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Abstract
A novel method is presented to quantify the uncertainty of PIV data. The approach is a
posteriori, i.e. the unknown actual error of the measured velocity field is estimated using the
velocity field itself as input along with the original images. The principle of the method relies
on the concept of super-resolution: the image pair is matched according to the cross-correlation
analysis and the residual distance between matched particle image pairs (particle disparity
vector) due to incomplete match between the two exposures is measured. The ensemble of
disparity vectors within the interrogation window is analyzed statistically. The dispersion of
the disparity vector returns the estimate of the random error, whereas the mean value of the
disparity indicates the occurrence of a systematic error. The validity of the working principle is
first demonstrated via Monte Carlo simulations. Two different interrogation algorithms are
considered, namely the cross-correlation with discrete window offset and the multi-pass with
window deformation. In the simulated recordings, the effects of particle image displacement,
its gradient, out-of-plane motion, seeding density and particle image diameter are considered.
In all cases good agreement is retrieved, indicating that the error estimator is able to follow the
trend of the actual error with satisfactory precision. Experiments where time-resolved PIV data
are available are used to prove the concept under realistic measurement conditions. In this case
the ‘exact’ velocity field is unknown; however a high accuracy estimate is obtained with an
advanced interrogation algorithm that exploits the redundant information of highly temporally
oversampled data (pyramid correlation, Sciacchitano et al (2012 Exp. Fluids 53 1087–105)).
The image-matching estimator returns the instantaneous distribution of the estimated velocity
measurement error. The spatial distribution compares very well with that of the actual error
with maxima in the highly sheared regions and in the 3D turbulent regions. The high level of
correlation between the estimated error and the actual error indicates that this new approach
can be utilized to directly infer the measurement uncertainty from PIV data. A procedure is
shown where the results of the error estimation are employed to minimize the measurement
uncertainty by selecting the optimal interrogation window size.

Keywords: PIV, error estimation, uncertainty quantification, image matching, super-resolution,
a posteriori error estimation

(Some figures may appear in colour only in the online journal)

1. Introduction

Digital particle image velocimetry (PIV) is nowadays an
established and reliable flow diagnostic tool capable of

measuring velocity fields in two- and three-dimensional
(3D) domains. Several works have been focused on
PIV measurement errors. Fincham and Spedding (1997)
distinguished two major forms of errors in digital PIV, namely
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the mean-bias error and the root-mean-square (RMS) error of
the remaining fluctuations (or random error). The bias error
arises from the inadequacy of the statistical method of cross-
correlation in the evaluation of PIV recordings. A bias error
of the measured displacement toward the closest integer value
occurs when the particle image size is small with respect to the
pixel size; this effect is commonly referred to as peak-locking
and is responsible for measurement errors up to 0.1 pixels
(Westerweel (1997), Scarano and Riethmuller (2000) among
others). A bias error that underestimates the amplitude of a
velocity spatial fluctuation within the interrogation window
(modulation error) arises from the spatial filtering effects
when the length scale of spatial fluctuations is equal to
or smaller than the interrogation window (Nogueira et al
2005, Scarano 2003, Schrijer and Scarano 2008). Despite the
attention devoted to the properties of bias errors in PIV, the
random component most often dominates the measurement
error. A first estimate of the measurement error is based on
evaluating the width of the particle images (Adrian 1991).
It is theoretically demonstrated that the autocorrelation peak
width is proportional to the particle image diameter. A simple
predictive model is that the error is directly proportional to
the correlation peak width. However, many more parameters
play a role for random-type errors. The change of relative
intensity between particle images at first and second exposure
was demonstrated to be the source of large errors (Nobach
and Bodenschatz 2009). This occurs in the presence of out-
of-plane particle motion or when the two laser sheets are
not well overlapping. Also fluctuating background intensity
and camera noise introduced during the recording process
contribute to increase the amplitude of random errors. Several
studies have indicated typical values for the random errors.
Westerweel (2000) reported a typical figure of 0.05 pixels from
Monte Carlo simulations. Very similar values were obtained
by Raffel et al (1998). The random error is also reported to
be highly sensitive to the interrogation procedure; for instance
Scarano and Riethmuller (2000) measured an RMS error three
times smaller when comparing iterative window deformation
to the discrete window shift technique (Westerweel et al 1997).
The use of window weighting functions and of advanced
interpolators is also shown to affect the amplitude of the
random error (Astarita 2007).

A special case of PIV error is introduced by false
correlation peak detection. This mostly occurs when the
correlating windows produce an insufficient number of particle
image pairs, for instance due to low seeding density or out-of-
plane motion. The result is the occurrence of spurious vectors
(Huang et al 1997). The error associated with a spurious vector
is typically orders of magnitude larger than the typical random
error. Recognizing and eliminating such incorrect vectors is a
mandatory step to obtain unbiased velocity statistics and the
procedure is referred to as data validation (Westerweel 1994,
Westerweel and Scarano 2005).

As should be clear from the above, efforts to estimate
the error of PIV measurements have mostly followed a priori
approaches based on modeling the measurement chain, from
the tracer motion and imaging to the digital image analysis
(Westerweel 1997). In most cases the results are obtained

with Monte Carlo simulations. Theoretical models have been
formulated to evaluate the effects of several measurement
conditions (velocity gradient, particle image diameter and
image intensity, among others) on the measurement precision
(Westerweel 2000, 2008). However, some results are valid
only for simple interrogation methods (discrete window shift,
Westerweel et al (1997)). In contrast, state-of-the-art methods,
such as iterative window deformation, are less prone to
some of the errors (Fincham and Delerce 2000, Scarano
and Riethmuller 2000), but their theoretical modeling is
more complex. Finally, the Monte Carlo approach reaches
its limits when more realistic measurement conditions are
to be numerically modeled and simulated. It is generally
accepted that computer-based simulations lead to a significant
underestimation of the measurement error due to the adoption
of too idealized conditions (Megerle et al 2002, Stanislas
et al 2008). Nevertheless, to date, very realistic simulations
of turbulent flow measurements have been achieved in the
study of Lecordier et al (2001).

