 0.0160 0.000000 

fl1400 0.0000 0.1215 0.0000 0.0000 0.000021 

fl1577 0.7371 2.2974 0.0000 0.0420 0.000000 

vm1748 0.0903 0.1311 0.0000 0.0009 0.000000 

u1817 0.1976 0.5938 0.0454 0.1408 0.000000 

rl1889 0.1836 0.3844 0.0000 0.0165 0.000000 

d2103 0.0597 0.3085 0.0087 0.0267 0.000000 

u2152 0.2381 0.5548 0.0062 0.1135 0.000000 

pr2392 0.0775 0.3904 0.0000 0.0112 0.000000 

pcb3038 0.1598 0.2568 0.0123 0.0686 0.000000 

fl3795 0.5665 1.0920 0.0000 0.0403 0.000000 

fnl4461 0.0882 0.1717 0.0794 0.1155 0.000000 

rl5915 0.3528 0.5343 0.0755 0.1554 0.000000 

rl5934 0.2221 0.4761 0.0309 0.1545 0.000000 

pla7397 0.1278 0.2912 0.0075 0.0253 0.000000 

Table 5. Comparison between LK and PSO-LK 

4. Composing velocity operators 

The composition of velocities can be thought as an arrangement of velocity operators. This 
arrangement defines the sequence that determines the order of application of each velocity 
operator to a given particle. For example, let v1, v2, v3 be the three velocity operators defined 
in the last section, A1 and A2 be two sequences of application of these velocity operators, 
A1=(v1, v2, v3), A2=(v3, v1, v2). Regardless the coefficients of equation (9), two examples of 
algorithms for the composition of the velocities are presented in figures 4(a) and 4(b). The 
meaning of those coefficients is explained further. In the algorithm shown in figure 4(a), the 
composition of velocities is implicit, once the results of the application of the velocity 
operators v1 and v2 are inputs for the next operation. A possible implementation for the 
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composition of velocities with sequence A2 is illustrated in figure 4(b), where a method to 
compose the results of each application of the velocity operators has to be defined. 
 

procedure update_position(xp, pbestp, gbestp)

      y1 ← v1(xp) 

      y2 ← v2(y1, pbestp)  

      y3 ← v3(y2, gbestp)    
      return(y3) 

 procedure update_position(xp, pbestp, gbestp) 

      y1 ← v3(xp, gbestp) 

      y2 ← v1(xp) 

      y3 ← v2(xp, pbestp) 

      return(y1 ⊕ y2 ⊕ y3) 

(a)                 (b) 

Fig. 4. Composition of velocities to update xp with sequences (a) A1 and (b) A2 

Besides the six ways to combine velocities v1, v2 and v3, there is, still, the possibility of 
repeating velocity operators in the same sequence. For example, the sequence 
A = (v1,v2,v3,v1) can be implemented with the algorithm of figure 4(a), replacing the 

statement return(y3) by the statements y4←v1(y3) and return(y4). 
In order to accomplish the task of composing velocities, stopping conditions for the 
application of each velocity operator can also be defined. Let A = (a1, a2, …, am) be a sequence 

where each ai, 1 ≤ i ≤ m, is a pair (vj, sk), vj ∈ V, the set of velocity operators, and sk is vj’s 
stopping condition. Thus, given a sequence A with q elements, the first velocity operator is 
applied to particle p until reaching its corresponding stopping condition, then the process 
continues with the second velocity operator until the q-th element of sequence A. 
In this work two velocity operators are considered: local search (v1) and path-relinking 
(v2=v3). Some stopping conditions that can be adopted for v1 are: to execute a maximum 
number of local search iterations, to find a solution that improves the input solution by a 
given amount, to find a local optimum (corresponds to a standard local search run). Some 
stopping conditions for v2 are: to reach the target solution (corresponds to the standard 
path-relinking), to find a solution better than the origin and target solutions, to find a 
solution better than the worst among the two input solutions, to stop after a maximum 
number of iterations, or, given the distance d between the two input solutions, to stop after 

doing ⎣d/z⎦ iterations, where z is an integer z ≤ d. 
In this context, the coefficients of equation (9) can be thought as representing stopping 
conditions. For example, let c0, c1, c2 be three numbers in the interval [0,1] and itmax1, itmax2, 
itmax3 be the maximum number of iterations for the operations with velocities v1, v2 and v3, 

respectively. Then ci×vi+1(⋅), i = 0,1,2, represents the application of velocity operator vi+1 with 

a maximum of ci×itmaxi+1 iterations. 
Consider the algorithm of figure 2, with the following modifications: 

