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We have previously described a new approach to planning treatments for cardiovascular disease,
Simulation-Based Medical Planning, whereby a physician utilizes computational tools to construct and
evaluate a combined anatomic/physiologic model to predict the outcome of alternative treatment plans
for an individual patient. Current systems for Simulation-Based Medical Planning utilize finite element
methods to solve the time-dependent, three-dimensional equations governing blood flow and provide
detailed data on blood flow distribution, pressure gradients and locations of flow recirculation, low wall
shear stress and high particle residence. However, these methods are computationally expensive and
often require hours of time on parallel computers. This level of computation is necessary for obtaining
detailed information about blood flow, but likely is unnecessary for obtaining information about mean
flow rates and pressure losses. We describe, herein, a space–time finite element method for solving the
one-dimensional equations of blood flow. This method is applied to compute flow rate and pressure in a
single segment model, a bifurcation, an idealized model of the abdominal aorta, in three alternate
treatment plans for a case of aorto-iliac occlusive disease and in a vascular bypass graft. All of these
solutions were obtained in less than 5 min of computation time on a personal computer.
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INTRODUCTION

The determination of an appropriate therapy for an

individual patient necessitates an assessment of alternate

therapies on the basis of many factors including the

patient’s medical condition, expected tolerance to

alternate procedures and the anticipated benefit of each

treatment. In the case of occlusive cardiovascular disease,

the determination of the benefit of a procedure is directly

related to the expected improvement in blood flow.

However, current methods for cardiovascular treatment

planning, relying principally on diagnostic and empirical

data, do not enable a physician to preoperatively assess the

changes in blood flow for alternate therapies. Such

predictions may be useful in evaluating and ranking

different surgical procedures performed on patient specific

models. We have previously described a simulation-based

medical planning system for cardiovascular disease that

uses computational methods to evaluate alternate options

prior to treatment [1]. Three-dimensional analyses can

provide detailed descriptions of local flow features (flow

recirculation, shear stresses, particle residence time), but

these analyses are both resource and time intensive.

Consequently, three-dimensional pulsatile flow simu-

lations are not suitable for the rapid evaluation of alternate

surgical options.

Simpler, zero and one-dimensional methods have been

used to describe blood flow in arteries and quantify mean

flow rate and pressure. These models include lumped

parameter models [2,3], one-dimensional linear pulse

wave propagation methods solved using a frequency

domain approach [4], and one-dimensional nonlinear

pulse wave propagation methods solved using various

numerical methods [5–9].

We have implemented a simulation-based medical

planning system based on solving the one-dimensional

nonlinear pulse wave propagation equations governing

blood flow in the large systemic arteries using a finite

element method. Although one-dimensional analyses do

not provide the same level of flow detail that corresponding
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three-dimensional analyses do, they may yield adequate

information to rank procedure outcomes. Our goal is to

demonstrate that for similar geometry (one-dimensional

and three-dimensional differences notwithstanding) we

can rank outcomes of proposed surgical procedures in

the same order as a fully three-dimensional simulation

with our one-dimensional method in a small fraction of

the time required for a three-dimensional calculation.

This ranking will be based solely on flow rate and

pressure, other factors such as shear stresses and

recirculation will be ignored. We describe the space–

time finite element formulation for solving the

nonlinear evolution equations governing pulsatile

blood flow in elastic vessels idealized as one-

dimensional segments. Issues related to branching

conditions and outflow boundary conditions are

addressed and the implementation described. This

method is applied to solve for pulsatile flow in a

single segment, a symmetric bifurcation, an idealized

abdominal aorta, three different surgical plans for a

case of aorto-iliac disease and a porcine thoraco-

thoraco aortic bypass. In the latter two examples, the

computed flow rate is directly compared to the flow

rate computed using three-dimensional methods. We

demonstrate that a simplified one-dimensional blood

flow problem can be solved roughly 5000 times faster

than the three-dimensional one, thereby enabling the

development and implementation of a rapid surgical

design tool.