Despite the above efforts, the a priori estimate of the
measurement error based on numerical simulations or on
simplified models cannot account for the many parameters that
affect the measurement precision. As a result, the investigator
is too often left with the empirical universal constant of
0.1 pixels as a typical figure for measurement error. A popular
strategy is also to vary a few parameters and try to optimize
the result with respect to the perceived error level. The most
common exercise is that of gradually varying the interrogation
window size. At any reduction step, the nominal measurement
spatial resolution increases at the cost of an increase of the
measurement noise. When the noisy fluctuations exceed the
level considered acceptable, the measurement is regarded as
noise-dominated and a slightly larger interrogation window is
selected as optimal for data analysis. Clearly, such a procedure
is largely dependent upon human perception of the signal
quality and the embedded noise and cannot be proposed as
a rigorous approach to error estimation.

The above case is a crude first example of a posteriori
PIV data analysis and error estimation. The objective of
this work is to establish the founding principles of an
a posteriori error estimation technique, aiming at quantitative
and objective evaluation of the measurement error and its
statistics. Currently, the topic of PIV error and uncertainty
estimation is frequently addressed and recognized as very
important in the experimental fluid mechanics community,
where PIV plays a prime role as diagnostic tool. The issue
is of particular importance when PIV is used to assess the
validity of results obtained with computational fluid dynamics.
The ‘PIV uncertainty workshop’ held in Las Vegas in 2011
is only one of the events that demonstrates such attention.
Only in a recent work, Timmins et al (2012) introduced
a method for the automatic uncertainty estimation of PIV
measurements. The approach consists in identifying the
main error sources and determining their contribution to the
measurement error via Monte Carlo simulation. The method
can be categorized as a posteriori because it makes use of
information taken from the measurement conditions (particle
image diameter, particle density, particle displacement and
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velocity gradient). The measurement uncertainty is retrieved
from numerical simulations conducted under the measurement
conditions encountered in the experiment. As already stated,
the amplitude of the errors returned from the numerical
simulations is often significantly lower than the actual
experimental error. Furthermore, the uncertainty computed
with this method is typically underestimated because only a
limited number of error sources is taken into account.

Charonko and Vlachos (2013) proposed an a posteriori
uncertainty quantification based on the cross-correlation peak
ratio. The method has been shown to be effective for the
robust phase correlation (Eckstein and Vlachos 2009), while it
yields unreliable uncertainty prediction for the standard cross-
correlation technique.

Other methods that have followed a posteriori error
estimation are based on the application of governing laws to
the measured velocity field. In 3D data from incompressible
flows, the fluctuating velocity divergence (Liu and Katz
2006, Scarano and Poelma 2009) indicates the error level
of the velocity and its derivatives. Unfortunately, in planar
experiments of turbulent flows, mass conservation cannot be
imposed due to the 3D flow motion.

This work describes a method for quantifying the
uncertainty of PIV measurements. The work focuses on the
errors arising from the vector computation and puts most
attention on the random error. However, also the systematic
error due to spatial modulation can be detected by the present
approach. Instead, errors arising from spurious vectors, those
due to temporal modulation (truncation errors) and to other
aspects of the measurement chain (such as timing errors,
perspective errors, magnification errors, calibration errors,
etc), are not given attention in the present framework. The
proposed approach is based on the concept of super-resolution
(Keane et al 1995, Cowen and Monismith 1997), in the
sense that the contribution of individual particle images to
the correlation peak is considered to infer the measurement
standard uncertainty, which is the estimation δ̂ of the unknown
actual error δ. The expanded uncertainty estimate U = k · δ̂

is finally defined as the interval about the measurement which
contains the measurand at a confidence level that depends on
the chosen k.

2. Working principle of the image-matching
uncertainty quantification

2.1. The method in brief

It is assumed here that the PIV interrogation process is
performed by means of spatial cross-correlation of a pair
of images. The analysis of the correlation map yields the
position of the peak with sub-pixel precision obtained by
3-point Gaussian fit (Willert and Gharib 1991). The result is
the instantaneous velocity field V = (u, v) at discrete positions
x corresponding to the center of each interrogation window.
By this method, the only information somehow related to the
measurement uncertainty is given by the correlation signal-to-
noise ratio, usually defined as the ratio between the highest
peak and the second highest peak.

Figure 1. Particle image disparity after the discrete window offset.

In this discussion we consider three possible interrogation
methods with increasing level of complexity:

(1) single-pass correlation (Keane and Adrian 1992);
(2) double-step analysis with discrete window offset

(Westerweel et al 1997);
(3) image deformation (Huang et al 1993) with iterative

multigrid analysis (Scarano and Riethmuller 2000).

For simplicity, we will explain the working principle
considering the second method. However, the proposed
methodology is generally applicable to these three methods
and other ones, if based on cross-correlation analysis.

Let us consider two exposures of a set of particle tracers
in motion. Applying the cross-correlation analysis, the mean
particle image displacement is obtained, which is denoted
as �x here. Now, if the window from the second exposure
is shifted toward the first exposure with the closest integer
approximation (see Westerweel et al (1997) for details), most
particle images will come to partly superimpose. However,
a number of particle pairs will not correspond exactly. This
can be caused by several factors: first, the particle image
displacement is generally different from an integer number of
pixels; second, particles may displace by different amounts due
to the velocity gradient; particle images may partly or totally
disappear due to the out-of-plane particle motion (figure 1,
particle image number 4). Furthermore, a randomly distributed
disparity vector with fractional pixel amplitude will also occur
due to the presence of noise in the recordings.

With the discrete window offset technique, the shift
between windows is approximated to the closest integer
number of pixels. Therefore the particle pairs will generally
mismatch by a constant value not larger than half a pixel.

The residual distance d between the pair of particle images
after the matching is called here matched particle image
disparity. The basis of the present method is the statistical
analysis of such disparity, which returns the estimate for the
velocity vector measurement error.

