Skip to content
master
Switch branches/tags
Go to file
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

End of maintenance for GPyOpt

Dear GPyOpt community!

We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past months we weren't giving the package nearly as much attention as it deserves. Instead of dragging our feet and giving people only occasional replies and no new features, we feel the time has come to officially declare the end of GPyOpt maintenance.

We would like to thank the community that has formed around GPyOpt. Without your interest, discussions, bug fixes and pull requests the package would never be as successful as it is. We hope we were able to provide you with a useful tool to aid your research and work.

From now on we won't be participating in the issues, merging PRs or developing any new functions. All existing PRs will be closed (but not the issues). The repo itself is not closing though, so feel free to start new discussion threads and forks. We are also still around, so may drop an occasional comment here or there. But no promises.

Finally, if you feel really enthusiastic and would like to take over the package, feel free to drop both of us an email, and who knows, maybe you'll be the one(s) carrying the GPyOpt to new heights!

Sincerely yours, Andrei Paleyes and Javier Gonzalez

GPyOpt

Gaussian process optimization using GPy. Performs global optimization with different acquisition functions. Among other functionalities, it is possible to use GPyOpt to optimize physical experiments (sequentially or in batches) and tune the parameters of Machine Learning algorithms. It is able to handle large data sets via sparse Gaussian process models.

licence develstat covdevel Research software impact

Citation

@Misc{gpyopt2016,
author = {The GPyOpt authors},
title = {{GPyOpt}: A Bayesian Optimization framework in python},
howpublished = {\url{http://github.com/SheffieldML/GPyOpt}},
year = {2016}
}

Getting started

Installing with pip

The simplest way to install GPyOpt is using pip. ubuntu users can do:

sudo apt-get install python-pip
pip install gpyopt

If you'd like to install from source, or want to contribute to the project (e.g. by sending pull requests via github), read on. Clone the repository in GitHub and add it to your $PYTHONPATH.

git clone https://github.com/SheffieldML/GPyOpt.git
cd GPyOpt
python setup.py develop

Dependencies:

  • GPy
  • paramz
  • numpy
  • scipy
  • matplotlib
  • DIRECT (optional)
  • cma (optional)
  • pyDOE (optional)
  • sobol_seq (optional)

You can install dependencies by running:

pip install -r requirements.txt

Funding Acknowledgements

  • BBSRC Project No BB/K011197/1 "Linking recombinant gene sequence to protein product manufacturability using CHO cell genomic resources"

  • See GPy funding Acknowledgements