METHODS

Governing Equations (Strong Form)

The one-dimensional equations for the flow of a

Newtonian fluid in a deforming, elastic domain consists

of the continuity equation, a single axial momentum

balance equation, a constitutive equation, and suitable

initial and boundary conditions. The governing equations

are derived in a general form by Hughes [6] and Hughes

and Lubliner [10]. The partial differential equations for

mass and momentum balance are given by

›S

›t
þ

›Q

›z
¼ 2c ð1Þ

›Q

›t
þ

›

›z
ð1þ dÞ

Q 2

S

� �
þ

S

r

›p

›z
¼ Sf þ N

Q

S
þ n

›2Q

›z2
ð2Þ

The primary variables are the cross-section area S and

the volumetric flow rate Q. The density of the fluid is

given by r (assumed constant), the external force by f, the

kinematic viscosity by n (assumed constant) and c is an

outflow function (taken to be zero for impermeable

vessels). The variables d and N are defined by the choice

of a profile function for the velocity over the cross-section.

We define the fluid velocity by V ¼ {V1;V2;V3}; where

V3 is the component along the vessel axial direction, then

construct a function f, so that V3 ¼ fQ=S: The variables

d and N are defined as

d ¼
1

S
S

ð
ðf2 2 1Þda ð3Þ

N ¼

›S

þ
›f

›m
dl ð4Þ

where da is the cross-sectional area form, dl is the

circumferential line element form, and m is the unit

outward normal to the cross-sectional area. If we choose

the profile to be axisymmetric and of the form

fðrÞ ¼
nþ 2

n
1 2

r

R

� �n� �
ð5Þ

then we have

d ¼
1

1þ n
N ¼ 22ðnþ 2Þpn ð6Þ

where r is the radial coordinate and R is the luminal radius.

We assume a Poiseuille profile for our problem, and thus

set n ¼ 2:
In regards to boundary conditions, we generally choose

to specify the flow rate at the inlet(s) (Gin)

Qðz; tÞ ¼ Q inðtÞ z [ Gin ð7Þ

and either a prescribed pressure, flow rate, or a resistance

boundary condition at the outlet(s) (Gout)

pðz; tÞ ¼ poutðtÞ or

Qðz; tÞ ¼ QoutðtÞ or

pðz; tÞ2 Qðz; tÞR ¼ 0 z [ Gout ð8Þ

where Q in, p out and Q out are prescribed functions and R is

the prescribed resistance at the outlet boundary.

The initial conditions for this problem are given by

Sðz; 0Þ ¼ S0ðzÞ; Qðz; 0Þ ¼ Q0ðzÞ ð9Þ

where S 0(z ) and Q 0(z ) are prescribed functions.

Constitutive Equation

In order to complete the above system, we need to introduce

a constitutive relationship. An elastic model is assumed

which relates the pressure to the luminal area as follows:

pðz; tÞ ¼ p̂ðSðz; tÞ; z; tÞ ð10Þ

The particular constitutive relationship that we have

used is that suggested by Olufsen [11]:

p̂ðSðz; tÞ; z; tÞ ¼ p0ðzÞ þ
4

3

Eh

r 0ðzÞ
1 2

ffiffiffiffiffiffiffiffiffiffiffi
S0ðzÞ

Sðz; tÞ

s !
ð11Þ

where

p0ðzÞ ¼ pðz; 0Þ ð12Þ

r 0ðzÞ ¼ ðS0ðzÞ=pÞ1=2 ð13Þ

J. WAN et al.196



and

Eh

r 0ðzÞ
¼ k1ek2r 0ðzÞ þ k3 ð14Þ

In this relationship, k1, k2, and k3 are derived by a best fit

to experimental data and are set to default values of k1 ¼

2 £ 107 g�s22�cm21; k2 ¼ 222:53 cm21; and k3 ¼

8:65 £ 105 g�s22�cm21:

Stenosis Model

In the presence of stenoses, the Poiseuille velocity profile

assumption results in an underestimation of viscous losses

[9]. In this case we have implemented an empirically

based stenosis model. This is implemented by modifying

the viscous loss term, N, given by 28pn for the case of

Poiseuille flow ðn ¼ 2Þ: Seeley and Young [12] obtained

an empirical formula for the pressure losses across models

of arterial stenoses based on experimental data. It can be

represented as follows:

Dp

rV2
0

¼
Kv

Re0

þ
Kt

2

S0

S1

2 1

� �2

ð15Þ

where

Kt ¼ 1:52

Kv ¼ 32
L

D0

S0

S1

� �2

ð16Þ

and where here the subscript 0 refers to the vessel

proximal to the stenosis, whereas the subscript 1 refers to

the vessel in the stenosis. Re0 is the Reynolds number, V0

is the velocity, D0 is the cross-sectional diameter, and L is

the length of the stenosis.