2.2. Detailed implementation

The main elements composing the principle of the proposed
approach are four.

(a) Image matching: the particle pairs are matched at the best
of the velocity estimator.

(b) Particle image pair detection: particle images occurring in
both exposures and falling close to each other are detected
as a pair.

3



Meas. Sci. Technol. 24 (2013) 045302 A Sciacchitano et al

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

Figure 2. First row: image matching in the ideal case. (a1) Particle images of Ĩ1; (b1) particle images of Ĩ2; (c1) superposition of Ĩ1 and Ĩ2:
the green particles of Ĩ1 and the red particles of Ĩ2 superimpose perfectly, yielding the particles displayed in yellow; (d1) correlation function
(profile) between Ĩ1 and Ĩ2. Second row: image matching in the real case. (a2) Particle images of Ĩ1; (b2) particle images of Ĩ2;
(c2) superposition of Ĩ1 and Ĩ2: the particle images do not superimpose perfectly (yellow: particles correctly superimposed; green: portion of
Ĩ1 not paired in Ĩ2; red: portion of Ĩ2 not paired in Ĩ1); (d2) correlation function (profile) between Ĩ1 and Ĩ2.

(c) Disparity vector computation: the distance between the
particle image pair is evaluated as the distance between
their centroids.

(d) Statistical analysis of disparity vector ensemble: the mean
value and the statistical dispersion of the disparity vectors
of particle pairs belonging to the interrogation window
are used to estimate the velocity vector error.

Since the measurement error is estimated via a statistical
analysis of the disparity vector ensemble, the accuracy of
the method depends on the particle image density. It can
be proven that the variance of the uncertainty estimate is
inversely proportional to the number N of particle images
within the interrogation window. A minimum number of about
six particle images per interrogation window is required for
accurate error estimation.

2.2.1. Image matching. Let us consider a pair of images
I1 and I2 separated by a time interval �t. We refer here to the
interrogation technique based on spatial cross-correlation that
determines the group velocity of the particles inside a chosen
window.

The procedure of image matching is based on the principle
that one image is taken as reference pattern and the second
one is subject to a transformation that minimizes the distance
(typically L2-norm) between the two images. The match
between the two images is based on an estimate of the velocity
field (velocity predictor). This is commonly performed by
multi-step interrogation, either with window shift or by
deformation.

The degree of matching will depend on many parameters:
the size of the interrogation window, the flow length-scales,
the out-of-plane motion and the algorithm used. The method
based on discrete offset will match the particle motion
within uniform (planar) velocity approximation; the image
deformation method will match the particle motion up to a
piecewise linear approximation (Scarano 2002, Astarita and

Cardone 2005). The matched images are indicated with Ĩ1 and
Ĩ2, respectively.

It is important to remark that in the matched images
the particle images should superimpose to a large degree. To
explain the working principle of the technique, the distinction
between the ideal case (perfect particle images with only planar
motion and no noise) and real case is remarked hereafter.
In the ideal case, the particle images of a pair superimpose
perfectly in the matched images Ĩ1 and Ĩ2; therefore, the cross-
correlation function exhibits a displacement peak centered
at the origin (null relative displacement) or at the fractional
displacement (equal for all the particle images within the
window) with a peak width proportional to the particle
image diameter dτ , as illustrated in the first row of figure 2.
As discussed by Adrian (1991), the uncertainty of the
displacement measurement is also proportional to the particle
image diameter dτ . Later studies have also discussed the
dependence upon the interrogation algorithm employed to
locate the particle centroid (Lourenço and Krothapalli 1995).

In actual experiments, the velocity predictor only yields
an approximation of the overall particle motion and individual
particle images will not match perfectly. As a consequence,
the correlation between different particle image pairs yields
contributions to the peak at positions scattered around the
origin of the correlation space. Each relative displacement
obtained from a particle image pair can be regarded as
the elemental contribution to the actual cross-correlation. In
the linear approximation, the correlation peak for the entire
window equals the sum of all individual peaks from particle
pairs. Clearly, the dispersion of the data causes the window
cross-correlation peak to broaden as shown in the second
row of figure 2. Moreover, the correlation peak may not
be centered at the origin of the correlation space, yielding
a non-null displacement. Furthermore, the peak magnitude
drops as a result of the signal broadening. The position of the
maximum in the broadened signal is more sensitive to the noisy
contributions resulting in a higher measurement uncertainty.
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(a) (c) (d)(b)

Figure 3. (a) Matched image Ĩ1; (b) matched image Ĩ2; (c) image intensity product �; (d) peaks’ image ϕ.

In this case, the uncertainty of the displacement measurement
is proportional to the particles’ positional disparity.

2.2.2. Particle image pair detection. The concept applied
here is taken from the particle tracking technique. Because the
particle pair detection is performed on the matched images, the
principle can be assimilated to that of super-resolution (Keane
et al 1995). The latter applies the analysis to the individual
particle image pairs identified inside the interrogation window
after matching. To detect the image pairs, the image intensity
product � = Ĩ1 Ĩ2 is considered. The peaks inside � correspond
to particle images that have paired (figure 3) and as such they
contribute to the buildup of the correlation peak. Let us define
the peak image ϕ as the binary image equal to 1 at the peaks
of � and 0 otherwise:

ϕ(i, j) =
{

1 if �(i, j) is a relative maximum
0 otherwise

. (1)

Each point (i, j) where ϕ is non-null indicates a particle
image pair; the peak of the corresponding particle images is
detected in Ĩ1 and Ĩ2 in a neighborhood of search radius r
(typically 1 or 2 pixels), centered in (i, j).