• pr1, pr2, pr3 are the probabilities associated with compositions represented by sequences 
A1, A2 and A3, respectively. 

• The statements  
                  velocityp  ←  define_velocity(pr1, pr2, pr3)  
                  xp ← update(xp,velocityp) 
        are replaced by 
                         compp  ←  define_composition(pr1, pr2, pr3)  
                         xp ← update(xp,compp) 
In order to test the potential of composing velocities, two variants of the basic algorithm 
shown in figure 2 are investigated. The sequences A1, A2 and A3 of the first algorithmic 
version are: A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1)), A3 = ((v3,s2), (v1,s1)). The stopping conditions s1 
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and s2 are, respectively, to find a local optimum and to find a solution better than the worst 
among the two input solutions. Figure 5(a) shows an illustrative scheme of sequence A2. 
Once the path-relinking is considered for v2 and v3, the scheme of figure 5(a) is also valid if 
v2 is replaced by v3. In the second variant of the basic algorithm the sequences are: 
A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1), (v2,s3)), A3 = ((v3,s2), (v1,s1),(v3,s3)). The stopping condition s3 
is to reach the target solution. The illustrative scheme of the sequence A3 (also valid for A2) is 
shown in figure 5(b). 
 

Origin Target

(v2,s2)

(v1,s1)

 

 Origin Target

(v3,s2)

(v1,s1)

(v3,s3)
 

(a)                 (b) 

Fig. 5. Sequences (a) A2 = ((v2,s2), (v1,s1)) and (b) A3 = ((v3,s2), (v1,s1),(v3,s3)). 

Tables 6 and 7 show a comparison between the results obtained by the basic PSO-LK and 

the first and second algorithmic versions, respectively. The elements of columns Min and Av 

are the percent deviation from the best known solution of the best and average solutions 

found by the correspondent algorithm in 20 independent runs. The average processing 

times in seconds are presented in column T(s). The cells with the best results have a dark 

background. The p-values shown in the last column of tables 6 and 7 are the result of the 

hypothesis test with the average values presented for each instance. 

In preliminary experiments the values 10, 15, 20 and 25 were tested for the size of the swarm 

and the values 20, 50 and 100 were tested for the maximum number of iterations. The best 

trade-off between quality of solution and processing time was reached with 20 particles and 

maximum of 20 iterations. The tests were done in a Pentium IV, 3.0 GHz, 1 Gb of RAM. 

Table 6 shows that both algorithmic versions find the best average solutions of 10 instances, 

the PSO-LK finds 1 best solution and the PSO-LK-C1 finds 6 best solutions. Observing the p-

values of the 20 instances where different average solutions were found, the table shows 

that, with a level of significance 0.05, significant differences exist only for instances nrw1379 

and pr2392. Thus, both versions present similar performance regarding quality of solution 

for the majority of the tested instances. Nevertheless, the processing times of the algorithmic 

version with the composition of velocities are significantly lower than those presented by 

the basic algorithmic version at 27 instances. The algorithm with the composition of 

velocities spends, in average, half the processing time spent by the basic algorithm. Thus 

with half of the processing effort, the algorithm is able to find solutions as good as the basic 

PSO-LK. 