This results in a modification to the viscous loss

function N, of the form

N ¼

2S2
1Q2

0
Kv

Re0
þ Kt

2
S0

S1
2 1

� �2
� �

S2
0Q1L

ð17Þ

Quasi-linear Form

By noting that the pressure gradient can be expanded as

›p

›z
¼

›p̂

›S

›S

›z
þ

›p̂

›z
ð18Þ

we can rewrite the system of partial differential equations

in a quasi-linear form:

›U

›t
þ A

›U

›z
2 K

›2U

›z2
¼ G ð19Þ

where

U ¼
U1

U2

" #
¼

S

Q

" #
ð20Þ

A ¼

0 1

2ð1þ dÞ U2

U1

� �2

þ U1

r
›p̂
›S
ð1þ dÞ 2U2

U1

24 35 ð21Þ

K ¼
0 0

0 n

" #
ð22Þ

G ¼

2c

Sf þ N U2

U1
2 U1

r
›p̂
›z

24 35 ð23Þ

Finite Element Method

We employ a stabilized space–time finite element method

based on the discontinuous Galerkin method in time. The

procedure presented herein employs ideas developed in

Hughes and Mallet [13] and Hughes, Franca and Hulbert

[14]. See also Brooks and Hughes [15] for background. So

as not to distract from the applications focus of this paper,

we present a brief overview of the method rather than a

comprehensive theoretical exposition. The spatial dis-

cretization employs continuous piecewise linear poly-

nomials whereas we use a piecewise constant temporal

discretization. This method has been shown to yield

stable, time-accurate solutions for advective–diffusive

systems encountered in fluid mechanics.

The weak formulation of the initial boundary value

problem is given as follows: Find U such that ;W ¼

½W1W2�
T ;ðT

0

ðL

0

ð2WT
;tUþWT AU;z þWT

;zKU;z 2 WT GÞdzdt

þ

ðL

0

WT ðz; TÞUðz; TÞdz 2

ðL

0

WT ðz; 0ÞU0ðzÞdz ¼ 0

ð24Þ

where U0ðzÞ ¼ ½S0ðzÞ;Q0ðzÞ�T : After discretizing in time,

and assuming U and W are discontinuous across time slabs

(i.e. 0 , z , L; tþn # t # t2
nþ1), we haveðt2

nþ1

tþn

ðL

0

ð2WT
;t UþWT AU;z þWT

;zKU;z

2 WT GÞdzdt þ

ðL

0

WT ðz; t2
nþ1ÞUðz; t

2
nþ1Þdz

2

ðL

0

WT ðz; tþn ÞUðz; t
2
n Þdz ¼ 0 ð25Þ

By using a piecewise constant approximation in time for

both U and W, the above equation can be simplified to

Dtn

ðL

0

ðWT AUnþ1
;z þWT

;zKUnþ1
;z 2 WT GÞdz

þ

ðL

0

WT ðUnþ1 2 UnÞdz

¼ 0 ð26Þ
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where the superscripts n and n þ 1 are identified with the

solution at time instants tn and tnþ1, and Dtn is the time

step. These equations are augmented by the addition of a

stabilization term as follows.

We need to define a matrix C ¼ CðUÞ such that CU ¼

G: To this end let

CðUÞ ¼

2 c
U1

0

f 2 1
r

›p̂
›z

N
U1

264
375 ð27Þ

With this we define a matrix differential operator by

LðUÞ ¼ I
›

›t
þ AðUÞ

›

›z
2 K

›2

›z2
2 CðUÞ ð28Þ

Note that L(U)U is the residual of the partial differential

equation system, viz.

