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Abstract—Current practice in vascular surgery utilizes only di-
agnostic and empirical data to plan treatments and does not en-
able quantitative a priori prediction of the outcomes of interven-
tions. We have previously described a new approach to vascular
surgery planning based on solving the governing equations of blood
flow in patient-specific models. A one-dimensional finite-element
method was used to simulate blood flow in eight porcine thoraco-
thoraco aortic bypass models. The predicted flow rate was com-
pared to in vivo data obtained using cine phase-contrast magnetic
resonance imaging. The mean absolute difference between com-
puted and measured flow distribution in the stenosed aorta was
found to be 4.2% with the maximum difference of 10.6% and a
minimum difference of 0.4%. Furthermore, the sensitivity of the
flow rate and distribution with respect to stenosis and branch losses
were quantified.

Index Terms—Blood flow, one-dimensional analysis methods,
simulation-based medical planning.

I. INTRODUCTION

I N recent years, significant advances in three-dimensional
(3-D) cardiovascular imaging techniques such as computed

tomography (CT) and magnetic resonance imaging (MRI) and
developments in medical visualization software have provided
surgeons with unprecedented tools to examine patient anatomy.
Doppler ultrasound and MRI have provided physiologic data to
quantify blood flow preoperatively, interoperatively and post-
operatively. However, when it comes to surgical planning, all
of this data will be put aside as the treatment is sketched using
paper and pencil. The surgeon considers the patient’s medical
condition, expected tolerance to alternate procedures and the an-
ticipated benefit of each treatment based on the outcomes of pre-
vious patients with similar conditions. This diagnostic/empirical
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approach does not enable thea priori prediction of the outcomes
of alternate interventions for an individual patient, but merely
the anticipation that the current patient will have an outcome
similar to those of previous patients with similar diagnoses.

We have previously described a new paradigm, predictive
medicine, whereby a physician uses a simulation-based med-
ical planning software system in conjunction with patient-spe-
cific anatomic and physiologic data to design and preoperatively
evaluate treatment plans [1]. For cardiovascular bypass surgery,
the ability to predict changes in blood flow would enable a
surgeon to evaluate the efficacy of a treatment strategy. In the
case where several treatment options exist, the surgeon could
use information from simulations to aid in decision-making by
ranking treatments based on expected improvement in physio-
logic function.

Simulations of physiologic function involve solving systems
of equations governing blood flow. To date, we have solved the
time-dependent, 3-D equations governing blood flow to obtain
detailed data on blood flow distribution, wall shear stress, par-
ticle residence time and flow recirculation [1]–[5]. However,
these 3-D methods are computationally expensive and while im-
portant in determining local flow patterns, are not suitable for
rapid evaluation of surgical treatments.

Simpler zero- and one-dimensional (1-D) methods have
been used to describe blood flow in arteries and quantify mean
flow rate and pressure. Zero-dimensional methods or electrical
analogs do not define vessel geometry. Instead they represent
overall behavior in a collection of vessels by combining
resistors and inductors to represent the viscous and inertial
properties of blood and capacitors to represent elastic wall
behavior. Lumped-parameter methods can be used to represent
a single vessel segment or a collection of vessels and have been
applied to model blood flow in large portions of the human
arterial system [6]–[12]. Electrical analogs are well suited to
modeling relations between cardiac output and peripheral load
and have significant value as boundary conditions for other
analysis methods. However, since geometry is not explicitly de-
fined, wave propagation effects are not modeled. Furthermore,
the direct measurement of resistive, inductive and capacitive
values for patient specific models is not possible. These values
are typically chosen to fit experimental data.

One-dimensional methods are based on the assumption that
blood flow velocity along the vessel axis is much greater than
flow velocity perpendicular to the vessel axis. Velocity and pres-
sure are averaged over the cross section of the vessel resulting
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in a coupled system of nonlinear partial differential equations
in a single spatial variable and time. Under the assumptions
of small perturbations about a zero pressure and axial velocity
reference state, a linear form of the equations can be derived.
The resultant linear partial differential equations can be solved
using Womersley’s theory of vascular impedance to model wave
propagation in the human arterial system [13], [14]. The linear
form of the equations has been used to model wave propagation
in the human arterial system [6], under normal and simulated
pathological conditions [15], as well as for randomly branched
[16] and asymmetric fractal-like models [17]. Impedance-based
methods have great utility in describing pressure and flow wave
propagation in vessels, but these models do not incorporate non-
linear advective losses or pressure-dependent changes in cross-
sectional area [18].