2.2.3. Disparity vector computation. Sub-pixel precision is
required to determine the disparity of the particles’ position
in the matched images. The sub-pixel peak position estimator
adopted here is the standard 3-point Gaussian fit as introduced
by Willert and Gharib (1991). The fit returns sets of particle
positions at times t1 and t2, respectively, X1 = {x1

1, x1
2, . . . , x1

N}
and X2 = {x2

1, x2
2, . . . , x2

N}, where x j
i is the position occupied by

the ith particle in the matched image j and N is the number of
particle pairs in the interrogation window. Figure 4 illustrates
two matched windows, where the positions of the particle
images at time t1 (hollow squares) and t2 (filled circles) are not
exactly corresponding. The small red arrows are the disparity
vectors di, which form the disparity set D:

D = {d1, d2, . . . , dN} = X2 − X1. (2)

The histogram of the disparity vector component is shown
in figure 5 (for the sake of clarity, a region containing more
particles than that shown in figure 4 is considered in the
histogram). For a sufficiently large number of particles within
the window (typically above 6), a statistical analysis of the
disparity vector dispersion becomes possible.

Figure 4. Particle images of Ĩ1 (hollow squares) and Ĩ2 (full circles)
and disparity vectors (in red).

Figure 5. Distribution of the disparity vector.

2.2.4. Statistical analysis of disparity vector ensemble. Let
us assume for simplicity that the components of the disparity
set are statistically independent and that they are randomly
distributed around the zero. The error committed on each
particle pair can be propagated to that of the ensemble
considered by the cross-correlation operator. In the hypothesis
of a Gaussian distribution of the disparity, the error scales with
the standard deviation σ = {σ u, σ v} of D, and is inversely
proportional to the square root of the number of particle pairs
N. Therefore, the random error can be estimated as σ/

√
N

(Coleman and Steele 2009).
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Figure 6. Scheme of the procedure for uncertainty quantification by image matching.

In the more general case, the mean of the disparity set
μ = {μu, μv} may be nonzero, when detectable bias errors are
present (figure 5).

When the values of μ and σ are computed as the arithmetic
mean and the standard deviation of the disparity set, all
particles are assumed to make the same contribution to the
correlation peak. However, brighter particle images have larger
contribution than dimmer ones. This is taken into account by
computing μ and σ as weighted mean and standard deviation
of the disparity set; the weight is chosen equal to the square
root of the particle image intensity product �:

μ = 1

N

N∑
i=1

cidi, σ =

√√√√√√√√
N∑

i=1
ci (di − μ)2

N∑
i=1

ci

,

with ci =
√

� (xi) for i =1, 2, . . . , N. (3)

In conclusion, the expression of the instantaneous error
estimation δ̂ reads

δ̂ = {
δ̂u, δ̂v

} =
√

μ2 +
(

σ√
N

)2

. (4)

δ̂ represents the estimation of the magnitude of the actual error
δ on the velocity vector. Expression (4) may be interpreted as
follows: in the case of negligible dispersion of the disparity
set, the error will be mostly due to the systematic error μ.
This is for instance the case when very large interrogation
windows are used and N is very large. It should be remarked
here that the term μ does not include all possible sources of bias
error. In particular, when the measurement is affected by peak-
locking, the super-resolution approach is not able to detect the
bias error because also the position of the individual particle
images is ‘locked’ at integer pixel positions. In contrast, when
the systematic error μ is negligible, the error is dominated by
the dispersion of the disparity vectors and decreases with the
square root of the number of particle pairs.

The error estimation δ̂ can be employed to determine
a confidence interval (expanded uncertainty U) about the
measurement result which contains the measurand at a given
confidence level; this is done by multiplying δ̂ by a coverage
factor k:

U = k · �

δ. (5)

Coleman and Steele (2009) report that the variable δ̂ as
computed in (4) is not normally distributed, but rather follows
the t distribution with N – 1 degrees of freedom. Therefore, for
small N (typically about 20) as occurring in conventional PIV
interrogation, 95% confidence level is achieved with k ≈ 2.1
(Coleman and Steele 2009).

The computational cost of the uncertainty quantification
depends on the number of particle images in the recordings
and is typically about 10% of that of the vector computation.

In summary, the overall procedure can be schematically
visualized by the following flow-chart (figure 6).

3. Numerical assessment

Synthetic images of 400 × 400 pixels are generated with
a random distribution of 16 000 particles (seeding density of
0.1 particles per pixel (ppp)). The image intensity is rounded
off with 8 bit quantization (0–255) and the particle images
are assumed to follow a Gaussian shape with 2 pixel mean
diameter and 0.2 pixel standard deviation. A Gaussian-shaped
laser sheet is simulated having width �z = 30 pixels. The
camera read-out error is modeled as white noise of average
intensity equal to five counts; the pixel fill factor equals 1. A
uniform displacement is considered with values ranging from
0 to 2 pixels.

The recordings are processed with the three interrogation
algorithms introduced in section 2.

• Single–pass.
• Double-step with discrete window offset.
• Multi-step with window deformation (WIDIM).

The window size of 17 × 17 and 33 × 33 pixels is
chosen; 50% overlap factor is selected.

A statistical analysis is conducted considering the RMS
of both actual and estimated errors:

δRMS =
√

δ2, δ̂RMS =
√

δ̂
2
, (6)

where the overbar indicates the time average.
The RMS error for single-pass correlation increases

linearly in the range of displacement between 0 and 0.5 pixels
and stays nearly constant for larger displacements (figure 7).
This agrees with well-known results from Westerweel (1993)
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Figure 7. RMS error as a function of the in-plane displacement for different interrogation algorithms. Top-left: single-pass correlation;
top-right: double-step cross-correlation with discrete window offset; bottom: multi-pass cross-correlation with window deformation. The
symbol key applies to all three plots.

and Raffel et al (1998). The estimated RMS error from the
image-matching technique follows the behavior of the actual
error with good accuracy. Oscillations of small amplitude
(0.005 pixels) of δ̂RMS about the actual value have a wavelength
of 1 pixel and are ascribed to numerical errors associated with
the particle image peak fit algorithm. This simple test already
shows that the 1/

√
N scaling correctly takes into account the

statistical properties of the error dispersion.
The discrete window offset method introduces a periodic

behavior of the RMS error in agreement with the early
simulations of Scarano and Riethmuller (2000). The error
increases for a displacement increasing from 0 and 0.5 pixels
and decreases in the range of 0.5–1 pixels. Also in this case
the proposed method yields an accurate error estimate, with
discrepancy between δ̂RMS and δRMS of less than a hundredth
of a pixel.

