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Abstract

The traveling salesman problem with neighborhoods extends the
traveling salesman problem to the case where each vertex of the tour
is allowed to move in a given region. This NP-hard optimization prob-
lem has recently received increasing attention in several technical fields
such as robotics, unmanned aerial vehicles, or utility management. In
this paper, the problem is formulated as a nonconvex Mixed-Integer
NonLinear Program (MINLP) having the property that fixing all the
integer variables to any integer values yields a convex nonlinear pro-
gram. This property is used to modify the global MINLP optimizer
Couenne, improving by orders of magnitude its performance and al-
lowing the exact solution of instances large enough to be useful in ap-
plications. Computational results are presented where neighborhoods
are either polyhedra or ellipsoids in R2 or R3 and with the Euclidean
norm as distance metric.
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1 Introduction

A manipulator is a robot designed to handle objects. This interaction is
typically carried out by a device mounted at the end of the manipulator arm
and called end-effector. For computer vision based inspection, a camera or
a laser digitizer is installed on the end-effector and pictures of n different
features on the object surface have to be acquired. In actual industrial
practice this cycle has to be continuously repeated, and a critical task is
thus finding an optimal inspection sequence having minimal cycle time to
maximize the number of inspected components. Each picture i can be taken
from an infinite number of relative positions between object and end-effector,
represented by a set Qi of end-effector feasible placements. The set Qi is
the neighborhood for taking picture i. Given two pictures i 6= j that have to
be taken and two end-effector placements qi ∈ Qi and qj ∈ Qj , the time for
the manipulator to move from qi to qj is known. The goal is to find end-
effector placements qi ∈ Qi for i = 1, . . . , n and a tour visiting these n points
such that its total cycle time is minimized. This view planning problem can
be modeled as a Traveling Salesman Problem with Neighborhoods (TSPN),
which was first introduced by Arkin and Hassin [3]. The TSPN has been
studied mostly in the approximation algorithm literature [8].

This problem is very complex in its full generality, as neighborhoods can
have arbitrary shapes determined by camera specifications and manipula-
tor physical constraints. Moreover, computing the minimum time to move
between two end-effector placements is in itself a difficult problem since it
involves manipulator kinematic and obstacle avoidance [20]. In this paper
we study a simplified version of this problem. First, although each end-
effector placement is defined by six parameters (three for its position and
three for its orientation), we assume that the relative orientation between
camera and object is directly derived from their relative position to limit
image distortion. This is a typical restriction in applications and reduces
the dimension of each neighborhood to at most three. Neighborhoods are
then encoded as either polyhedra or ellipsoids, which are versatile enough
to well constraint the set of feasible viewpoints for each picture depending
on camera optics limitations and physical view occlusions. Finally, we ap-
proximate the travel time between two end-effector placements qi and qj by
the Euclidean distance denoted by d (qi, qj) hereafter. This is a reasonable
indicator of the dynamic performance for industrial manipulator controllers.

Our approach to solve such instances of TSPN is to formulate it as
a non-convex Mixed Integer Non Linear Programming (MINLP) using as
variables the coordinates of the vertices qi for i = 1, . . . , n as well as binary
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Figure 1: An ATSPN instance. The five shaded areas around the vertices
are the neighborhoods of five pictures and the depicted directed tour is a
feasible solution.

variables ξij for i, j = 1, . . . , n to represent the possible edges of the tour.
The resulting MINLP is nonconvex, even when the integrality constraints
on the variables ξij are relaxed. It follows that only solvers for nonconvex
MINLP problems can be used for its solution. Examples of such solvers
are Baron [17], Couenne [4, 6], and Lindoglobal [15]. However, these
solvers struggle to solve relatively small size instances of TSPN.

In applications, a typical number of pictures acquired per cycle can range
from 5 to 75 [12, 18]. Our benchmark instances have up to n = 16 con-
vex neighborhoods of dimension two or three. These instances are thus
simplified versions of real ones, but realistic enough to show that the pro-
posed approach clearly outperforms standard ones. For example, the solver
Couenne (with default settings) require 733 seconds to solve the instance
tspn2DP6 2 to optimality, while the proposed approach solves it in a frac-
tion of a second. Moreover, if a solution provably within a few percent of
optimality is satisfactory, solving quickly instances with up to n = 30 be-
comes feasible. See Figure 2 for a typical illustration of the evolution of
lower and upper bounds on the optimal solution.

Our aim is thus to show that using a specific feature of the MINLP
formulation and customizing the solver by adding specific cut generators and
heuristics, it is possible to solve instances of realistic size far more efficiently.
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Figure 2: Convergence history of Couenne with CglTspn for the instance
tspn2DE15 1.

The crucial feature that we exploit is that once all the binary variables in
the formulation are fixed to 0 or 1 values, the continuous relaxation of the
remaining problem is convex. It is thus possible to solve it to optimality
using a continuous solver.

The paper is organized as follows: The precise formulation we use is
presented in Section 2, and the algorithm is described in Section 3. Specific
settings of the various solvers used in the solution process are briefly de-
scribed in Section 4. In Section 5, we give results on 64 instances of various
sizes, as well as comparisons with heuristics solutions obtained by the con-
vex solver Bonmin [5]. Finally, Section 6 contains conclusions and discusses
potential future work.

2 MINLP model

An instance is given by a set V = {1, 2, . . . , n} of the indices of the pictures
to be taken, a set Qi ⊆ Rm for i ∈ V of neighborhoods, and a nonnegative
distance function d(u,v) for all u,v ∈ Rm. The instance can be symmetric
(STSPN) or asymmetric (ATSPN), depending on the distance function being
symmetric, i.e. d(u,v) = d(v,u) for all u,v ∈ Rm, or not.