Similar results are observed in table 7. The PSO-LK and the PSO-LK-C2 find the best 
average solutions of 10 and 11 instances, respectively. Regarding the best solution found by 
each algorithm, table 7 shows that the PSO-LK-C2 finds 6 best results and the PSO-LK does 
not find any best result. The p-values of the 21 instances for which the algorithms found 
different average solutions show that a significant difference exists only for instance pr2392. 
In average, the processing times of PSO-LK-C2 are 1.27 times better than the ones presented 

by the PSO-LK. 
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PSO-LK PSO-LK-C1 
Instances 

Min Av T(s) Min Av T(s) 
p-level 

pr439 0 0 0.78 0 0 0.38 ----- 

pcb442 0 0 0.80 0 0 0.39 ----- 

d493 0 0 19.38 0 0 13.52 ----- 

rat575 0 0 6.47 0 0.0007 3.83 0.317318 

p654 0 0 1.90 0 0 0.87 ----- 

d657 0 0 12.42 0 0 8.35 ----- 

rat783 0 0 5.25 0 0 1.92 ----- 

dsj1000 0.0027 0.0031 178.48 0.0027 0.0027 82.27 0.077143 

pr1002 0 0 9.50 0 0 3.32 ----- 

u1060 0 0 38.18 0 0.0008 22.87 0.151953 

vm1084 0 0.0010 34.74 0 0.0016 25.05 0.958539 

pcb1173 0 0.0001 48.18 0 0.0003 32.65 0.156717 

d1291 0 0 29.86 0 0 8.81 ----- 

rl1304 0 0 21.62 0 0 5.57 ----- 

rl1323 0 0.0092 225.32 0 0.0030 66.60 0.068481 

nrw1379 0.0017 0.0085 417.80 0 0.0058 181.75 0.041205 

fl1400 0 0 15.42 0 0 5.68 ----- 

fl1577 0 0.0135 461.99 0 0.0200 248.85 0.237805 

vm1748 0 0.0018 854.17 0 0 382.28 0.317318 

u1817 0 0.0863 789.18 0.0367 0.1068 410.16 0.297390 

rl1889 0 0.0073 894.43 0 0.0037 348.68 0.229728 

d2103 0 0.0043 1137.53 0 0.0123 417.53 0.751641 

u2152 0 0.0717 1415.32 0 0.0711 512.12 0.989112 

pr2392 0 0.0021 577.78 0 0 86.43 0.018578 

pcb3038 0.0101 0.0396 323.94 0 0.0343 1772.8 0.336582 

fl3795 0 0.0142 621.63 0 0.0214 131.10 0.636875 

fnl4461 0.0296 0.0462 583.78 0.0104 0.0421 952.61 0.386402 

rl5915 0.0122 0.0633 1359.25 0.0025 0.0435 1029.21 0.083396 

rl5934 0.0012 0.0650 983.04 0 0.0797 1443.5 0.645471 

pla7397 0.0075 0.0253 1563.22 0.0004 0.0348 826.38 0.158900 

Table 6. Comparison between PSO-LK and PSO-LK-C1 
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PSO-LK PSO-LK-C2 
Instances 