The image deformation technique further lessens the
random errors, which agrees well with the abundant literature
on the subject (Lecordier and Trinité (2003), Scarano (2002),
Astarita and Cardone (2005), Fincham and Delerce (2000),
among others). In the present test, the actual RMS error does

not exceed 0.02 pixels for the smallest window. In this case, the
error is clearly overestimated by 30% to 50% due to the limited
precision of the individual particle image peak fit (Astarita
and Cardone 2005). A minimum error level is thus introduced
which may be regarded as a ‘fog level’ for the present estimator
and is considered to be approximately 0.005 pixels.

Again, the scaling with the interrogation window size
(namely 1/

√
N) is reproduced correctly and agrees fairly well

with known results (Raffel et al (1998) among others).
The analysis in the remainder does not consider the single-

pass cross-correlation method. Therefore, only two techniques
are taken into consideration: the double-step interrogation with
discrete window offset and the multi-step correlation with
window deformation (WIDIM). The interrogation window size
is kept at 33 × 33 pixels.

3.1. Displacement gradient

A displacement gradient ranging from 0 to 0.2 pixels per
pixel is considered here. The displacement RMS error varies
over about two orders of magnitude in the analyzed gradient

7



Meas. Sci. Technol. 24 (2013) 045302 A Sciacchitano et al

Figure 8. RMS error as a function of the displacement gradient.

range (figure 8) when the double-step correlation with discrete
window offset is employed. This variation is ascribed to
the correlation peak broadening that increases with the
displacement gradient (Westerweel 2008).

The WIDIM algorithm applies in-plane deformation and
compensates the gradient effect. As a result, the measurement
error is reduced by one order of magnitude. This result agrees
well with previous findings (Scarano and Riethmuller 2000).

For the latter interrogation algorithm, good agreement
between actual and estimated error is found, as the error
levels lie clearly above the fog level. For the technique
based on the discrete window offset, the super-resolution
approach provides a good error estimate for displacement
gradients below 0.1 pixels pixel–1. For even larger values of
the displacement gradient, the error is underestimated. This is
ascribed to the particle pair detection technique, which finds a
pair as long as their disparity does not exceed a particle image
diameter. For a value of the gradient (shear rate in this case)
of 0.2 pixels pixel–1, the particle disparity at the edge of the
window is already 3 pixels, which cannot be retrieved with the
current technique. Further improvements would be needed if
the method is to be generalized to flows where the value of the
gradient exceeds the measurable range of particle disparity.

3.2. Out-of-plane motion

Particle motion through the measurement plane is recognized
as one of the main sources of measurement uncertainty (Adrian
1991, Nobach and Bodenschatz 2009). The current simulation
considers a uniform in-plane displacement distributed over
0–2 pixels and uniform out-of-plane displacement w ranging
from 0 to 0.4 �z.

The out-of-plane motion causes a variation of the particle
images’ intensity level and contributes to the measurement
errors in several ways.

• At high seeding density, overlapping particle images that
vary their relative intensity lead to a biased displacement
estimate that depends on particle image intensity, width
and overlap, as thoroughly investigated by Nobach and
Bodenschatz (2009). This effect alone was reported to

Figure 9. RMS error as a function of the out-of-plane displacement.
The red dashed line represents the exponential behavior reported by
Nobach and Bodenschatz (2009).

cause random error of PIV measurements of the order of
0.1 pixels.

• At low particle image density, the out-of-plane
displacement causes a significant reduction of the
correlation signal strength: as a result, in real experiments,
the correlation peak shape may become strongly affected
by camera read-out noise (Raffel et al 1998).

Nobach and Bodenschatz (2009) report an exponential
increase of the RMS error with the out-of-plane displacement.
The latter is qualitatively retrieved in the present simulation
(figure 9). The image-matching error estimator appears to
take into account the out-of-plane motions consistently: the
reduction of particle image pairs causes a decrease of N,
yielding higher measurement error according to the 1/

√
N

scaling. For both interrogation methods, the estimated error
follows the actual value increase within 0.005 pixel accuracy.

3.3. Seeding density

Mildly varying planar motion in the range of 0–2 pixels
(displacement gradient below 5 × 10–3 pixels pixel–1) is
considered here to evaluate the correctness of the estimator
with respect to the particle image density. The latter is varied
between 0.005 and 0.15 ppp.

The RMS error decreases for increasing seeding density,
which is known from previous studies (Raffel et al (1998)
among others). When more particle image pairs are present
in the interrogation spot, a stronger correlation signal-to-noise
is achieved (Raffel et al 1998). The plots of figure 10 show
that the scaling rule implied in the model (1/

√
N) is consistent

with the behavior of the actual error. In particular, one can see
that for a four-fold increase of the seeding density the RMS
error approximately halves. Also in this case, the agreement
between δ̂RMS and δRMS is within 0.005 pixels.

3.4. Particle image diameter

The effect of the particle image diameter dτ onto the
measurement precision is well known and documented. In the
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Figure 10. RMS error as a function of the seeding density.

Figure 11. RMS error as a function of the mean particle image
diameter.

present simulation, particles with an image diameter varying
in the range of 0.5–5 pixels are considered. The RMS error
for discrete window offset sharply decreases for any increase
of the particle image diameter in the range between a fraction
of a pixel and 2 pixels (figure 11). For any further increase
of dτ , the error increases approximately linearly. This agrees
with known results from Westerweel (1997), who reports that
peak-locking errors dominate for dτ � 1 pixel and random
errors prevail for dτ � 1 pixel. For particle image diameter in
the sub-pixel regime, the random errors obtained with window
deformation are equivalent to those obtained with the discrete
shift technique. When dτ is larger than a pixel, a marked
difference is observed: the actual error continues decreasing
in the observed range, in contrast with the discrete offset
technique. This result is also in contrast with the model recently
stated by Westerweel et al (2013) whereby the RMS error
always increases with the dτ , irrespective of the interrogation
method used for the analysis.