The 1-D nonlinear equations for pulse wave propagation
in elastic tubes have been solved using numerical methods to
calculate pressure and flow propagation in the human arterial
system [18]–[23]. Several of these models have been used to
investigate changes in pressure waveforms in an attempt to
diagnose disease [18], [21], [22]. The shortcoming of 1-D
methods is that they do not account for energy losses associated
with secondary flows due to curvature, branching and stenoses.
Analytical losses have been added to model the effects of
stenoses [24], [25]. Losses associated with vessel curvature
and junctions were incorporated by Olufsenet al. [23]. While
these losses are generally small, in the presence of collateral
vessels and bypass grafts they can play a significant role in flow
distribution between alternate pathways. Previous studies have
not incorporated collateral flow pathways. Accurate modeling
of collateral flow is crucial in surgical bypass planning as
disease and treatment methods alter blood flow distribution
amongst alternate pathways.

To date, only a few investigators have validated their numer-
ical methods within vivo experiments. Holensteinet al. used
in vivo Duplex ultrasound measurements to quantify blood ve-
locity in the superior mesenteric arteries of 35 young, normal
individuals for comparison with calculated maximum and min-
imum flow velocities and flow reversal [8]. Olufsen used MRI
data for one subject to validate a novel method for specifying
boundary conditions for 1-D methods [23].

We have previously described a finite-element method for
solving the 1-D nonlinear equations of blood flow [26]. We have
shown that although 1-D analysis methods cannot provide the
same level of detail as 3-D methods, they may provide adequate
information with which to rank treatment outcomes based on
predicted mean flow rate and pressure distribution [26].

This paper describes the experimental validation of a 1-D
finite-element analysis technique. A series of animal experi-
ments were performed to test the accuracy of our 1-D methods
for modeling blood flow by comparing predicted flow rates
to in vivo measurements obtained using phase-contrast MRI
(PC-MRI) [5]. Thoraco-thoraco bypass surgery was performed
on eight pigs to direct blood flow around a surgically induced
stenosis. Using a 1-D approximation to the model geometries
and flow boundary conditions, we compare the flow rate,
mean flow and flow distribution predicted by our 1-D method
with experimental data. We demonstrate that a 1-D method

incorporating stenosis and branch loss models can adequately
describe blood flow distribution in a porcine thoraco-thoraco
bypass surgery.

II. M ETHODOLOGY

A. One-Dimensional Method

The 1-D equations for the flow of a Newtonian fluid in an im-
permeable, deforming, elastic domain consist of the continuity
equation, a single axial momentum balance equation, a constitu-
tive equation, and suitable initial and boundary conditions. The
governing equations are derived in general form by Hughes and
Lubliner [27]. The partial differential equations for mass and
momentum balance are given by

(1)

and

(2)

The primary variables are cross-sectional area, pressure
and volumetric flow rate . The density of the fluid is given
by and the kinematic viscosity by. The variable is related
to the profile function for the velocity over the cross-sectional
area and is a viscous loss term. We assume that the axial
velocity is much greater than the radial velocity components. If
we specify the vessel to have a circular cross section and assume
an axisymmetric quadratic flow profile, we obtain

(3)

and

(4)

For boundary conditions, we specify the flow rate at the inlet
and prescribe a resistance boundary condition at the outlet(s)

(5)

(6)

The initial conditions for this problem are given by

(7)

In order to complete the above system, we need to introduce a
constitutive relationship. An elastic model is assumed which re-
lates the pressure to the luminal cross-sectional area as follows:

(8)

We use the constitutive equation described by Olufsen [20]

(9)

where

(10)

is the Young’s modulus, is the wall thickness, and is the
radius at the reference pressure. In the relationship, , ,
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Fig. 1. Stenosis model diagram.

and are derived by a best fit to experimental data and are set to
default values of g s cm , cm ,
and g s cm [20].

To solve the system of equations, we employ a space-time
finite-element method including Galerkin Least Squares sta-
bilization in space and the Discontinuous Galerkin method in
time. We use a modified Newton–Raphson technique to solve
the resultant nonlinear equations for each time step [26].