The ATSPN can be formulated using variables qi ∈ Rm for all i ∈ V and
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binary variables ξij for all i, j ∈ V with i 6= j such that

ξij =

{
1 if neighborhood j is visited just after neighborhood i;
0 otherwise.

The constraints are either those in an integer programming formulation
of the Asymmetric TSP (ATSP) based on the clique packing subtour elimi-
nation constraints, also known as DFJ formulation [13] (constraints (2)-(4)
below), or expressing that variable qi ∈ Rm must be in the neighborhood
Qi for all i ∈ V (constraints (5) below).

We obtain the following MINLP formulation of the ATSPN:

minimize :
n∑
i=1

n∑
j=1
j 6=i

ξij d (qi, qj) (1)

subject to :
n∑
i=1
i 6=j

ξij = 1 ∀ j ∈ V (2)

n∑
j=1
j 6=i

ξij = 1 ∀ i ∈ V (3)

∑
i∈S

∑
j∈V\S

ξij ≥ 1 ∀S ⊂ V \ {1}, |S| ≥ 2 (4)

qi ∈ Qi ⊆ Rm ∀ i ∈ V (5)
ξij ∈ {0, 1} ∀ i, j ∈ V, i 6= j (6)
qi ∈ Rm ∀ i ∈ V . (7)

The 2n assignment constraints (2) and (3) make sure that each vertex
is visited exactly once. The 2n−1 − n − 1 subtour elimination constraints
(4) ensure that no subtour is present in a solution by forcing the number
of active edges departing from any subgraph induced by a subset of the
vertices with cardinality at least 2 to be at least equal to 1. Finally, the n
constraints (5) define the neighborhoods, and the n(n − 1) + n constraints
(6) and (7) define the domain of the instance.

The objective function is a non-convex function of the binary and contin-
uous variables. Constraints (2)-(4) are linear, and the type of the constraints
(5) depends on the shape of the neighborhood Qi. In our test instances,
these constraints are either linear when Qi is a polyhedron or convex and
quadratic when it is an ellipsoid.
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If the Euclidean norm is employed as distance function, the problem
becomes symmetric, and only half the variables ξij used above are necessary.
Moreover, if a polyhedron {x ∈ Rm |Aix ≤ bi} is used as neighborhood i,
we obtain the following formulation of the STSPN:

minimize :
n∑
i=1

n∑
j=1
j>i

ξij ‖qj − qi‖2 (8)

subject to :
i−1∑
j=1

ξji +
n∑

j=i+1

ξij = 2 ∀ i ∈ V (9)

∑
i∈S

( ∑
j∈V\S
j<i

ξji +
∑
j∈V\S
j>i

ξij

)
≥ 2 ∀S ⊂ V \ {1}, |S| ≥ 3 (10)

Ai qi ≤ bi ∀ i ∈ V (11)
ξij ∈ {0, 1} ∀ i, j ∈ V, j > i (12)
qi ∈ Rm ∀ i ∈ V . (13)

If ellipsoids are used as neighborhoods, Equation (11) becomes:

(qi − ci)
T P−1

i (qi − ci)− 1 ≤ 0 ∀ i ∈ V (14)

where Pi is an (m × m) symmetric positive definite matrix and ci is an
(m× 1) vector, center of the i-th ellipsoid.

One difficulty in handling this formulation is the number of subtour
elimination constraints (10). Although their number is exponential in the
size of the instance n, they can be handled efficiently implicitly using a
cutting plane approach [16].

3 Description of the algorithm

The basis of the algorithm is a spatial branch-and-bound as implemented
in Couenne [4, 6]. The main difference with a usual branch-and-bound
algorithm for solving mixed-integer linear programs is that branching might
occur on a continuous variable. It also uses a linear outer-approximation
of the nonlinear problem for bounding purposes. The detailed description
of the algorithm is outside the scope of this paper and can be found in
the above paper and references therein. Table 1 is a high-level simplified
description of the basic algorithm applied on the STSPN, except that only
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Input: Problem P
Output: The value zopt of an optimal solution of P
1. Define set L of subproblems; let L← {P};
2. Define zu as an upper bound for P; let zu ← +∞
3. while L 6= ∅
4. choose Pk ∈ L
5. L← L \ {Pk}
6. generate a linear relaxation LPk of Pk

7. repeat
8. solve LPk; let (ξ̄k, q̄k) be an optimum and z̄k its objective value
9. refine linearization LPk

10. until (ξ̄k, q̄k) is feasible for Pk or z̄k does not improve sufficiently
11. if (ξ̄k, q̄k) is feasible for Pk, then let zu ← min{zu, z̄k}
12. (optional) find a local optimum ẑk of Pk; zu ← min{zu, ẑk}
13. if z̄k ≤ zu − ε then
14. choose a variable χ := ξij or qid where d ∈ {1, . . . ,m}
15. choose a branching point b
16. create subproblems:
17. Pk− with χ ≤ b,
18. Pk+ with χ ≥ b
19. L← L ∪ {Pk−,Pk+}
20. output zopt := zu

Table 1: A simplified spatial Branch-and-Bound algorithm for solving the
MINLP P.

a small number of constraints (10) are included in the initial formulation P.
How we select these constraints is explained below.

Note that when the branching variable selected in Step 14 is an integer
variable, the branching point b is taken as an integer value and subproblem
Pk+ is defined by setting χ ≥ b+ 1. This ensures that the two subproblems
Pk− and Pk+ form a partition of subproblem Pk. When the branching
variable is a continuous variable, the two generated subproblems overlap on
χ = b. This could create a potentially infinite loop, but the choice of the
branching point in Step 15 and the refinement Step 9 prevent this to happen.