LðUÞU ¼ U;t þ AðUÞU;z 2 KU;zz 2 GðUÞ ð29Þ

For the case of a piecewise constant approximation in time

and a piecewise linear approximation in space LðUÞU
simplifies to

LðUÞU ¼ AðUÞU;z 2 GðUÞ ð30Þ

Note also that

LðUÞT W ¼ AðUÞT W;z 2 CðUÞT W ð31Þ

Therefore, the stabilization term takes the form:

Dtn
e

Xð
Ve

ðLðUÞT WÞTtðLðUÞUÞdz ð32Þ

where the summation ranges over the element interiors

and t ¼ tðUÞ is the stabilization matrix defined by:

t ¼
2

Dtn

Iþ
2

h
jAj þ 3

2

h

� �2

Kþ jCj

" #21

ð33Þ

where the absolute value of a 2 £ 2 matrix B can be

obtained from the Cayley–Hamilton theorem, viz.

jBj ¼
B2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðB2Þ

p
Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðB2Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðB2Þ

pq ð34Þ

Therefore the final variational form is given by: Find Unþ1

such that ;W

Dtn

ðL

0

ðWT AUnþ1
;z þWT

;zKUnþ1
;z 2 WT GÞdz

þ

ðL

0

WT ðUnþ1 2 UnÞdz

þ Dtn
e

Xð
Ve

ðWT
;zA 2 WT CÞtðAUnþ1

;z 2 GÞdz ¼ 0

ð35Þ

Assuming we have n nodal points in our spatial

discretization, we can write the vector fields W and Unþ1

as follows:

W ¼
Xn

A¼1

NACA

Unþ1 ¼
Xn

B¼1

NBUnþ1
B ð36Þ

where NA(z )NB(z ) are the usual piecewise-linear shape

functions. Using these definitions we can write a nonlinear

vector valued function for all CA’s:

RAðU
nþ1Þ ¼Dtn

ðL

0

�
NA

B

X
NB;zAUnþ1

B

þ NA;z
B

X
NB;zKUnþ1

B 2 NAG

�
dz

þ

ðL

0

NA

B

X
NB Unþ1

B 2 Un
B

ÿ �0@ 1Adz

þ Dtn
e

Xð
Ve

NA;zA 2 NAC
ÿ �

t

B

X
NB;zAUnþ1

B 2 G

0@ 1Adz ¼ 0 ð37Þ

where the subscript A ¼ 1; 2; . . .; n: This amounts to

two algebraic equations at node A. For simplicity,

we have suppressed the Unþ1 argument in A, C,

and G.

We use a modified Newton–Raphson technique to

solve this nonlinear system. The “modification”

amounts to not using the consistent tangent by assuming

that:

›A

›Unþ1
C

¼ 0;
›C

›Unþ1
C

¼ 0;
›t

›Unþ1
C

¼ 0 ð38Þ

This means that we freeze the matrices A, C, and t in the

calculation of the Jacobian. With this modification, the

application of the Newton–Raphson method is facilitated

by the following iterative scheme:

C

X
~K

nþ1;k

AC dUnþ1;kþ1
C ¼ 2R

n;k
A ð39Þ

Unþ1;kþ1
C ¼ Unþ1;k

C þ dUnþ1;kþ1
C

where the superscript k denotes the kth iteration and the
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matrix K̃AC is:

~KAC ¼
›RA

›Unþ1
C

¼ Dtn

ðL

0

ðNAANC;z þ NA;zKNC;z 2 NACNCÞdz

þ

ðL

0

NAINCdzþ Dtn
e

Xð
Ve

ðNA;zA

2 NACÞtðANC;z 2 CNCÞdz ð40Þ

Despite the modifications to the consistent tangent, we

have observed rapid convergence of the iterative process.