For the 1-D theory, the assumptions made for the flow profile
are not valid in regions of flow separation such as downstream
of stenoses or branches and the 1-D method does not adequately
model the pressure losses. In fluid systems where vessel lengths
are relatively small, losses associated with curvature, branching,
valves, contraction, and expansion become important and domi-
nate the overall energy loss of the system. The minor loss coeffi-
cient, [28], is defined as a relationship between fluid density
, vessel flow rate , cross-sectional area and the change in

pressure

(11)

We can incorporate the experimentally determined, dimension-
less form, , into our numerical model through the viscous loss
term . Starting with (2) and assuming a constant flow rate, we
obtain

(12)

If we assume a straight vessel, we can integrate over the length
of the vessel and solve for

(13)

Combining (11) and (13), we obtain

(14)

We implemented the minor loss value for a stenosis model de-
veloped by Seeley and Young [24]. This model utilizes the area
ratio between the stenosed segment and the distal normal seg-
ment (Fig. 1) to obtain

Re
(15)

Re is the Reynolds number in the unobstructed section,is
the unobstructed cross-sectional area andis the stenosed
cross-sectional area. The coefficient represents viscous
losses that dominate at low Reynolds numbers. Experiments
show a dependence of on the geometric terms and

Fig. 2. Converging flow diagram. Loss coefficients are computed for upstream
(K ) and branch (K ) vessels.

Fig. 3. Diverging flow diagram. Loss coefficients are computed for
downstream (K ) and branch (K ) vessels.

resulting in the predicted equation based on Poiseuille
losses

(16)

This equation is improved by applying a linear Couette correc-
tion to giving

(17)

with

(18)

The coefficient represents turbulent affects that dominate at
high Reynolds numbers. showed little variation with stenosis
geometry and is assumed to be independent of geometry. The
average value from experimental results gives

(19)

This stenosis loss coefficient, , is used in (14) for segments
that have clinically significant stenosis of 75% or more decrease
in area compared to the distal segment area.

We implemented minor loss values, or junction losses, for
branch junctions of arbitrary angles using a model developed by
Gardel [29]–[31]. For each branching case of converging flow
(Fig. 2) and diverging flow (Fig. 3), minor loss coefficients are
computed for the through and branching segment with respect
to the combined, or total flow, segment. The branch, through
and combined legs are labeled 1, 2, and 3, respectively.

Junction loss coefficients are computed for each through
(vessel 2) and branch (vessel 1) segment. The coefficient
is the minor loss coefficient for the converging flow branch leg.
The subscripts indicate flow from vessel 1 into vessel 3. The
coefficient is the minor loss coefficient for the through
leg of the converging flow case. Similarly, refers to the
minor loss coefficient for the through leg of the diverging flow,
flow from vessel 3 into vessel 2 and refers to the loss
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coefficient for the branch leg of the diverging flow case. The
coefficients are given as

(20)

(21)

(22)

(23)

where is the side branch angle between vessels 1 and 3,is
the flow ratio through the side branch vessel to the combined
flow vessel and is the area ratio of the side branch
vessel to the combined branch vessel, . The first term
in each equation describes the head loss in the through vessel,
the second term describes the head loss in the branch vessel and
the third term is an additional loss used to match experimental
data. These values are used in (14) for the branch and through
segments at junctions. Examples ofvalue assignments can be
seen in Fig. 6.

B. In Vivo Experiment

We used data collected from experiments involving eight
pigs. The university’s Institutional Animal Care and Use
Committee approved all animal procedures. In each animal, we
created an aortic constriction, or stenosis, by tying polyester
(Dacron) umbilical tape around the descending thoracic aorta
to restrict blood flow and create a simulated diseased state.
The stenosis ranged from 78% to 93% reduction in the lumen
diameter. A 10.0-mm-diameter polyester (Dacron) graft was
attached to the thoracic aorta above and below the constriction
to provide an alternate path for blood flow. This model resem-
bles the anatomy of patients who have been diagnosed with
aorto-iliac disease and have been treated with an aorto-femoral
bypass with proximal end-to-side anastomosis. In both cases,
blood is divided between the native aorta and the bypass graft
above the stenosis and combined downstream of the stenosis.

