

Audited By:
Angelos Apostolidis @ CertiK
angelos.apostolidis@certik.org

Reviewed By:
Alex Papageorgiou @ CertiK
alex.papageorgiou@certik.org

Shared Stake
DAO

Security Assessment

March 15th, 2021

[Preliminary Report]

mailto:angelos.apostolidis@certik.org
mailto:alex.papageorgiou@certik.org

 Disclaimer

CertiK reports are not, nor should be considered, an "endorsement" or "disapproval" of any
particular project or team. These reports are not, nor should be considered, an indication of
the economics or value of any "product" or "asset" created by any team or project that
contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free
nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice,
nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK's
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK's goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source
code provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the
structure, implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has completed a round of auditing with the intention
to increase the quality of the company/product's IT infrastructure and or source code.

Project Name Shared Stake - DAO

Description A DAO, staking system, and yield bearing wrapper token

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 03e977f343ccf8507451a8728984ecc248a6d7fe

Delivery Date March 15th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 1

Timeline March 9th, 2021 - March 15th, 2021

 Total Issues 20

 Total Critical 0

 Total Major 0

 Total Medium 1

 Total Minor 8

 Total Informational 11

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/SharedStake/Contracts
https://github.com/SharedStake/Contracts/commit/03e977f343ccf8507451a8728984ecc248a6d7fe

 Executive Summary

This section will represent the summary of the whole audit process once it has concluded.

ID Contract Location

AIR Airdrop_v2.sol Airdrop_v2.sol

MIN Minter_v1.0.1.sol Minter_v1.0.1.sol

SGT SGT.sol SGT.sol

STK SmartTimelock.sol SmartTimelock.sol

SVG SmartVesting.sol SmartVesting.sol

STA stakingPools.sol stakingPools.sol

VET vEth2.sol vEth2.sol

 Files In Scope

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Airdrop_v2.sol
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/SGT.sol
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/SmartTimelock.sol
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/SmartVesting.sol
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/stakingPools.sol
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/vEth2.sol

SmartVesting.sol SafeMath.sol

SmartTimelock.sol

IERC20.sol

ReentrancyGuard.sol

Ownable.sol

SafeERC20.sol

Executor.sol

 File Dependency Graph

5%

40%
55%

Finding Summary

Medium
Minor
Informational

ID Title Type Severity Resolved

MIN-01M Ambiguous Setter
Function

Volatile Code Medium

MIN-02M Inexistant Input
Sanitization

Volatile Code Minor

MIN-03M Inexistant Input
Sanitization

Volatile Code Minor

MIN-04M Typo in the Error
Message

Coding Style Informational

VET-01M Minter Capabilities Volatile Code Minor

 Manual Review Findings

 Static Analysis Findings

ID Title Type Severity Resolved

MIN-01S Usage of `transfer()` for
sending Ether

Volatile Code Minor

MIN-02S Potential Re-Entrancy Volatile Code Minor

MIN-03S Potential Re-Entrancy Volatile Code Minor

MIN-04S Unlocked Compiler
Version

Language Specific Informational

MIN-05S State Layout Gas Optimization Informational

MIN-06S Visibility Specifiers
Missing

Language Specific Informational

MIN-07S Redundant Variable
Initialization

Coding Style Informational

MIN-08S Redundant Type Cast Gas Optimization Informational

MIN-09S Non-Restricting
Conditional

Volatile Code Informational

MIN-10S Boolean Comparison Gas Optimization Informational

MIN-11S Change to `constant`
Variable

Gas Optimization Informational

STK-01S Mutability Optimization Gas Optimization Informational

SVG-01S Mutability Optimization Gas Optimization Informational

STA-01S Potential Re-Entrancy Volatile Code Minor

STA-02S Requisite Value of ERC-
20 `transferFrom()` /

`transfer()` Call

Logical Issue Minor

Type Severity Location

Volatile Code Medium Minter_v1.0.1.sol L559-L561

 MIN-01M: Ambiguous Setter Function

Description:

The donate() function directly updates the state of the contract, namely the
curValidatorShares state variable, yet it publicly accesssible and does not restrict the input

values.

Recommendation:

We advise to revise the linked function.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L559-L561

Type Severity Location

Volatile Code Minor Minter_v1.0.1.sol L587-L589

 MIN-02M: Inexistant Input Sanitization

Description:

Although the access is restricted to anyone but the owner, the setNumValidators() can set
the number of validators to zero.