In this case, the image-matching error estimator shows a
marked difference from the actual error when dτ is less than
1 pixel. This result does not come unexpected: in the peak-
locking regime also the estimator of the individual particles’
peak position is biased to the closest integer. As a result,

Figure 12. RMS error as a function of the background noise.

the estimator is not expected to detect the presence of peak-
locking. Nevertheless, δ̂RMS follows the same trend as δRMS and
the discrepancy does not exceed 50% for the worst case (dτ =
0.5 pixels). For measurements with particle image diameter
of 1 pixel or larger, the error estimator again becomes very
accurate.

3.5. Background noise

The effect of the background noise on the measurement
uncertainty is evaluated in this section. The main noise sources
for conventional CCD and CMOS cameras are classified as
follows (http://www.emva.org):

• read noise σ r, which appears on each pixel readout and
reflects the electronic noise;

• dark noise σ d, function of chip temperature, pixel size and
exposure time;

• shot noise σ s, due to the fluctuations in the number
of photoelectrons within a pixel; according to quantum
mechanics, the probability of those fluctuations is Poisson
distributed, therefore the variance σ 2

s of the fluctuations
equals the mean number Ne of accumulated electrons.

Following the EMVA standard (http://www.emva.org), a
linear model for the camera noise is employed here; therefore
the variance of the total noise (expressed in electrons) is
calculated as the sum of the variances of each source:

σ 2
n = σ 2

r + σ 2
d + σ 2

s . (7)

The noise level NL, expressed in counts, is obtained
dividing σ n by the conversion factor, i.e. the number of
electrons per count. Values of NL ranging between 0% and
25% of the maximum particle image intensity Imax are selected,
which are considered the standard for state-of-the-art CCD and
CMOS cameras used in PIV (Raffel et al 1998).

For both WIDIM and discrete window offset, the RMS
error is rather small (below 0.02 pixels) for noise levels below
5%. Larger background noise levels have a detrimental effect
on the correlation peak shape (Raffel et al 1998) and cause the
RMS error to increase. The uncertainty quantification correctly
reproduces the increase of RMS error with background noise
(figure 12). Only for high noise level (NL > 20%) is the posi-
tion of the particle image itself strongly affected by the noise;
therefore the accuracy of the uncertainty estimate is reduced.
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(a) (b) (c) (d) (e)

Figure 13. (a) Exact instantaneous displacement field; (b) discrete window offset, |δv|; (c) discrete window offset, δ̂v; (d) window
deformation, |δv|; (e) window deformation, δ̂v . Velocity and error are expressed in pixels.

4. Experimental assessment on a water jet

An established experimental database is used to assess the
applicability of the current method in real PIV measurements.
The measurements were carried out at the Aerodynamics
Laboratories of TU Delft in the Jet Tomography Facility (JTF,
Violato and Scarano (2011)). A laminar submerged water jet
is issued from a circular nozzle of 10 mm diameter D at
0.45 m s–1 (7 pixels), yielding a diameter-based Reynolds
number of 5000. The magnification factor equals 0.44.
A sequence of snapshots is recorded with high-temporal
resolution (frame rate of 1.2 kHz). In the laminar jet, vortices
are shed regularly at a frequency of 30 Hz.

Also in this case, the image-matching uncertainty
quantification is considered for images interrogated with
window offset as well as window deformation techniques. A
window of 33 × 33 pixels is used with 50% overlap factor.

In the present test case, the exact velocity field is
unknown. In order to assess the performance of the error
estimator, a high accuracy measurement is carried out by
processing the recordings with an advanced multi-frame
technique, namely the pyramid correlation (Sciacchitano et al
2012). The technique exploits the redundant information of
highly oversampled data to reduce the error by an order
of magnitude; spatial modulation errors are attenuated via
higher spatial resolution, achieved with smaller interrogation
windows (17 × 17 pixels). The instantaneous velocity
fields measured with the pyramid correlation serve as a
reference for calculating the actual error δ. The accuracy of
pyramid correlation has been assessed in a previous article
(Sciacchitano et al 2012); typical values of the RMS error

below 0.01 pixels were obtained. An example of reference
velocity field is shown in figure 13(a).

Two regions are identified where the measurement
uncertainty is the highest. The first one is the highly sheared
region at the jet exit. Here along the shear layer the high
measurement error is due to the strong displacement gradient
(up to 0.25 pixels pixel–1). The second region is beyond
transition, where the turbulent motions cause significant out-
of-plane particle displacement.

The analysis with the window offset technique suffers
from a significant correlation peak broadening, as also
illustrated in the correlation map on the left of figure 14. The
resulting measurement errors exceed 0.5 pixels, which is well
above the typical figure of 0.1 pixels often considered in the
literature as the accuracy of PIV measurements. Similar peak
values are also encountered in the turbulent region of the jet.

The image-matching error estimator returns a qualita-
tively similar picture, with peaks along the shear layer near
the exit and distributed randomly in the turbulent region.

In figure 13(d, e), the same analysis is conducted
with the window deformation technique. In this case the
peak broadening is mostly compensated by the in-plane
deformation, as confirmed by the correlation map of figure 14
(right). As a result, the measurement error level is about halved.
This error reduction is accurately retrieved with the image-
matching estimator.

In the turbulent region, where the out-of-plane motion
dominates the errors, the measurement error committed with
the window deformation is more similar to that of the window
offset, though a marked reduction is still observed.
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Figure 14. Correlation map along the shear layer (point P1); left: discrete window offset; right: window deformation.

In conclusion, the error committed with each of the
interrogation algorithms is estimated consistently with the
reference value of the error. Moreover, the estimator identifies
the regions of high uncertainty and yields the error magnitude
with a relative accuracy of approximately 90% (figure 13).