Anatomic and physiological data was acquired for each
animal using MRI. Contrast-enhanced magnetic resonance
angiography (CE-MRA) was used to acquire 3-D anatomic
images of blood vessels, while phase contrast MRI (PC-MRI)
was used to collect velocity information at four different
locations: the proximal aorta (inlet), the mid-aorta (aorta), the
graft and the distal aorta (outlet) (Fig. 4). Pressure catheters
were used to measure the blood pressure proximal and distal
to the bypass region [5].

Fig. 4. In vivo geometry and PC-MRI acquisition locations for porcine
experiments.

Fig. 5. Model construction process. Reconstruct 3-D geometry from contrast
enhanced magnetic resonance angiography data. Extract cross-sectional
contours from reconstruction along vessel centerline using level-set method.
Create mathematical representation of bypass model with native aorta and
bypass graft using the extracted contours.

Using a previously described process [32], a geometric model
of the thoracic aorta and corresponding bypass was constructed
from the CE-MRA data of each animal. The level set method
was used to automatically segment out lumen boundaries of the
native aorta and bypass (Fig. 5). For simplicity, the cross-sec-
tional contours of the vessels were approximated with circles
and intercostal vessels were not modeled. The contour shape
and location are used in the construction of the 1-D models. A
velocity profile was generated from the PC-MRI data at the inlet
location using custom software [33]. The geometric model, inlet
velocity profile and a resistance outlet boundary condition were
used to simulate the blood flow for each animal using the 1-D
finite-element method previously described.

C. Analysis

All simulations were run on a Silicon Graphics 320 work-
station with a Xenon 500 MHz processor and 512 Mb of RAM
running Windows NT. A maximum element size of 0.25 cm was
used to ensure equally sized elements per vessel segment, with a
maximum of 289 and a minimum of 188 elements. The solution
was run using 50 time steps per cardiac cycle for three cycles.
A resistance of 1440 dyness/cm , the mean outlet resistance
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Fig. 6. Model tagging diagram. Junction vessels are numbered and junctions
are identified. Subscripts for junction losses indicate direction of flow, from first
subscript to second subscript.

measuredin vivo, was used as the exit boundary condition for all
models. Postoperatively measured flow waveforms were used as
the inlet boundary conditions for each model.

Each experimental model is composed of an aorta and a graft
vessel. Each vessel is comprised of segments that are defined
by the cross-sectional profiles segmented from PC-MRI. Each
segment, therefore, has a length (distance between consecutive
profile slices) and radius. All of the vessel segments, with ex-
ception of the stenosis segments, are tapered. The nodes of the
stenosed segment are treated like branch points where pressure
and flow are continuous but area is not.

Segments are tagged to indicate regions of complex geom-
etry where a minor loss correction should be used. Minor loss
tags specify the type of minor loss (stenosis, converging branch
segment, converging through segment, diverging branch seg-
ment and diverging through segment) as well as information that
might be needed in the loss computation. Stenosis segment tags
include an identifier for the segment immediately distal to it for
use in the calculation of . Branch segment tags con-
tain identifiers to the combined segment, branch segment (for
through branches) and branch angle for use in the calculations
of (Fig. 6). The segments are tagged when the model
is read in and after any user specified modifications are made.

III. RESULTS

Mean flow rate was extracted from both thein vivo PC-MRI
data and the 1-D finite-element method at the inlet, aorta, graft
and outlet for each pig in the postoperative, or open bypass graft,
configuration. The flow values are plotted for the 1-D analysis
and PC-MRI for both the aorta and graft for each pig in Fig. 7.
The ratio of mean flow for the aorta and graft to the total flow
is shown in Fig. 8.

We study the effects of loss terms by comparing blood flow
rate with and without junction losses. We choose an example
where final computed results compare well with experimental
data and compare the effect of including both stenosis and junc-

tion loss terms with only stenosis losses (Fig. 9). The aortic flow
ratio without the junction loss term is 0.029, significantly lower
than the mean predicted flow ratio with the junction loss term
of 0.108 and the measured aortic flow ratio, 0.153.

IV. DISCUSSION

While the 1-D model does not exactly match the PC-MRI
data, it does provide a good approximation to the flow rate dis-
tribution between the aorta and bypass. Considering the ratio of
total flow through the aorta, the average difference between pre-
dicted and measured flow ratio is 4.8% with the maximum dif-
ference of 10.6% and a minimum difference of 0.4%. Only one
of the eight predictions shows a difference of greater than 10%.
There are a few possible sources for the differences observed.