Next, we describe two major modifications of the basic algorithm as well
as a way to generate a very good initial heuristic solution. These alterations
yield big improvement of the performance of the solver. The resulting algo-
rithm is refereed to as CouTspn in the remainder of the paper.
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3.1 Subtour elimination constraints by cutting planes

The first modification relates to Step 9 of the algorithm. In that step, we
check if any of the constraints (10) not included in the current problem is
violated by the solution (ξ̄k, q̄k). This separation is done using a maximum
flow computation [14]. If vertex 1 is defined as source, for all terminals
vertices t ∈ V\{1}, the following max-flow linear problem is solved:

maximize :
n∑
j=2

ζ1j (15)

subject to :
i−1∑
j=1

ζji −
n∑

j=i+1

ζij = 0 ∀ i ∈ V\{1, t} (16)

n∑
j=2

ζ1j =
t−1∑
j=1

ζjt −
n∑

j=t+1

ζtj (17)

− ξ̄kij ≤ ζij ≤ ξ̄kij ∀ i, j ∈ V, j > i (18)

ζij ∈ R ∀ i, j ∈ V, j > i (19)

where ζij represents the flow between vertices i and j. It is allowed to be
negative to account for having a positive flow flowing from j to i on the arc
ij with j > i. The capacity of each edge is defined in constraints (18) using
the solution ξ̄kij of the current linearization LPk.

The maximum flow value between the source 1 and at least one of the
terminals is strictly less than 2 if and only if a violated constraint (10)
exists. If for some terminal t this maximum flow value is strictly less than
2, the set S defining a violated constraint (10) is formed by the union of
the source 1 and all other vertex i such that the constraint (16) for i has a
nonzero dual variable in an optimal solution to (15)-(19). If such constraint
is generated, it is added as a global cut, i.e., in all problems currently in
the list L. The algorithm reaches Step 11 only if no such constraint can
be found. While more efficient subtour elimination constraint separation
algorithms exist [1, 2], the size of the instances we are interested to solve
(i.e. n ≤ 30) does not require more sophistication.

3.2 Solving a convex relaxation and integer cuts

The second modification concerns Step 12. In the basic algorithm, one try
to solve the nonlinear problem (taking all variables as continuous) using the
current bounds on the variables. If that solution (ξ̄k, q̄k) happens to satisfy
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all the integer constraints (12) and the corresponding ξ̄k variables set to 1
form a tour, the value value ẑk of that solution is a valid upper bound on
the optimal value of the STSPN.

We propose to modify this step as follows: Let (ξ̄k, q̄k) be the solution
obtained when exiting the loop 7-10. If some of the integer constraints (12)
are not satisfied, we round ξ̄k to a binary vector ξ̂k representing a tour.
This is done in a greedy fashion, by selecting an initial random node p1 and
then for j = 2, . . . , n selecting pj as the node with maximum value for the
variable ξ̄kpj−1pj

among all the nodes not yet selected. To simplify notation,
we use here ξij to denote either ξij if i < j or ξji if i > j. The rounded
vector ξ̂k has ξ̂kpj−1pj

and ξ̂kpnp1 set to 1 and all other variable in ξ̂ are set to
0. In that way, ξ̂k is the characteristic vector of a tour, and it is feasible for
the original formulation.

We then check if ξ̂k already appears in the list of all rounded vectors
considered so far. If ξ̂k does not appear in that list, we solve the initial
nonlinear problem (8)-(13) after fixing all binary variables to their rounded
value in ξ̂k. As the resulting problem is convex, its optimal solution q̂k

can be computed easily with a nonlinear solver (we use Ipopt [6, 19]). To
improve the performance of the solver, a permutation π of V is used to
represent the tour defined by ξ̂k, the binary variables are removed from the
problem, and the following objective function (indices are taken modulo n):

n∑
i=1

d
(
qπ(i), qπ(i+1)

)
(20)

is minimized subjected to constraints (11) and (13) if the neighborhoods are
polyhedra and constraints (14) and (13) if they are ellipsoids.

Ipopt requires all functions in the problem formulation to be at least
once differentiable, which is not the case for the objective function (20).
Thus we instead use the following objective function (we use ε = 0.1 in the
tests):

d (qi, qj) =

{
‖qj − qi‖2 if ‖qj − qi‖2 ≥ ε
ε
2 + 1

2 ε ‖qj − qi‖22 if ‖qj − qi‖2 < ε
(21)

The function (21) is continuously differentiable except when ‖qj − qi‖2 = ε.
In this case, it is only differentiable once. The small error introduced in
the latter case is relatively inconsequential for our use of the solution. The
above function is hard-coded into the solver.

The rounding operation producing ξ̂k can potentially produce several
times the same binary vector at different iterations. To avoid as much as
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possible to generating and solving repeatedly the same continuous problem,
we add the linear constraint

n∑
i=1

n∑
j=i+1

ξ̂kij ξij ≤ n− 1 . (22)

Although constraint (22) is not initially valid, it can be now added as a
global cut, i.e. not only to the problem Pk but to all problems currently in
the list L. This is justified, as we have computed the optimal solution when
the binary variables take the values in ξ̂k and the only feasible solutions (ξ, q)
cut by that constraint have all ξ = ξ̂k. If the rounded vector ξ̂k appears
for the first time, cut (22) is added and we return to Step 7. Otherwise we
continue to Step 13. The two above operations are implemented in a cut
generator called CglTspn based on the COIN-OR CglCutGenerator class.