Branch Points

At a connection of multiple segments, pressure continuity

and conservation of mass are enforced using Lagrange

multipliers. Without loss of generality, we assume for

purposes of exposition there is one branch point. If we

have m inlets and n outlets at the branch point l, then the

following m þ n constraints must hold:Xm

C¼1

Qin
i 2

Xn

C¼1

Qout
i ¼ 0

pin
C 2 pin

l ¼ 0 C ¼ 2. . .m

pout
C 2 pin

l ¼ 0 C ¼ 1. . .n ð41Þ

Recasting this information in terms of the Lagrange

multipliers to form a potential function Z, we obtain:

Z ¼ lQ

Xm

C¼1

Qin
C 2

Xn

C¼1

Qout
C

" #

þ
Xm

C¼2

½lpðC21Þ
ðpin

C 2 pin
l Þ� þ

Xn

C¼1

½lpðC21þmÞ
ðpout

C 2 pin
l Þ�

ð42Þ

Besides the primary variable vector U, m þ n Lagrange

multipliers become additional unknowns of the nonlinear

system. The corresponding new arrays in the global

equation system can be expressed as follows:

~KQC ;lQ
¼ ~KlQ;QC

¼
›2Z

›QC›lQ

;

~KQC ;lpD
¼ ~KlpD

;QC
¼

›2Z

›QC›lpD

;

~KSC ;lQ
¼ ~KlQ;SC

¼
›2Z

›SC›lQ

;

~KSC ;lpD
¼ ~KlpD

;SC
¼

›2Z

›SC›lpD

;

RlQ
¼

›Z

›lQ

; RlpD
¼

›Z

›lpD

ð43Þ

where D ¼ 1. . .nþ m 2 1.

Contributions to existing arrays are denoted by ˆ

indicating that the expression on the right-hand side of the

arrow should be added to the existing left-hand side.

~KSC ;SD
ˆ

›2Z

›SC›SD

RQC
ˆ

›Z

›QC

; RSC
ˆ

›Z

›SC

ð44Þ

Treatment of Boundary Conditions

After assembling the matrix K̃, boundary conditions need

to be enforced. The boundary conditions we have

implemented are prescribed flow rate, prescribed pressure

and a prescribed resistance (linear relationship between

pressure and flow rate). To enforce the flow rate boundary

condition, the equation for that degree-of-freedom is

replaced by an equation representing the boundary

condition, and the Newton–Raphson method is applied

in the same way as discussed previously. If we denote the

node for which the prescribed flow rate boundary

condition is to be applied by an index C, the residual is

defined by

RQC
¼ Qnþ1

C 2 Qin
C ðtnþ1Þ ¼ 0 ð45Þ

where Qin
C ðtnþ1Þ is the prescribed flow rate. The row and

column in the matrix K̃ corresponding to variable QC are

set to zero, and the diagonal component corresponding to

that degree-of-freedom is set to 1, i.e.

~KQC ;QC
¼ 1 ð46Þ

The pressure boundary condition must first be translated

into a luminal area boundary condition. The area residual

is then

RSC
¼ Snþ1

C 2 Ŝðpout
C ðtnþ1Þ; zC; tnþ1Þ ¼ 0 ð47Þ

where Ŝ is obtained by inverting the pressure constitutive

relation (11). We then proceed as in the case of the flow

rate boundary condition, namely, we set

K~SC ;SC
¼ 1 ð48Þ

and zero the terms in the row and column of K̃

corresponding to degree-of-freedom SC.

The resistance boundary condition amounts to a

constraint between flow rate and pressure (hence luminal

area). This can be written in terms of the flow rate

residual:

RQC
¼ Qnþ1

C 2 p̂ðSnþ1
C ; zC; tnþ1ÞR

21 ð49Þ

Linearization about the kth iterative state yields

dQ
nþ1;kþ1
C ¼

›p̂

›S
ðS

nþ1;k
C ; zC; tnþ1ÞdS

nþ1;kþ1
C R21 ð50Þ
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For future reference, we write

a ¼
›p̂

›S
ðS

nþ1;k
C ; zC; tnþ1ÞR

21 ð51Þ

These relations imply the following alterations to the

matrix system: The residual of the QC degree-of-freedom,

RQC
is given above. The residual of the SC equation, RSC

,

needs to be modified by the addition of aRQC
. The QC row

of the matrix K̃ needs to be multiplied by a and added to

the SC row. Subsequently, the QC column needs to be

multiplied by a and added to the SC column. Then we

define

~KQC ;QC
¼ 1 ð52Þ

and zero the remaining terms of the QC row and column to

complete the specification of the resistance boundary

condition.