First, the empirical methods used to model energy loss for
complex geometry were developed under steady flow condi-
tions for rigid vessels and may not be optimal for use in de-
formable vessels with pulsatile flow. A pulsatile model has been
described for stenosis loss and will be evaluated in future work
[25]. Losses associated with curvature are not included. In Fig. 9
we see the effect of the junction loss coefficients. The junction
loss models are defined to have one straight through leg and
one branch leg. Future work will include determining the appro-
priate junction loss coefficients to use for a bifurcating vessel.

Second, there are measurement errors associated with the
experimental protocol and the PC-MRI method for measuring
blood flow velocity. A potential source of error could be due
to physiological changes in the pigs during the time required
to complete all PC-MRI scan sequences. While every effort
was made to keep the physiological state of the pigs constant
during the time it took to acquire all of the flow velocity scans,
some variations may have occurred. There may also have been
variability in velocity data acquisition and extraction from
PC-MRI. Combinations of these and other errors may account
for phase shift of the curves and the fact that experimentally
measured flow is not precisely conserved in our region of in-
terest. When the mean flow ratios were computed with respect
to the combined flow between the aorta and graft, the 1-D and
PC-MRI values compared favorably (Fig. 7). With 10.59%
difference between the predicted and computed flow ratios, the
predicted flow distribution for pig C does not agree as well as in
the other experiments. For all pigs except C, a two-dimensional
(2-D) segmented k-space MR sequence [34]–[36] was used to
acquire the velocity component along the axis of the vessel.
Respiration was suspended for these scans. For pig C, a 2-D
cine phase contrast sequence [37], [38] was used to obtain
three orthogonal components of velocity. Respiration was not
suspended for this scan.

Third, the accuracy of the model geometry is limited by the
CE-MRA resolution. Each pixel ranges in size from 0.46 mm
to 0.63 mm. The radii of the stenoses range from approximately
2.49 to 1.38 mm. An error of one half of a pixel on either side
of the vessel in the stenosis region could distort the results.
An example of this can be seen with pig E where the min-
imum stenosis radii obtained using our segmentation method
was 1.38 mm. We examined the effect of a radius corresponding
to one half of a pixel larger, or 1.68 mm. Improvements in the
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Fig. 7. Mean flow taken at inlet, graft and aorta of thein vivo experiments and 1-D models.

Fig. 8. Computed and measured flow ratios of blood flow through the native
aorta to total flow and bypass graft to total flow.

correlation between computed and measured flow rate were ob-
served as shown in Fig. 10. The predicted flow ratio through the
aorta increases from 0.11 to 0.16, a value more comparable with
the measured ratio of 0.15.

Fourth, the boundary condition used for all pigs was an av-
erage based on pressure and flow measurements in several pigs.
Although the resistance boundary condition may give rise to ar-
tificial pulse wave reflections, this boundary condition was rel-
atively easy to implement in our finite-element method. The re-
sults show that even with this boundary condition flow rate and

Fig. 9. Effect of junction loss on mean flow distribution. Without junction loss,
flow through bypass graft is overestimated.

Fig. 10. Sensitivity of flow distribution to stenosis radius. Flow ratio through
aorta increases 44% when stenosis radius is increased 22% from 1.38 mm to
1.68 mm (one half of an image pixel).
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distribution can be predicted accurately. Future work will inves-
tigate the use of alternate boundary conditions.

Further validation studies are needed to predict postopera-
tive blood flow based on preoperative data. For this experiment
we were able to specify the inlet boundary conditions for each
model using the postoperatively measured volume flow. This
data would not be available in a true planning scenario. Future
work will include developing methods for determining postop-
erative inlet boundary conditions from preoperative data.

V. CONCLUSION

We have demonstrated that a 1-D finite-element method can
be used to predict the flow distribution in a cardiovascular by-
pass graft. Numerical predictions of flow rate were compared
with MRI data in eight pigs. Less than 11% error was observed
in the flow ratios of all eight animals. It was shown that for this
analysis of blood flow through a bypass graft, it was necessary
to include the effects of junction losses in addition to stenosis
losses.
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