This modification is related to the local searches of the hybrid algorithm
(developed for solving problems that are convex) described in Section 2.3.2 of
[5]. There, it is suggested to solve the mixed-integer linear program (MILP)
associated with the current subproblem and use that solution to fix integer
variables, solve an NLP and get a valid upper bound. The rounding step
described above can be seen as a heuristic method to solve the MILP. The
integer cuts (22) can be added easily only because all integer variables in
our problem are binary. For a problem with general integer variables, that
option is not available.

3.3 Initial heuristic solution

Using a good upper bound zu in Step 2 instead of zu = +∞ typically
improves the solution times of MINLP. We thus devised a heuristic approach
that usually generates a very good solution. A by-product of this heuristic
is the identification of a set of subtour inequalities that we use in the initial
formulation P used by the algorithm.

The heuristic starts by considering the problem H obtained by dropping
all constraints (10) and (12) in the model (8)-(13). Since all variables in H
are continuous, H can be solved using the interior point solver Ipopt (precise
version numbers and non-default settings for the software used are listed in
Section 4). The initial point used as input is constructed by initializing each
variable qi to the center of each neighborhood and the binary variables such
that ξij = 1 only if j = i + 1 with j = 1 if i = n. Note that, as problem
H is nonconvex, the solution returned by Ipopt might not be optimal, but
this is not a concern for our purposes. Afterward, we use the maximum flow
separation algorithm described in Section 3.1 to find the first constraint (10)
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violated by the solution returned by Ipopt, and we add it to H. We then
call Ipopt again, and this continues until all constraints (10) are satisfied
by the solution returned by Ipopt.

At that point, we feed the current formulation H to the NLP Branch-
and-Bound algorithm for convex MINLP Bonmin [5, 6]. We then proceed in
a similar fashion as with Ipopt, separating constraints (10) violated by the
solution returned by Bonmin iteratively. As Bonmin is an exact solver only
for convex problems, the solution returned is a feasible solution, but without
any optimality guarantee. We nevertheless observe that, in the instances
used in our computational tests, the values of the heuristic solutions obtained
using this approach are usually very close to the optimal ones. The complete
procedure is performed using the algebraic modeling language Ampl [9],
and the maximum flow separation in this case is not embedded in a cut
generator within Ipopt or Bonmin using Clp, but externally solved using
the LP solver Cplex [7].

While solving the continuous relaxation of a subproblem with Bonmin,
the objective function (8) might become non-differentiable when neighbor-
hoods overlap. This happens when two vertices qi and qj for i 6= j are
identical, resulting in convergence problems as Bonmin calls Ipopt as a
subroutine. To overcome this issue, we add an exponentially decaying non-
convex term to the objective function (8) to prevent this overlapping (we
use γ = δ = 10 in the tests):

n∑
i=1

n∑
j=1
j>i

ξij ‖qj − qi‖2 + δ e−γ
2‖qj−qi‖22 . (23)

Finally, the subtour elimination constraints in the initial formulation
used by CouTspn contains all the subtour elimination constraints that were
introduced in the course of generating the heuristic solution. (Note that the
exponentially decaying term (23) is not employed when using CouTspn.)

4 Software settings

Results in this paper were obtained using open-source software available
from COIN-OR [6]. This section describes precisely which version and ad-
ditional non-default settings were used. The used software are the following.

The interior point solver Ipopt [6, 19] version stable/3.9 with all default
settings plus the option:
• linear solver=MA57.
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The convex MINLP solver Bonmin [5, 6] stable/1.4 using Cbc releases/2.4.2,
Clp releases/1.11.1, and Ipopt releases/3.8.3 as sub-solvers with all default
settings except:
• linear solver=MA57

• integer tolerance=1e−6
• allowable fraction gap=0

The MINLP solver Couenne [4, 6] stable/0.3 using Cbc releases/2.4.2,
Clp releases/1.11.1, Ipopt releases/3.8.3 as sub-solvers with all default set-
ting except:
• variable selection=osi-simple

• optimality bt=no

• log num obbt per level=0

• aggressive fbbt=no

• log num abt per level=0

• log num local optimization per level=0

• local optimization heuristic =no

• ipopt.linear solver=MA57

• ipopt.max iter=500

• ipopt.mu strategy=monotone/adaptive

The meaning of monotone/adaptive is that, when solving a given instance,
we first use the setting monotone. If Ipopt fails somewhere during the solu-
tion process, we then try the adaptive setting. For all the tested instances
at least one of the two settings works.

Finally for the heuristic procedure we also employed the commercial LP
solver Cplex [7] version 12.2.0 with all default settings and the algebraic
modeling language Ampl [10] version 20110121.

5 Computational results

Tests are performed on 64 random STSPN instances with n neighborhoods
formed by ellipsoids or polyhedra defined in in Rm (with m = 2 or 3). All
test instances are available from [11].

An instance with ellipsoidal neighborhoods is created as follows. First
n random points ci ∈ [0, 100]m are generated. These points will be the cen-
ters of the ellipsoids, and their average distance d̄ is computed. Then, for
a fixed percentage h of the average distance, a box around ci is defined as
ci ± h d̄xi/2, where xi is a uniformly distributed random vector in [0, 1]m.
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Finally, ellipsoids are placed inside these boxes aligning their principal axes
with the coordinate frame. That instance is then used to create an instance
with polyhedral neighborhoods. Each ellipsoid is approximated by a poly-
hedron with 10 facets tangent to the ellipsoid at randomly selected points.
An example is shown in Figure 3.

The machine used is a Dell Precision T7500 with an Intel Xeon
@3.33 GHz processor with 12GB of RAM running Fedora 14 kernel 2.6.35.13-92.