RESULTS

We first consider pulsatile flow in an elastic tube with a

prescribed flow rate at the inlet and resistance boundary

conditions at the exit. The dimensions of this vessel were

chosen to correspond approximately to that of the human

common carotid artery. Specifically, the nominal radius

was specified to be 0.4 cm and the vessel length was

specified to be 16 cm (length to diameter ratio of 20). A

total of 16 finite elements were utilized and the solution

was computed using 100 time steps per cardiac cycle for a

total of three cardiac cycles. Figure 1 depicts the results

obtained. We note that the volume flow rate and pressure

waves are propagated down the length of the vessel with

little damping or dispersion.

We next consider pulsatile flow in a symmetric

bifurcation with equal resistances at the two outlets. The

dimensions of this vessel were chosen to correspond

approximately to the human aortic bifurcation. The model

consisted of 50 elements with the element size of 1 cm; 16

elements in the inlet branch and 17 each in the left and

right branches. The solution was computed using 100 time

steps per cardiac cycle for a total of three cardiac cycles.

Figure 2 depicts the results obtained. The volume flow

rates and pressure waves are identical for the right and left

branches. Furthermore, although not shown, the pressure

at the exit to the inlet branch is identical to the pressure at

the inlet of each of the branches and the volume flow rate

is conserved across the junction.

We next consider pulsatile flow in an idealized

abdominal aorta with varying vessel dimensions and

outlet resistances, but uniform material properties. The

volume flow rate is specified at the inlet boundary and

resistances are specified at all the exits. The exit

resistances were chosen so that the mean flow rate in

each of the branches corresponds to the three-dimensional

pulsatile flow calculations described by Taylor et al. [16].

Figure 3 depicts the volume flow rate and pressure at the

inlet and all of the outlets of the idealized abdominal aorta

model. The blood flow distribution is nonuniform due to

the differing terminal resistances and cross-sectional

areas. We also note that the pressure and flow are in phase

at the exit in accordance with a purely resistive boundary

condition.

We finally consider pulsatile flow in a model of a

treatment for aorto-iliac occlusive disease. For this

problem, the right iliac artery is completely occluded,

the left iliac artery has a 50% reduction in diameter, the

FIGURE 1 Problem description and results for single segment model with uniform cross-section and material properties. Volume flow rate is specified
at the inlet and a resistance boundary condition was specified at the outlet of the single segment model. Note the propagation of the flow and pressure
waves with little damping or dispersion.
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right superficial femoral artery has a series of stenoses and

the left superficial femoral artery is completely occluded.

We previously solved this problem using a three-

dimensional finite element method in a preoperative

model and three alternate treatment plans: an aorto-

femoral bypass procedure with a proximal end-to-side

anastomosis, an aorto-femoral bypass procedure with a

proximal end-to-end anastomosis (shown in Fig. 4), and

angioplasty with a femoral-to-femoral bypass graft [1].

Resting flow conditions were used to assess the blood

flow in the foot needed for wound healing. The boundary

conditions for preoperative and postoperative compu-

tations were prescribed as follows. First, preoperative

analyses under resting flow conditions were performed

with a specified volume flow rate through each boundary

based on literature data for flow distribution [16]. This

preoperative analysis was used to compute the average

pressure distribution at each outflow boundary. Second,

the resistance was computed for each outflow boundary

based on a relationship between pressure and volume flow

rate of the form p ¼ QR; where p is the mean pressure, Q

is the volume flow rate and R is the resistance to flow.

Using this strategy, the volume flow rate Q and pressure p

were calculated (not specified) for each of the boundaries

for each of the surgical plans. Stenoses were accounted for

by the model described previously. The nonlinear

evolution equations governing blood flow for each

treatment plan were then solved for the velocity and

pressure fields over five cardiac cycles with 200 time steps

per cardiac cycle. Figure 4 depicts the results for one of the

surgical plans, the aorto-femoral bypass with a proximal

end-to-end anastomosis. Table I depicts the mean flow

rate for the preoperative case and all three alternate

FIGURE 2 Problem description and results for symmetric bifurcation segment model. Volume flow rate is conserved at the branch point and pressure is
continuous. Note that the exit pressures and flow rates are identical for the two branch vessels.