Min Av T(s) Min Av T(s) 
p-level 

pr439 0 0 0.78 0 0 0.59 ---- 

pcb442 0 0 0.80 0 0 0.6 ---- 

d493 0 0 19.38 0 0 16.3 ---- 

rat575 0 0 6.47 0 0.0007 4.17 0.317318 

p654 0 0 1.90 0 0 1.46 ---- 

d657 0 0 12.42 0 0 9.72 ---- 

rat783 0 0 5.25 0 0 3.76 ---- 

dsj1000 0.0027 0.0031 178.48 0.0027 0.0028 103.01 0.097603 

pr1002 0 0 9.50 0 0 6.33 ---- 

u1060 0 0 38.18 0 0.0013 26.88 0.075373 

vm1084 0 0.0010 34.74 0 0.0016 29.57 0.958539 

pcb1173 0 0.0001 48.18 0 0.0003 34.53 0.297961 

d1291 0 0 29.86 0 0.0073 27.46 0.152088 

rl1304 0 0 21.62 0 0 10.44 ---- 

rl1323 0 0.0092 225.32 0 0.0055 127.55 0.618230 

nrw1379 0.0017 0.0085 417.80 0 0.0080 259.99 0.587686 

fl1400 0 0 15.42 0 0 11.2 ---- 

fl1577 0 0.0135 461.99 0 0.1144 303.77 0.102963 

vm1748 0 0.0018 854.17 0 0 485.22 0.317318 

u1817 0 0.0863 789.18 0 0.0811 454.81 0.684114 

rl1889 0 0.0073 894.43 0 0.0070 389.12 0.844488 

d2103 0 0.0043 1137.53 0 0.0128 443.39 0.655928 

u2152 0 0.0717 1415.32 0 0.0609 680.38 0.390349 

pr2392 0 0.0021 577.78 0 0 145.84 0.018578 

pcb3038 0.0101 0.0396 323.94 0.0036 0.0387 1930.7 0.849722 

fl3795 0 0.0142 621.63 0 0.0285 408.86 0.381866 

fnl4461 0.0296 0.0462 583.78 0.0148 0.0452 1148.8 0.108256 

rl5915 0.0122 0.0633 1359.25 0.0109 0.0499 984.11 0.194137 

rl5934 0.0012 0.0650 983.04 0 0.0659 1142.78 0.913724 

pla7397 0.0075 0.0253 1563.22 0.0007 0.0298 763.47 0.684311 

Table 7. Comparison between PSO-LK and PSO-LK-C2 
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A comparison between the performance, regarding quality of solution, of PSO-LK-C1 and 

four effective heuristics for the TSP is shown in tables 8 and 9, where 23 symmetric instances 

with |N| ranging from 1000 to 7397 are considered. The heuristics are: the Nguyen, 

Yoshihara, Yamamori and Yasunada iterated Lin-Kernighan variant (reported at 

http://www.research.att.com/~dsj/chtsp/), ILK-NYYY, the iterated Lin-Kernighan variant 

presented by Johnson & McGeoch (1997), ILK-JM, the Tourmerge (Cook & Seymour, 2003) 

and the LK implementation presented by Helsgaun (2000), ILK-H. The results of the first 

three heuristics were obtained in the DIMACS Challenge page (at 

http://www.research.att.com/~dsj/chtsp/results.html).  

The columns of table 8 corresponding to the ILK-NYYY and the ILK-JM show the best tours 

obtained in ten |N| iterations runs.  The table shows that the PSO-LK-C1 obtains better 

values than the ILK-NYYY and the ILK-JM at 13 and 16 instances, respectively. The ILK-

NYYY presents the best minimal solution for instance dsj1000. The last line of table 8 shows 

the average results of the three algorithms. It is observed that, in average, the solutions 

obtained by the PSO-LK-C1 are, approximately, 8 and 24 times better than the solutions 

presented by the ILK-NYYY and the ILK-JM, respectively. 

 

Instance 
PSO-

LK-C1 
ILK-NYYY 

Nb10 
ILK-JM 
Nb10 

dsj1000 0.0027 0 0.0063 
pr1002 0 0 0.1482 
u1060 0 0.0085 0.0210 

vm1084 0 0.0217 0.0217 
pcb1173 0 0 0.0088 
d1291 0 0 0 
rl1304 0 0 0 
rl1323 0 0.01 0 

nrw1379 0 0.0247 0.0018 
fl1400 0 0 0 
fl1577 0 0 0 

vm1748 0 0 0 
u1817 0.0367 0.1643 0.2657 
rl1889 0 0.0082 0.0041 
d2103 0 0.0559 0 
u2152 0 0 0.1743 
pr2392 0 0.0050 0.1495 

pcb3038 0 0.0247 0.1213 
fl3795 0 0 0.0104 

fnl4461 0.0104 0.0449 0.1358 
rl5915 0.0025 0.0580 0.0168 
rl5934 0 0.0115 0.1723 