(a) Instance tspn2DP15 1. (b) Instance tspn2DE15 1.

Figure 3: STSPN instances of comparable extension with n = 15 and optima
tours.

First, a heuristic solution is obtained using Ipopt and Bonmin as de-
scribed in Section 3. The results are reported in the column with label
“Bonmin” in tables 3, 4, 5, and 6. The reported Bonmin cpu time includes
the time spent for the separation of the subtour elimination constraints. The
number of the added constraints is reported in the column with label “s.e.
cuts”.

Second, using as initial point the heuristic solution calculated in the pre-
vious step, each STSPN instance is solved to optimality by using CouTspn.
The initial cutoff zu is set to the value of the heuristic solution provided by
Bonmin. The results are reported in the columns labeled “CouTspn” in
tables 3, 4, 5, and 6. The overall cpu time, the time spent by CglTspn only,
and the time spent within CglTspn to solve NLP instances with Ipopt are
reported.

The number of subtour eliminations constraints (“s.e. cuts”) generated
and the number of integer cuts (22) (“int. cuts”), and the total number of
nodes in the tree are also reported.
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We compare four branching strategies, using either the option osi-simple
or osi-strong of CouTspn. The former selects the branching variable us-
ing a simple ranking function while the latter performs strong branching
with pseudo-costs [4] before selecting the variable. In addition, each of these
options are tested with and without a modification of the code of CouTspn
restricting branching only to binary variables. Table 2 reports the results.
Although simple branching (either on all variables or restricted only to bi-

Table 2: Comparison of different branching options in CouTspn.

instance
branching cpu time [s] cuts

nodes
only bin. osi overall CglTspn Ipopt int. s.e.

tspn2DP12 1

no simple 128 15 3.79 851 100 2,728
yes simple 135 15 3.82 855 102 2,750
no strong 604 14 2.06 456 76 3,708
yes strong 372 8.07 2.04 458 73 1,564

tspn2DE12 1

no simple 379 39 12 1,795 150 6,186
yes simple 383 38 12 1,777 144 6,170
no strong 1,225 37 6.51 986 115 8,990
yes strong 760 24 6.83 1,034 120 4,716

tspn3DE10

no simple 816 58 16 3,298 234 10,602
yes simple 804 60 15 3,189 244 10,690
no strong 2,665 102 10 2,166 183 30,464
yes strong 1,015 49 11 2,242 181 10,168

nary variables) usually requires a larger number of cuts and nodes, it seems
to be the most efficient in terms of overall cpu time. Therefore, all the other
tested instances were solved using simple branching on binary variables.
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Table 3: STSPN instances with polyhedra in R2 as neighborhoods.

instance n var. h
Bonmin CouTspn

heuristic cpu s.e. optimal cpu time [s] cuts
nodes

value time [s] cuts value overall CglTspn Ipopt int. s.e.

tspn2DP5 1 5 20 0.25 184.733 0.15 0 184.733 0.12 0.04 0.02 7 0 16

tspn2DP5 2 5 20 0.15 217.659 0.13 0 217.659 0.14 0.04 0.01 5 0 16

tspn2DP6 1 6 27 0.25 200.469 0.21 1 200.469 0.40 0.11 0.03 12 3 42

tspn2DP6 2 6 27 0.15 247.588 0.18 0 247.588 0.13 0.04 0.01 3 2 12

tspn2DP7 1 7 35 0.25 196.253 0.36 1 196.247 1.72 0.49 0.14 38 15 126

tspn2DP7 2 7 35 0.15 236.444 0.32 2 236.444 1.19 0.30 0.11 26 3 66

tspn2DP8 1 8 44 0.25 188.118 0.31 0 188.108 1.79 0.42 0.09 26 10 96

tspn2DP8 2 8 44 0.15 226.103 0.49 1 226.103 4.04 1.05 0.35 90 14 248

tspn2DP9 1 9 54 0.25 250.939 0.34 1 249.732 22 4.52 1.03 271 48 914

tspn2DP9 2 9 54 0.15 258.450 0.40 1 258.450 2.12 0.42 0.09 23 10 80

tspn2DP10 1 10 65 0.25 220.242 0.48 2 220.242 21 3.51 0.84 180 42 656

tspn2DP10 2 10 65 0.15 268.378 0.34 0 268.378 3.85 0.55 0.13 35 20 150

tspn2DP11 1 11 77 0.25 243.847 0.60 4 243.847 109 14 4.07 855 98 2,918

tspn2DP11 2 11 77 0.15 254.221 0.50 0 254.221 11 1.25 0.31 82 23 264

tspn2DP12 1 12 90 0.25 253.543 0.58 3 253.543 135 15 3.82 855 102 2,750

tspn2DP12 2 12 90 0.15 307.750 0.54 2 306.931 91 12 3.45 699 86 2,116

tspn2DP13 1 13 104 0.25 280.389 1.52 8 273.174 4,895 707 170 25,629 487 73,724

tspn2DP13 2 13 104 0.15 318.432 0.46 0 317.780 93 11 3.14 622 126 1,926

tspn2DP14 1 14 119 0.25 306.338 0.89 4 306.338 6,537 915 204 30,973 776 93,864

tspn2DP14 2 14 119 0.15 266.009 0.92 3 264.164 378 39 11 1,690 123 5,718

tspn2DP15 1 15 135 0.25 285.082 1.72 6 280.202 28,121 5,192 649 94,211 1,197 277,780

tspn2DP15 2 15 135 0.15 299.055 1.42 6 288.467 3,020 352 78 11,937 371 40,002

tspn2DP16 1 16 152 0.15 367.895 3.34 6 365.777 13,654 2,020 331 53,350 998 138,650

tspn2DP16 2 16 152 0.15 292.280 1.43 8 292.280 5,701 633 123 18,753 420 57,292

Table 4: STSPN instances with polyhedra in R3 as neighborhoods.