TABLE I Comparison between volumetric flow rate at various locations
for one-dimensional and three-dimensional methods for preoperative
case and three alternate treatment plans

Flow (cc/s) 1D 3D Difference (%)

Preoperative
Aorta 50.10 50.15 0
R femoral 2.29 3.60 236
L femoral 7.76 7.73 0
R popliteal 1.21 0.50 142
L popliteal 4.58 4.53 1
Angioplasty with Fem–Fem bypass
Aorta 57.64 57.67 0
R femoral 6.67 7.40 210
L femoral 15.72 12.45 26
R popliteal 3.75 2.70 39
L popliteal 5.34 4.83 10
AFB with end to end anastomosis
Aorta 57.64 57.67 0
R femoral 8.98 10.25 212
L femoral 6.79 9.17 226
R popliteal 5.05 4.72 7
L popliteal 5.72 5.85 22
AFB with end to side anastomosis
Aorta 57.64 57.67 0
R femoral 8.24 11.05 225
L femoral 8.07 13.02 238
R popliteal 4.64 5.15 210
L popliteal 5.66 6.03 26
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surgical procedures computed using the one-dimensional

method described in this paper and our previously

published three-dimensional method [1]. Overall, the

one-dimensional solutions compare favorably to the three-

dimensional solutions. The three-dimensional solutions

involved approximately 500,000 degrees-of-freedom and

approximately 25,000 cpu minutes of solution time

whereas the one-dimensional solutions required less than

500 degrees-of-freedom and less than 5 cpu minutes of

solution time. With respect to the cost of model

preparation, the three-dimensional model is based on an

analytic solid model and three-dimensional finite element

mesh and requires days of preparation time whereas the

one-dimensional model and mesh can generally be created

in less than 1 h.

The final problem we consider is the pulsatile flow

through a porcine thoraco-thoraco aortic bypass graft as

shown in Fig. 5. The pressure and flow rate at the inlet,

native aorta, bypass graft and outlet are displayed. The

peak differences between the three-dimensional and one-

dimensional methods are on the order of 50% in the native

aorta, but less than 10% in the bypass graft. The stenosis

model described previously was not used in this

simulation.

DISCUSSION

We have described a space–time finite element formu-

lation for solving the nonlinear evolution equations

governing pulsatile blood flow in elastic vessels. This

method, based on well-established methods for advec-

tive–diffusive systems common in fluid mechanics,

includes the enforcement of pressure continuity and

mass conservation at branch points as well as flow rate,

pressure and resistance boundary conditions. The resulting

system of nonlinear equations is solved using a Newton–

Raphson method. The solution of the one-dimensional

blood flow equations in a single segment reveals the

propagation of the flow waveform with negligible change

and the propagation of the pressure wave with little

damping and dispersion. The application of this method to

flow in a symmetric bifurcation demonstrates the accurate

enforcement of the branch conditions as well as the

expected symmetric solution. Pulsatile flow in an

idealized model of the human aorta demonstrates the

application to models with multiple branches. The primary

motivation behind this research is simulation-based

medical planning, and this method is applied to simulate

blood flow in three different surgical plans for a case of

FIGURE 3 Problem description and results for idealized abdominal aorta with varying vessel dimensions and outlet resistances, but uniform material
properties. Volume flow rate and pressure are depicted at inlet and outlets of idealized abdominal aorta model.
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aorto-iliac disease and blood flow in a porcine thoraco-

thoraco aortic bypass. For the simulation of blood flow in

the treatment plans for a case of aorto-iliac occlusive

disease, we observed overall good agreement between the

one-dimensional solution and previously computed three-

dimensional solutions using the same output resistance

boundary conditions. In the case of blood flow in a porcine

thoraco-thoraco aortic bypass, we also obtained good

agreement between the one-dimensional solutions and

three-dimensional solutions. Either the neglect of three-

FIGURE 4 Problem description for case of aorto-iliac occlusive disease treated with aorto-femoral bypass graft with proximal end-to-end anastomosis.
Volume flow rate and pressure are depicted at inlet, outlets and representative locations of treatment plan.
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dimensional effects for the one-dimensional method or the

neglect of wall compliance for the three-dimensional

models could explain the observed differences. Further

analysis and comparisons with experiment are needed to

resolve this question.