4.1. Statistical assessment in space domain

A statistical analysis is conducted to quantify the performance
of the uncertainty quantification; the RMS error is extracted
from two profiles located at y/D = 2.5 and 6.5 respectively. In
the laminar flow region (y/D = 2.5), the measurement error is
clearly correlated with the in-plane velocity fluctuations; the
maximum error occurs at the shear layer locations (figure 15,
left). For the discrete window offset algorithm, the high error
is ascribed to the correlation peak broadening due to the
displacement gradient; the window deformation technique
mostly compensates for the displacement gradient, yielding an
RMS error reduction by a factor of 3. For both interrogation
methods, the estimated error correctly reproduces the actual
error behavior within 0.05 pixels.

In the turbulent region (y/D = 6.5), the measurement error
is ascribed to both in-plane fluctuations (figure 15, top-right)
and out-of-plane motion. Due to the turbulent character of the
flow, the RMS error profile is approximately uniform inside
the jet, as illustrated in the bottom-right plot of figure 15; the
error committed with the window offset is slightly larger than
that of the window deformation. Also in this flow regime, the
agreement between δ̂RMS and δRMS is within 1/20th of a pixel
for both interrogation methods.

4.2. Statistical assessment in time domain

A statistical analysis in time domain is conducted to evaluate
the performance of the super-resolution approach in estimating
instantaneous errors; two points P1 and P2 along the shear
layer and in the turbulent region respectively (figure 13(a)) are
considered here.

Along the shear layer, the velocity exhibits low frequency
fluctuations ascribed to shear layer oscillations (figure 16(a)).
When the spatial resolution is insufficient, those oscillations

are not accurately captured by the interrogation algorithm
and the measurement error assumes periodic behavior, as
clearly visible in the plot of figure 16(g), which refers to
the WIDIM algorithm. The double-step interrogation with
discrete window offset (figure 16(c)) yields additional high
frequency measurement errors due to random noise and in-
plane displacement gradients, as discussed in the previous
sections.

In the turbulent flow region (point P2, figure 16(b))
the measurement error exhibits high frequency content due
to the three-dimensionality of the flow and the unresolved
turbulent scales (figures 16(e) and (i)). The error plots of
figure 16 highlight the high correlation level between actual
and estimated error on the axial velocity component (δv and
δ̂v, respectively).

The probability density functions (pdf) displayed in
figure 16 show that the measurement error is mainly distributed
in the range of 0–0.2 pixels; the relative agreement between
the medians of the actual and estimated error (δM and δ̂M,
respectively) is within 40% (table 1). The higher discrepancy
occurs in the shear layer using the with discrete window offset
method (figure 16(d)): in this case, the error is underestimated
by about 40%. This is due to the strong displacement gradient
(above 0.1 pixels pixel–1) responsible for positional disparities
exceeding the particle image diameter, which is not detected
with the present approach.

4.3. Uncertainty effectiveness

Timmins et al (2012) introduced the ‘uncertainty
effectiveness’ to investigate the appropriateness of their
uncertainty estimation: this parameter is defined as the
percentage of calculated vectors V which contain the true value
Vactual within their uncertainty band ± U, i.e. such that V – U <

Vactual < V + U. Consistent with the analysis of Timmins et al
(2012), here the uncertainty U = k · δ̂ is computed at 95%
confidence level; since the average number of particle pairs
within a 33 × 33 pixel interrogation window is N = 25,
the corresponding coverage factor for 95% confidence level is
k = 2.1 (Coleman and Steele 2009).
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Figure 15. Velocity fluctuations’ RMS and RMS error along profiles 1 and 2. Left: profile 1 (y/D = 2.5); top: axial velocity fluctuations’
RMS; bottom: RMS error. Right: profile 2 (y/D = 6.5); top: axial velocity fluctuations’ RMS; bottom: RMS error. The symbol key applies to
both the plots of the second row.

(c) (d) (e) (f)

(g) (h) (i) ( j)

(b)(a)

Figure 16. (a) Actual axial velocity in P1. (b) Actual axial velocity in P2. (c) Error time series in P1, discrete window offset. (d) pdf of the
error displayed in (c). (e) Error time series in P2, discrete window offset. ( f ) pdf of the error displayed in (e). (g) Error time series in P1,
window deformation. (h) pdf of the error displayed in (g). (i) Error time series in P2, window deformation. ( j) pdf of the error displayed
in (i).
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Table 1. Comparison between actual and estimated error in P1 and P2.

P1 P2

δM (px) δ̂M (px) �δ = δ̂M – δM (px) |�δ|/δM (%) δM (px) δ̂M (px) �δ = δ̂M – δM (px) |�δ|/δM (%)

Discrete window offset 0.218 0.130 –0.088 40% 0.134 0.145 0.011 8%
Window deformation 0.059 0.079 0.020 34% 0.108 0.123 0.015 14%

Table 2. Uncertainty effectiveness for the jet experiment.

Uncertainty Uncertainty Theoretical
effectiveness effectiveness value of the
on the radial on the axial uncertainty
velocity u velocity v effectiveness
(%) (%) (%)

Discrete 85 83 95
window offset

Window 94 92 95
deformation

The uncertainty effectiveness indicates the actual
confidence level of the estimated uncertainty: if U has been
correctly estimated, the uncertainty effectiveness equals the
chosen confidence level. The computed values are tabulated
in table 2 for both the interrogation algorithms. For WIDIM,
the uncertainty effectiveness shows good agreement with the
theoretical value of 95%, confirming the validity of the present
approach for error estimation. The image-matching estimator
exhibits uncertainty effectiveness above 90% for both radial
and axial velocity components.

Slightly lower values of uncertainty effectiveness are
obtained with the double-step correlation with discrete window
offset: this may be ascribed to the difficulty of correctly
pairing the particle images in the presence of strong in-
plane deformation, leading to an underestimation of the true
measurement error. However, for both velocity components
the uncertainty effectiveness exceeds 80%.

The authors remark that this parameter alone is
not sufficient to assess the precision of the uncertainty
quantification algorithm: in fact, a very conservative estimation
would lead to uncertainty effectiveness values tending to
100%. For this reason, in this work the algorithm’s precision
has been investigated with a statistical analysis observing both
the spatial distribution of the error and its time history at
significant locations in the flow domain.