instance n var. h
Bonmin CouTspn

heuristic cpu s.e. optimal cpu time [s] cuts
nodes

value time [s] cuts value overall CglTspn Ipopt int. s.e.

tspn3DP5 5 25 0.25 236.214 0.13 0 236.214 0.15 0.04 0.02 5 0 10

tspn3DP6 6 33 0.25 257.551 0.20 1 257.551 0.60 0.13 0.04 14 4 36

tspn3DP7 7 42 0.25 310.691 0.28 2 310.691 4.25 0.71 0.21 56 14 182

tspn3DP8 8 52 0.25 279.257 0.27 0 277.730 12 2.11 0.61 137 27 398

tspn3DP9 9 63 0.25 295.018 0.44 3 290.478 58 6.92 2.23 482 80 1,552

tspn3DP10 10 75 0.25 306.508 0.46 3 301.884 230 25 7.87 1,628 171 4,862

tspn3DP11 11 88 0.25 276.119 0.91 3 276.119 532 50 14 2,507 184 8,128

tspn3DP12 12 102 0.25 300.906 0.96 4 298.779 7,807 791 164 27,705 637 87,840
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Table 5: STSPN instances with ellipsoids in R2 as neighborhoods.

instance n var. h
Bonmin CouTspn

heuristic cpu s.e. optimal cpu time [s] cuts
nodes

value time [s] cuts value overall CglTspn Ipopt int. s.e.

tspn2DE5 1 5 20 0.25 191.255 0.14 0 191.255 0.22 0.07 0.03 8 0 18

tspn2DE5 2 5 20 0.15 219.307 0.13 0 219.307 0.19 0.06 0.03 7 0 16

tspn2DE6 1 6 27 0.25 202.995 0.24 1 202.995 0.67 0.18 0.06 13 4 44

tspn2DE6 2 6 27 0.15 248.860 0.18 0 248.860 0.24 0.08 0.04 5 2 12

tspn2DE7 1 7 35 0.25 201.492 0.30 1 201.492 3.38 1.00 0.28 46 14 160

tspn2DE7 2 7 35 0.15 239.788 0.25 1 239.788 1.72 0.43 0.18 27 3 78

tspn2DE8 1 8 44 0.25 190.243 0.37 0 190.243 2.61 0.45 0.12 23 9 98

tspn2DE8 2 8 44 0.15 229.190 0.40 1 229.150 7.12 1.77 0.60 86 16 286

tspn2DE9 1 9 54 0.25 259.297 0.40 2 259.290 45 7.42 1.62 401 55 1,390

tspn2DE9 2 9 54 0.15 262.815 0.41 1 262.815 3.20 0.55 0.19 26 11 92

tspn2DE10 1 10 65 0.25 225.126 0.41 1 225.126 35 4.45 1.79 224 40 820

tspn2DE10 2 10 65 0.15 273.768 0.35 0 273.192 7.85 0.76 0.24 43 23 182

tspn2DE11 1 11 77 0.25 249.760 0.63 5 247.886 186 19 5.19 954 104 3,542

tspn2DE11 2 11 77 0.15 258.003 0.39 0 258.003 18 2.06 0.63 91 21 340

tspn2DE12 1 12 90 0.25 265.858 0.55 2 265.858 383 38 12 1,777 144 6,170

tspn2DE12 2 12 90 0.15 314.063 0.86 4 312.493 209 22 5.82 941 98 3,148

tspn2DE13 1 13 104 0.25 278.876 1.15 5 278.876 8,813 1,175 295 32,637 533 104,268

tspn2DE13 2 13 104 0.15 324.940 0.49 1 324.271 246 22 5.76 909 151 3,458

tspn2DE14 1 14 119 0.25 310.794 0.95 3 310.794 11,396 1,373 319 38,205 872 127,704

tspn2DE14 2 14 119 0.15 272.157 0.69 3 270.638 840 74 22 2,774 142 9,462

tspn2DE15 1 15 135 0.25 290.362 1.08 6 289.716 77,905 16,276 1,777 184,845 1,652 543,774

tspn2DE15 2 15 135 0.15 293.405 1.20 6 293.357 5,904 610 169 16,602 430 60,230

tspn2DE16 1 16 152 0.15 374.005 2.84 6 369.945 25,663 3,323 543 67,531 1,105 195,806

tspn2DE16 2 16 152 0.15 295.130 1.20 7 295.130 9,847 907 189 21,931 471 73,638

Table 6: STSPN instances with ellipsoids in R3 as neighborhoods.

instance n var. h
Bonmin CouTspn

heuristic cpu s.e. optimal cpu time [s] cuts
nodes

value time [s] cuts value overall CglTspn Ipopt int. s.e.

tspn3DE5 5 25 0.25 253.495 0.20 0 253.495 0.17 0.05 0.02 4 0 14

tspn3DE6 6 33 0.25 276.996 0.27 1 276.996 1.21 0.20 0.07 19 4 50

tspn3DE7 7 42 0.25 323.689 0.32 2 323.689 7.10 0.91 0.24 66 19 210

tspn3DE8 8 52 0.25 296.918 0.46 0 296.918 28 3.50 1.11 200 33 632

tspn3DE9 9 63 0.25 315.761 0.44 3 312.920 156 12 3.47 790 107 2,722

tspn3DE10 10 75 0.25 328.627 0.73 4 328.627 804 60 15 3,189 244 10,690

tspn3DE11 11 88 0.25 301.307 0.58 1 301.307 1,955 131 32 6,153 323 21,478

tspn3DE12 12 102 0.25 320.575 1.32 5 320.575 24,623 2,442 318 54,913 855 183,388
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We first observe that, unsurprisingly, the difficulty of solving an instance
usually increases with the number n of neighborhoods. We note that the
cpu time to compute the initial heuristic solution is a small fraction (smaller
than 10−4 on some instances) of the time needed for solving the instance to
optimality and that this fraction decreases as n increases. The maximum
time used by CouTspn to solve one of the instances is 28,121 seconds for
polyhedral neighborhoods (tspn2DP15 1) and 77,905 seconds for ellipsoidal
neighborhoods (tspn2DE15 1), while the corresponding values for obtaining
the heuristic solutions are respectively 1.72 and 1.08 seconds.