Recommendation:

We advise to restrict the input values, accepting non-zero values only.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L587-L589

Type Severity Location

Volatile Code Minor Minter_v1.0.1.sol L606-L618

 MIN-03M: Inexistant Input Sanitization

Description:

Although the access is restricted to anyone but the owner, the setMinter() function fails to
check the value of the input address.

Recommendation:

We advise to add a require statement, checking the input against the zero address.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L606-L618

Type Severity Location

Coding Style Informational Minter_v1.0.1.sol L543

 MIN-04M: Typo in the Error Message

Description:

The linked error message string contains a typo.

Recommendation:

We advise to update the linked message string.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L543

Type Severity Location

Volatile Code Minor vEth2.sol L377-L406

 VET-01M: Minter Capabilities

Description:

The minters of the system can arbirtarily burn tokens.

Recommendation:

We advise to revise the burn function.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/vEth2.sol#L377-L406

Type Severity Location

Volatile Code Minor Minter_v1.0.1.sol L554, L638

 MIN-01S: Usage of transfer()transfer() for sending Ether

Description:

After EIP-1884 was included in the Istanbul hard fork, it is not recommended to use
.transfer() or .send() for transferring ether as these functions have a hard-coded value

for gas costs making them obsolete as they are forwarding a fixed amount of gas, specifically
2300 . This can cause issues in case the linked statements are meant to be able to transfer

funds to other contracts instead of EOAs.

Recommendation:

We advise that the linked .transfer() and .send() calls are substituted with the utilization
of the sendValue() function from the Address.sol implementation of OpenZeppelin either
by directly importing the library or copying the linked code.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L554
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L638
https://eips.ethereum.org/EIPS/eip-1884
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/87326f7313e851a603ef430baa33823e4813d977/contracts/utils/Address.sol#L37-L59

Type Severity Location

Volatile Code Minor Minter_v1.0.1.sol L566-L585

 MIN-02S: Potential Re-Entrancy

Description:

The depositToEth2() function updates the state of the contract after an external call.

Recommendation:

We advise to move the statement in L584 before the external call (L578-L583).

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L566-L585

Type Severity Location

Volatile Code Minor Minter_v1.0.1.sol L625-L640

 MIN-03S: Potential Re-Entrancy

Description:

The withdrawAdminFee() function updates the state of the contract after an external call.

Recommendation:

We advise to move the statement in L639 before the external call (L638).

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L625-L640

Type Severity Location

Language Specific Informational Minter_v1.0.1.sol L1

 MIN-04S: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code
of the contract permits the user to compile it at or above a particular version. This, in turn,
leads to differences in the generated bytecode between compilations due to differing compiler
version numbers. This can lead to an ambiguity when debugging as compiler specific bugs
may occur in the codebase that would be hard to identify over a span of multiple compiler
versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.2 the contract should contain the
following line:

pragma solidity 0.6.2;

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L1

Type Severity Location

Gas Optimization Informational Minter_v1.0.1.sol L424

 MIN-05S: State Layout

Description:

The state of the contract is not tightly packed in 256-bit slots.

Recommendation:

We advise to move the disableWithdrawRefund state variable adjacent to the
BETHTokenAddress one, striving for a tight 256-bit packing

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L424

Type Severity Location

Language Specific Informational Minter_v1.0.1.sol L416, L429

 MIN-06S: Visibility Specifiers Missing

Description:

The linked variable declarations do not have a visibility specifier explicitly set.

Recommendation:

Inconsistencies in the default visibility the Solidity compilers impose can cause issues in the
functionality of the codebase. We advise that visibility specifiers for the linked variables are
explicitly set.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L416
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L429

Type Severity Location

Coding Style Informational Minter_v1.0.1.sol L444, L445, L446, L447

 MIN-07S: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually
their zeroed out representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type

is ERC20) are initialized to their zeroed out address (i.e. for a given contract ERC20 {}
its default value is ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to

this table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase
legibility.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L444
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L445
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L446
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L447

Type Severity Location

Gas Optimization Informational Minter_v1.0.1.sol L504

 MIN-08S: Redundant Type Cast

Description:

The msg.value global variable is already of uint256 data type.

Recommendation:

We advise to remove the redundant type casting.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L504

Type Severity Location

Volatile Code Informational Minter_v1.0.1.sol L537-L540, L626-L629

 MIN-09S: Non-Restricting Conditional

Description:

The linked require statements do not restrict the subsequent functionality, as the
conditionals will always yield true .