The major assumptions employed in this investigation

include the assumption of elastic walls, Newtonian

viscosity, exit boundary conditions, and the one-dimen-

sional approximation to blood flow and the resulting

choice of the cross-sectional velocity profile function. The

utilization of these assumptions is believed to constitute a

reasonable approximation to the actual mechanics of

blood flow in large arteries and must be evaluated in the

context of the goal of developing a rapid design tool for

cardiovascular treatment planning.

The elastic approximation to the true viscoelastic

character of blood vessels is expected to be sufficient to

represent the pulse propagation in the one-dimensional

domain to a first approximation. A Newtonian constitutive

model for viscosity was employed in the present

FIGURE 5 Problem description for case of pulsatile flow in vascular bypass graft. Volume flow rate for three-dimensional and one-dimensional
methods are depicted at the inlet, in the aorta above the stenosis, in the bypass graft and the outlet.
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investigation and is generally accepted as a reasonable

first approximation to the actual behavior of blood at shear

rates observed in large arteries [17]. However, future

studies could include non-Newtonian rheologic models.

The one-dimensional approximation to blood flow

ignores secondary flows present due to curvature, taper,

expansions, and branching. These more complex flow

fields induce viscous losses that are not well approximated

by the assumed Poiseuille velocity profile. However, as in

the case of the stenosis model, the viscous loss function

can be modified using empirical models in regions where

secondary flows are anticipated. Further validation of the

one-dimensional approximation to blood flow using three-

dimensional methods and experimental data could help in

the development of these empirical models.

In regards to the solution of pulsatile blood flow, the

outflow boundary conditions represent the most significant

determinant of the resulting flow rate and pressure

propagation for problems with multiple outlets. We

described the implementation of flow rate, pressure and

resistance boundary conditions, but the resistance

boundary condition is utilized in most cases. Pressure

and flow rate waveforms are, in general, not known a

priori and the resistance of a vascular bed can be used to

represent downstream conditions. This approach is limited

in that a purely resistive model does not reflect the actual

relationship between pressure and flow rate due to the

pulsatile nature of blood flow in compliant vessels. In

particular, pure resistive boundary conditions force the

pressure and flow rate to be in phase, a condition that

rarely applies in the vascular system. More appropriate

boundary conditions can be derived using lumped

parameter or Windkessel models. For example, Stergio-

pulos et al. [9] use a modified Windkessel model to

account for the capacitive and resistive effects of the

vasculature at the exits of a one-dimensional wave

propagation model. These boundary conditions result in

an ordinary differential equation relating pressure and

flow. The difficulty with these methods lies in the fact that

these lumped methods cannot account for the true wave-

like characteristics of blood flow in the vascular bed and

further that there is no direct physical relationship between

changes in the anatomic dimensions of the distal bed and

the parameters of the model.

An improved approach to boundary conditions can be

derived using the concept of vascular impedance. The

impedance, defined as the ratio of the harmonic terms of

pressure and flow, is a measure of the opposition to flow,

and can be calculated from measured pressure and flow

waveforms. The impedance reflects the downstream

conditions of a vascular bed and when applicable is an

excellent boundary condition to apply at the outflow

branches of arterial models. Olufsen [11] described a

combined one-dimensional wave transmission and impe-

dance approach whereby a finite difference method is used

to solve the nonlinear wave transmission equations in a

model of the major arteries and a fractal branched network

is used to represent the distal vascular beds for each of the

outlets of the wave transmission model. The input

impedance of the vascular beds is calculated in the

frequency domain, the inverse Fourier transform of the

impedance is calculated, and then a convolution integral is

used to determine the relation between pressure and flow

rate. We are currently implementing impedance boundary

conditions into our methods for solving the one-

dimensional equations of blood flow. It is anticipated

that this approach will yield outflow boundary conditions

that more accurately reflect actual conditions.

In spite of the assumptions that underlie the one-

dimensional model of blood flow, it is likely that

simulation-based medical planning systems based upon

the solution of these equations will be valuable for rapid

evaluation of alternate treatment plans. Ultimately,

systems that combine one-dimensional and three-dimen-

sional methods will enable physicians to design

therapeutic procedures that yield improved blood flow to

patients with cardiovascular disease.
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