For polyhedral neighborhoods in R2 (resp. R3) the average percent gap
between heuristic and optimal solution is 0.43% (resp. 0.54%) and the max-
imum gap is 3.67% for tspn2DP15 2 (resp. 1.56% for tspn3DP9). Moreover,
the heuristic solution turns out to be optimal in 14 cases out of 24 in R2

and in 4 cases out of 8 in R3.
For ellipsoidal neighborhoods in R2 (resp. R3), the average percent gap

between heuristic and optimal solution is 0.15% (resp. 0.11%) and the max-
imum gap is 1.10% for tspn2DE16 1 (resp. 0.91% for tspn3DE9). The
heuristic solution turns out to be optimal in 14 cases out of 24 in R2 and in
7 cases out of 8 in R3. These numbers attest of the quality of the solutions
found by the heuristic algorithm.

Thus, CouTspn usually improves slightly the heuristic solution and
gives a guarantee of optimality of its solution. Note that CouTspn usually
finds the optimal value within the first few iterations of the cut generator
CglTspn, and most of the cpu time is spent afterward to prove its optimality,
as illustrated in Figure 2.

Furthermore, the results show that solving instances with ellipsoidal
neighborhoods is in general harder than with polyhedral ones. This suggests
that in practice, as long as an approximation is necessary, using polyhedral
neighborhoods is likely the better option. In R2, the ratio of the cpu times
required to solve an instance with ellipsoidal neighborhoods vs. polyhedral
ones is on average 1.91, with a maximum ratio of 2.84 for tspn2DX12 1. A
similar pattern occurs in R3 with an average ratio of 2.52 and a maximum
one of 3.67 for tspn3DX11.

We also observe that three-dimensional instances are harder to solve
than two-dimensional ones, given the same number n of neighborhoods and
the same extension factor h. If one compares the 8 instances with n increas-
ing from 5 to 12 and h = 0.25, the ratio of the cpu times for polyhedral
neighborhoods in R3 vs. R2 is on average 11, with a maximum of 58 for
tspnXDP12. For ellipsoidal neighborhoods, the average ratio is 16, with a
maximum of 64 for tspnXDE12. In only one instance, tspnXDE5, the cpu
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times are approximately the same. Note that in the above comparisons,
although the parameters n and h are identical for paired instances, there is
no strict correspondence of shape and location of the neighborhoods. Other
factors such as overlapping conditions or spatial distribution may thus in-
fluence the difference in cpu time, as can be easily noticed by observing the
results for the two-dimensional cases with n = 16 and h = 0.15. The ratio
of cpu times for instances with polyhedral neighborhoods tspn2DP16 1 and
tspn2DP16 1 is 2.40.

Finally, in most cases, instances with larger neighborhoods (h = 0.25)
are harder to solve than instances with smaller ones (h = 0.15), when the
number n of neighborhoods is fixed. For polyhedral neighborhoods, the ratio
of cpu times required to solve an instance with h = 0.25 vs. h = 0.15 is
11, with a maximum of 53 for tspn2DP13. However, there are instances
for which the opposite is true, namely tspn2DP5 (ratio 0.85) and tspn2DP8
(ratio 0.44). This confirms that other aspects not considered in this analysis
may also influence the overall cpu time. For ellipsoidal neighborhoods, the
average ratio is 9, with a maximum of 36 for tspn2DE13. Here also, for
instance tspn2DE8 the ratio falls to 0.37, well below one.

A comparison between CouTspn and CouTspn when the modification
described in Section 3.2 is not used can be found in Appendix A. Even with
termination criteria very favorable for the latter algorithm, we observe that
the proposed approach is orders of magnitude faster.

6 Conclusion

In this paper a non-convex MINLP formulation of the Traveling Salesman
Problem with Neighborhoods is provided. A very fast heuristic solution
procedure using the MINLP solver Bonmin is described. Computational
tests show that the generated heuristic solution is usually within 1% of
optimality, making it a very efficient and practical tool.

An approach for solving the problem to optimality using a modified
version of the global MINLP solver Couenne is also presented. An ad hoc
cut generator, called CglTspn, is developed to improve the performance of
the standard algorithm while solving STSPN instances.

Two main modifications are proposed. First, subtour elimination con-
straints are handled as cutting planes and introduced using a maximum flow
computation. Second, we observe that, in the proposed formulation, fixing
all the binary variables results in a convex problem. We take advantage
of that by rounding fractional solutions, solving the corresponding problem
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(possibly improving the upper bound), and adding a cut preventing the same
rounded solution to be considered. Computational tests show that realis-
tic instances can be solved to optimality and that the proposed approach
is orders of magnitude faster than the standard algorithm implemented in
Couenne. We note that many applications have the property used in this
second modification. The proposed approach can thus be useful in other
contexts.