Recommendation:

We advise to revise the linked conditionals.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L537-L540
https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L626-L629

Type Severity Location

Gas Optimization Informational Minter_v1.0.1.sol L527

 MIN-10S: Boolean Comparison

Description:

The linked if conditional redundantly compares two boolean variables.

Recommendation:

We advise to directly utilize the value of the disableWithdrawRefund state variable instead.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L527

Type Severity Location

Gas Optimization Informational Minter_v1.0.1.sol L413

 MIN-11S: Change to constantconstant Variable

Description:

The mainnetDepositContractAddress state variable is never updated after its declaration.

Recommendation:

We advise to change the visibility of the linked state variable to constant .

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/Minter_v1.0.1.sol#L413

Type Severity Location

Gas Optimization Informational SmartTimelock.sol L90

 STK-01S: Mutability Optimization

Description:

This contract deviates from Badger's smart timelock contract by not following the
initializable pattern. Hence, the linked state variable mutability can be optimized.

Recommendation:

We advise to change the mutability specifier of the linked state variable to immutable .

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/SmartTimelock.sol#L90
https://github.com/Badger-Finance/badger-system/blob/master/contracts/badger-timelock/SmartTimelock.sol

Type Severity Location

Gas Optimization Informational SmartVesting.sol L182

 SVG-01S: Mutability Optimization

Description:

This contract deviates from Badger's smart vesting contract by not following the
initializable pattern. Hence, the linked state variable mutability can be optimized.

Recommendation:

We advise to change the mutability specifier of the linked state variable to immutable .

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/SmartVesting.sol#L182
https://github.com/Badger-Finance/badger-system/blob/master/contracts/badger-timelock/SmartVesting.sol

Type Severity Location

Volatile Code Minor stakingPools.sol L675

 STA-01S: Potential Re-Entrancy

Description:

The linked code segment updates the state of the contract after an external call.

Recommendation:

We advise to execute the external call at the end of the function, hence following the Checks-
Effects-Interactions pattern.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/stakingPools.sol#L675
https://docs.soliditylang.org/en/v0.5.17/security-considerations.html#use-the-checks-effects-interactions-pattern

Type Severity Location

Logical Issue Minor stakingPools.sol L884-L887

 STA-02S: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer()
function returns a bool variable yielding true , many token implementations do not return
anything i.e. Tether (USDT) leading to unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the
transferFrom() / transfer() function is safely invoked in all circumstances.

https://github.com/SharedStake/Contracts/blob/03e977f343ccf8507451a8728984ecc248a6d7fe/stakingPools.sol#L884-L887

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of
a transaction.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge
cases that may result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage
of private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

	 Disclaimer
	What is a CertiK report?
	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 Files In Scope
	 File Dependency Graph
	 Manual Review Findings
	 Static Analysis Findings
	 MIN-01M: Ambiguous Setter Function
	Description:
	Recommendation:

	 MIN-02M: Inexistant Input Sanitization
	Description:
	Recommendation:

	 MIN-03M: Inexistant Input Sanitization
	Description:
	Recommendation:

	 MIN-04M: Typo in the Error Message
	Description:
	Recommendation:

	 VET-01M: Minter Capabilities
	Description:
	Recommendation:

	 MIN-01S: Usage of transfer() for sending Ether
	Description:
	Recommendation:

	 MIN-02S: Potential Re-Entrancy
	Description:
	Recommendation:

	 MIN-03S: Potential Re-Entrancy
	Description:
	Recommendation:

	 MIN-04S: Unlocked Compiler Version
	Description:
	Recommendation:

	 MIN-05S: State Layout
	Description:
	Recommendation:

	 MIN-06S: Visibility Specifiers Missing
	Description:
	Recommendation:

	 MIN-07S: Redundant Variable Initialization
	Description:
	Recommendation:

	 MIN-08S: Redundant Type Cast
	Description:
	Recommendation:

	 MIN-09S: Non-Restricting Conditional
	Description:
	Recommendation:

	 MIN-10S: Boolean Comparison
	Description:
	Recommendation:

	 MIN-11S: Change to constant Variable
	Description:
	Recommendation:

	 STK-01S: Mutability Optimization
	Description:
	Recommendation:

	 SVG-01S: Mutability Optimization
	Description:
	Recommendation:

	 STA-01S: Potential Re-Entrancy
	Description:
	Recommendation:

	 STA-02S: Requisite Value of ERC-20 transferFrom() / transfer() Call
	Description:
	Recommendation:

	Appendix
	Finding Categories
	Gas Optimization
	Logical Issue
	Volatile Code
	Language Specific
	Coding Style