4.4. Example of the uncertainty minimization procedure

Since the measurement error is not known a priori, the
investigator is left with empirical procedures to evaluate and
minimize it during the processing phase. A typical procedure
consists in gradually reducing the interrogation window size; at
any reduction step, the spatial resolution increases at the cost
of an increase of the measurement noise. The interrogation
window is selected as the smallest window providing a noise
level considered acceptable. Clearly, such a procedure is
largely dependent on human perception of the measurable
signal and the embedded noise and does not guarantee that the

interrogation window choice is actually optimal. The image-
matching error estimator can be used to select the window
size in a rigorous way in order to minimize the measurement
uncertainty.

As an example, a region of the jet is processed with
WIDIM with interrogation windows from 61 × 61 to 11 × 11
pixels (figure 17). By eye inspection of the instantaneous
velocity fields (first row of figure 17), the investigator gets
the impression that large interrogation windows yield strong
modulation effects, whereas small windows largely increase
the measurement noise. This is confirmed by the error analysis
conducted in the second row of figure 17: the interrogation
window of 11 pixels shows high errors not only in the shear
layer, but also in the jet core and in the quiescent region due to
the high noise level; in contrast, the 51 × 51 window yields
low uncertainty outside the jet due to the high measurement
robustness, but causes high modulation errors in the shear
layer. In this case, the window of size 31 × 31 pixels
minimizes the measurement error. For the different window
sizes, the agreement between actual and estimated error is
within 40%.

The RMS error in the points P1 and P2 previously defined
(figure 13) is considered to determine the optimal window size.
The plots of figure 18 show the importance of a correct choice
of the interrogation window, which allows the measurement
error to be reduced by a factor of 2.

In the shear layer (point P1, figure 18, left), the
measurement error exceeds 0.1 pixels for windows larger
than 45 × 45 pixels: this finding is consistent with well-
known results reported in the literature (Raffel et al (1998)
among others), which indicate that large windows are strongly
affected by displacement gradients. The error is reduced down
to 1/20th of a pixel using windows of size between 30 × 30
and 40 × 40 pixels.

In the turbulent region (point P2, figure 18, right) the out-
of-plane motion largely reduces the correlation signal strength
for windows below 20 × 20 pixels, causing errors above
0.15 pixels. In this case, the measurement error is reduced by
a factor of 2 using windows larger than 30 × 30 pixels, which
increase the correlation signal-to-noise ratio.

From the present analysis, the measurement error of the
jet experiment is minimum when the interrogation window is
selected in the range from 30 × 30 to 40 × 40 pixels. For
all window sizes, the estimated error follows the actual value
within 0.05 pixels.

5. Summary and conclusions

The image-matching uncertainty quantification is introduced
to estimate local error in planar PIV data. The approach
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(a) (b) (c) (d) (e) (f )

Figure 17. First row: instantaneous velocity field; second row: RMS error at the different window sizes; (a) 11 × 11 pixels, δRMS;
(b) 11 × 11 pixels, δ̂RMS; (c) 31 × 31 pixels, δRMS; (d) 31 × 31 pixels, δ̂RMS; (e) 51 × 51 pixels, δRMS; ( f ) 51 × 51 pixels, δ̂RMS. The
velocity and the error are expressed in pixels.

Figure 18. RMS error on the axial velocity component; left: point P1; right: point P2. The symbol key applies to both plots.

is a posteriori, meaning that the measured velocity field is
used as input along with the original images to quantify the
uncertainty of the velocity field itself. The working principle
is general and can be applied to any single-pair interrogation
algorithm based on cross-correlation. The principle of the
method relies on the concept of super-resolution: the image
pair is matched according to the cross-correlation analysis
and the residual distance between matched particle image
pairs (particle disparity vector) due to incomplete match

between the two exposures is measured. The ensemble of
disparity vectors within the interrogation window is analyzed
statistically to infer the instantaneous uncertainty of the
measured displacement. The method accounts for random
errors and systematic errors due to spatial modulation; in
contrast, peak-locking errors and truncation errors in time are
not detected with the present approach.

The performance of the image-matching uncertainty
quantification is assessed via Monte Carlo simulation. The

14



Meas. Sci. Technol. 24 (2013) 045302 A Sciacchitano et al

interrogation methods employed for the analysis range from
simple ones (single-pass correlation, double-step with discrete
window offset) to the state-of-the-art of PIV interrogation
(multi-step with window deformation). The error associated
with several measurement conditions, such as in-plane and
out-of-plane displacement, in-plane displacement gradient,
particle image diameter and seeding density, is investigated.
The estimated RMS error follows the behavior of the actual
error with accuracy in most cases within a hundredth of a pixel;
also the validity of our model based on the 1/

√
N scaling is

proven. As expected, the present approach shows its limitations
for particle images having diameter of 1 pixel or below; in this
case, the particle image position is affected by peak-locking
errors and leads to lower accuracy in the estimated error.

Water jet measurements are considered for the
experimental assessment. High accuracy displacement fields
serving as ground truth are built with an advanced processing
technique, namely the pyramid correlation (Sciacchitano
et al 2012). The performance of the image-matching
uncertainty quantification is evaluated observing both the
spatial distribution of the error as well as its time history at
relevant locations in the flow domain. It is shown that the
estimator is suitable to quantify a posteriori the measurement
uncertainty from real experiments with accuracy exceeding
60%. The authors claim that this is a major achievement
for PIV, because it constitutes the basis for quantifying the
uncertainty of statistical quantities such as means, variances
and Reynolds stresses, which are of paramount interest in the
investigation of turbulent flows.

An important outcome of the image-matching uncertainty
quantification is the possibility to minimize the measurement
uncertainty in the processing phase. An example of
the uncertainty minimization procedure is presented: the
recordings are processed with several window sizes and the
optimal interrogation window is selected as that minimizing
the estimated measurement error. It is shown that a correct
choice of the interrogation window size may yield a
measurement error reduction by a factor of 2.
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