Nevertheless, solving instances with a number of neighborhoods larger
than 15 remains challenging. This issue can be partially overcome by asking
only for a solution provably within a few percent of optimality instead of an
optimal solution. Future work will focus on improving the convergence rate
of the proposed approach by enhancing the effectiveness of the cut generator
in reducing the domain while adding new cuts.
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A Effectiveness of integer cuts

In order to illustrate the effect of the modification described in Section 3.2,
we compare two versions of the proposed algorithm. The first one is the
algorithm CouTspn described in Section 3. The second one (named Stan-
dard in Table 7) is obtained from CouTspn by skipping the modification
described in Section 3.2. Standard is the straightforward adaptation of
Couenne in order to handle the subtour elimination constraints by branch-
and-cut. Both algorithms are run using the upper bound computed as de-
scribed in Section 3.3.

Running a few examples using standard, we noted that the cpu time it
required was much larger than for CouTspn. We thus modify the condition
to stop Standard: If CouTspn requires less than a second, Standard
terminates if its optimality gap is less than 0.01% or if its cpu time exceeds
250 seconds. Otherwise, Standard is terminated if its cpu time is 250 times
larger than the cpu time used by CouTspn.

Instances used in this comparisons are a subset of the instances used in
Section 5. They are selected to cover all types of instances with n ≤ 10 in
R2 and n ≤ 8 in R3.

Results are reported in Table 7. Instances reported in boldface ter-
minate as the optimality gap becomes smaller than 0.01%. On these in-
stances, Standard is on average 370 times slower than CouTspn. In-
stances tspn2DP6 1 and tspn2DE6 1 terminate as the cpu time becomes
larger than 250 seconds. All the other Instances terminate as the cpu
time exceeds 250 times the cpu time required by CouTspn. On these in-
stances, the average optimality gap is 2.29% (with a maximum of 6.51% for
tspn3DE8).

The difference in cpu time between the two algorithms is thus clearly
larger than two order of magnitude. If we consider instances in R2 with
h = 0.25 terminated as the cpu time exceeds 250 times the cpu time required
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by CouTspn, despite the outlier tspn2DE6 1 showing a gap of 4.13%, the
optimality gap increases from 0.62% (n = 7) to 3.84% (n = 10) for polyhe-
dra, and from 1.16% (n = 7) to 5.13% (n = 10) for ellipses. Similar trends
can be observed in R2 with h = 0.15 and in R3.
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Table 7: Comparison between CouTspn and Standard.

instance
CouTspn Standard

optimal cpu lower upper percent cpu s.e.
nodes

value time [s] bound bound gap time [s] cuts

tspn2DP5 1 184.733 0.12 184.714 184.733 0.01% 6.29 0 1,201

tspn2DP5 2 217.659 0.14 217.649 217.659 0.01% 4.32 0 501

tspn2DP6 1 200.469 0.40 199.579 200.469 0.44% 251 1 54,808

tspn2DP6 2 247.588 0.13 247.564 247.588 0.01% 69 2 21,101

tspn2DP7 1 196.247 1.72 195.043 196.247 0.62% 431 9 62,013

tspn2DP7 2 236.444 1.19 236.406 236.444 0.02% 298 3 75,764

tspn2DP8 1 188.108 1.79 180.334 188.108 4.13% 449 8 38,349

tspn2DP8 2 226.103 4.04 224.277 226.103 0.81% 1,012 13 107,197

tspn2DP9 1 249.732 22 245.650 249.732 1.63% 5,504 41 479,662

tspn2DP9 2 258.450 2.12 255.489 258.450 1.15% 531 10 29,151

tspn2DP10 1 220.242 21 211.794 220.242 3.84% 5,258 35 310,880

tspn2DP10 2 268.378 3.85 264.219 268.378 1.55% 964 18 68,130

tspn3DP5 236.214 0.15 236.191 236.214 0.01% 6.14 0 701

tspn3DP6 257.551 0.60 257.526 257.551 0.01% 50 2 11,801

tspn3DP7 310.691 4.25 306.496 310.691 1.35% 1,064 15 81,267

tspn3DP8 277.730 12 265.412 277.730 4.44% 3,004 26 156,345

tspn2DE5 1 191.255 0.22 191.236 191.255 0.01% 134 0 62,801

tspn2DE5 2 219.307 0.19 219.285 219.307 0.01% 9.77 0 2,801

tspn2DE6 1 202.995 0.67 200.548 202.995 1.21% 251 4 42,810

tspn2DE6 2 248.860 0.24 248.836 248.860 0.01% 250 2 70,801

tspn2DE7 1 201.492 3.38 199.158 201.492 1.16% 848 10 128,033

tspn2DE7 2 239.788 1.72 237.668 239.788 0.88% 428 4 47,800

tspn2DE8 1 190.243 2.61 182.538 190.243 4.05% 654 8 48,986

tspn2DE8 2 229.150 7.12 226.580 229.160 1.12% 1,782 14 163,766

tspn2DE9 1 259.290 45 249.809 259.290 3.66% 11,274 54 659,099

tspn2DE9 2 262.815 3.20 257.484 262.815 2.03% 801 9 52,717

tspn2DE10 1 225.126 35 213.581 225.126 5.13% 8,771 36 402,581

tspn2DE10 2 273.192 7.85 265.717 273.192 2.74% 1,968 17 106,578

tspn3DE5 253.495 0.17 253.469 253.495 0.01% 151 0 30,901

tspn3DE6 276.996 1.21 273.329 276.996 1.32% 303 1 29,251

tspn3DE7 323.689 7.10 314.313 323.689 2.90% 1,778 18 105,588

tspn3DE8 296.918 28 277.578 296.918 6.51% 7,015 33 266,846
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