pla7397 0.0004 0.0209 0.0497 

Mean 0.0023 0.0199 0.0569 

Table 8. Best solutions of PSO-LK-C1 and two iterative LK 
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Table 9 shows a comparison between the best and average results found by the PSO-LK-C1, 
the Tourmerge and the ILK-H. Regarding the minimal values, the proposed algorithm 
presents better results than the Tourmerge at 6 of the 21 instances the latter algorithm 
reports results. The Tourmerge presents one minimal result better than the proposed 
algorithm. The ILK-H presents 4 minimal results that are better than the ones presented by 
the PSO-LK-C1. Compared with the former, the latter algorithm presents the best minimal 
results of 2 instances. Considering the average solutions, the PSO-LK-C1 presents better 
results than the Tourmerge and the ILK-H at 14 and 12 instances, respectively. The 
Tourmerge and the ILK-H present better average results than the PSO algorithm for 5 and 8 
instances, respectively. The last line of table 9 summarizes the results of each column. The 
proposed algorithm presents the best statistics regarding the average solutions. 
 

PSO-LK-C1 Tourmerge ILK-H 
Instance 

Min Average Min Average Min Average 

dsj1000 0.0027 0.0027 0.0027 0.0478 0 0.035 
pr1002 0 0 0 0.0197 0 0 
u1060 0 0.0008 0 0.0049 0 0 

vm1084 0 0.0016 0 0.0013 0 0.007 
pcb1173 0 0.0003 0 0.0018 0 0.002 
d1291 0 0 0 0.0492 0 0.033 
rl1304 0 0 0 0.1150 0 0.019 
rl1323 0 0.0030 0.01 0.0411 0 0.018 

nrw1379 0 0.0058 0 0.0071 0 0.006 
fl1400 0 0 0 0 0 0.162 
fl1577 0 0.0200 0 0.0225 0 0.046 

vm1748 0 0 0 0 0 0.023 
u1817 0.0367 0.1068 0.0332 0.0804 0 0.078 
rl1889 0 0.0037 0.0082 0.0682 0 0.002 
d2103 0 0.0123 0.0199 0.3170 --- --- 
u2152 0 0.0711 0 0.0794 0 0.029 
pr2392 0 0 0 0.0019 0 0 

pcb3038 0 0.0343 0.0036 0.0327 0 0 
fl3795 0 0.0214 0 0.0556 0 0.072 

fnl4461 0.0104 0.0421 --- --- 0 0.001 
rl5915 0.0025 0.0435 0.0057 0.0237 0.009 0.028 
rl5934 0 0.0797 0.0023 0.0104 0.005 0.089 

pla7397 0.0104 0.0348 --- --- 0 0.001 

Mean 0.002291 0.019926 0.004076 0.046652 0.000636 0.029591 

Table 9. Minimal and average results presented by PSO-LK-C1 and Tourmerge 

5. Conclusion 

This chapter summarized the research done to develop PSO algorithms for the TSP. Many of 
the PSO algorithms presented previously for the investigated problem do not tackle large 
instances and present results far from the best known heuristic solutions obtained by 
effective algorithms. The chapter presented an approach to design effective PSO algorithms 
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for the TSP that can be extended to other discrete optimization problems. The new 
approach, first introduced by Goldbarg et al. (2006a), differentiates velocity operators 
according to the type of move the particle does. Additionally, methods to compose the 
velocity operators were proposed. Computational experiments with instances up to 7397 
cities were presented. The results of those experiments show that the proposed method 
produces high quality solutions, when compared with four effective heuristics designed 
specifically for the investigated problem. 
The composition of velocities allows building a number of possible implementations for the 
search strategies chosen to be used in the PSO algorithm. Therefore, rather than a 
metaheuristic, the Particle Swarm approach can be thought as a framework for heuristics 
hybridization in the context of discrete optimization problems. 

6. Future works 

In future works other methods to compose velocities and heuristics hybridization under the 
PSO framework will be investigated. Another idea to be explored in future researches is 
variable velocities. The proposed approach will be applied to the Generalized TSP and to the 
Bi-objective TSP. 
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The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the
research community to consider a problem from the everyday life from a mathematical point of view. A
traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He
knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the
salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions
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research community because it arises as a natural subproblem in many applications concerning the every day
life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that
the total cost of a solution is determined by adding up the costs arising from two successively items, can be
modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no
real importance.
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