

Bilkent University

CS 319 Object - Oriented

Software Engineering Project

Mafia:TCoS - Mafia:The City of Sin

Analysis Report(1)

Project Group 2.A:

Başak Melis Öcal, Gökcan Değirmenci, Gökberk Aktulay, Sinan Öndül

Supervisor & Course Instructor: Prof. Dr. Uğur Doğrusöz

Submitted at February 25, 2016

Course Teaching Assistant: Metin Can Siper

Table of Contents

1 Introduction 3

2 Overview 3

4 2.1 Gameplay and Control

2.2 Map

2.2.1 Crime Spots

2.2.2 Safe House

2.2.3 Submenus

2.3 Crime Committing

2.3.1 Crimes 6
2.3.2 Car Theft 6
2.3.3 Smuggling 6

2.4 Tiredness 6

2.5 Jail Time 7

2.6 FBI Raid Chance 7

2.7 Upgrades 7

2.8 Ranking System 7

2.9 End of the Game 7

3 Functional Requirements 8

4 Nonfunctional Requirements 10

5 System Models 11

5.1 Use-Case Model 11

 5.1.1 Login Manager 12

5.1.2 Change Settings 12

5.1.3 View Help 12

5.1.4 Start New Game 13

 5.1.5 Load Game 13

5.1.6 Play Game 13

5.1.7 Save Game 14

5.2 Dynamic Models n/a

2

4

5

5

5

5

5.3 Object and Class Model n/a

5.4 User Interface n/a

6 Glossary & References n/a

1. Introduction

As a Group 2A, we have decided to build a desktop game, written in Java.

Our Game is "Mafia: The City of Sin", with its basic RPG features is a text-based

game that is a combined version of well-known browser-based MMORPG

"Omerta" and the “Clicking Bad”. The game is based on the 1930’s Mafia World

and the players role-play a gangster within that time. We have been designing

our game with multiple features and functionalities which are based on

relatively smart calculations(algorithms).

This first Analysis Report of ours contains a detailed overview of the

game which describes the mechanics and the properties of the game. Then it

tries to describe the detailed functional requirements, non-functional

requirements, use-cases, use-case diagram and several in-game screenshots

and more. Hope you like it!

2. Overview

"Mafia: The City of Sin ", is a single/multi player text-based strategy game

that players intend to complete the tasks based on committing different sets

of crimes aiming a rank increase. A 9x9 map will be used as a kind of main

menu that provides submenus for players to choose different set of crimes,

trading options, tools to buy etc. Some part of the map will be used as a

safe-house for players to observe their own manufacturing/distribution

tools, garage, weapons and upgrades. All of the crime options will include

different chance and health risk percentages based on the rank of the player.

Players will be able to buy upgrades depending on their money gained from

crimes and selling goods.

3

https://www.barafranca.com/
ugurdogrusoz
Highlight
If you're going to support multi players, specify this in your requirements, UC diagram and UC descriptions

ugurdogrusoz
Highlight
Does your game differ from the one(s) that you're inspired in any way? It should. Please specify what those differences are.

"Mafia: TCoS" is a desktop game which will be controlled by mouse.

Additional keyboard controls can be added throughout the development

process.

2.1. Gameplay and Control

Only the mouse is needed for playing the game. As mentioned earlier,

players will be able to choose submenus from the map by a single click.

All of the radio button options in the submenus and other buttons will be

controlled by the mouse. The ESC key causes the game to close.

2.2. Map

A 9x9 grid will be used as a map which provides different labels for

crimes, car theft, narcotics etc. in each grid.

*1

4

ugurdogrusoz
Highlight
unusual way to reference. how about directly putting the URL here or using [1] and listing the reference as "[1] ..." under References. Also, each figure/diagram should have a caption (brief description of what it is).

2.2.1. Crime Spots

Labels with specific symbols for crime, car theft, smuggling, car and

weapon selling/ buying will be distributed to the map. Players will be able

to choose submenus with a single click.

2.2.2. Safe House

A 4x4 grid will be reserved for each player’s safehouse. Goods owned

such as cars, weapons, bullets, narcotics manufacturing/distribution

tools and laundering mechanisms will be observed from the specific grids

in the safe house. Number of each property will be written and upgrades

will be shown with number of stars in each grid.

2.2.3. Submenus

Whenever a label is clicked, a submenu appears on the right half of the

screen with a set of options. For “Crime” and “Car Theft” submenus,

chance of success and health risk percentages will be provided in

addition to the task name. Submenus for selling/buying involve the

amount of the product to sell or buy that user can manipulate to change

the amount. “Smuggling” submenu involves another submenu for

manufacturing, distribution and laundering.

2.3. Crime Committing

2.3.1. Crimes

When crimes label is clicked, a submenu appears on the right half of the

screen with a set of crime committing options. Each option involves task

name, chance of success and health risk percentages. Percentages are

calculated with an algorithm based on rank, weapon and bullet amount

of the player. By clicking “Go for it!” button, players will be able to

commit crimes. Each attempt results in either a success, jail time, or

fleeing without a success depending on the success percentage of the

crime. If the player commits the crime successfully, his/her FBI raid

5

chance will increase by 3% with also an increase in rank and money.

2.3.2. Car Theft

Car theft submenu appears on the right of the map, when related label is

clicked from the map. Submenu involves a variety of options, in addition

to chance of success and health risk percentages written next to each

option. Again percentages are calculated considering the rank, weapon

and bullet amount of the player. By clicking “Go for it!” button, players

will be able to make an attempt. Attempt may result in a success, jail time

or fleeing away without success. If a success occurs, FBI raid chance will

increase by a percentage of 3 with an increase in rank. The stolen car will

be added to player’s inventory by also updating the garage in the safe

house.

2.3.3. Smuggling

When “Smuggling” label is clicked, a submenu appears on the right half of

the screen, as any other crime option. Smuggling has 3 major submenus;

manufacturing, distribution and laundering. A variety of tools with

different prices and FBI raid chances will be provided to the player for

manufacturing and distribution. Inventory will be updated for tools

bought or sold. Drug manufacturing and distribution also have options

for updating tools for greater manufacturing and distribution. 3rd

submenu, “Money Laundering” involves safe business options. User will

be able to adjust the FBI raid chance by mainly using this option.

Laundered money will be a counter based on the player’s safe

businesses. Drugs produced will be shown on the inventory screen as a

counter.

2.4. Tiredness

After completing each crime or car theft attempt, players have to wait

for 90-120 seconds for a new task from the same crime category. While

waiting players are able to complete another task from a different

6

category.

2.5. Jail Time

 Players may end up in jail due to crime committing or car theft attempts

depending on the chance of success. Also, possibility of FBI raid over

%50 may result in jail time. Time in jail, disables the player actions for

precalculated time. Game ends when player ends up in jail for 20 times.

2.6. FBI Raid Chance

FBI raid chance increases depending on crime committing, car stealing,

buying drug manufacturing/distribution tools. It can be decreased by

laundering money or buying upgrades. Increased FBI raid chance results

in either jail time or money loss. Player will be able to continue the game

with the laundered money if the money is seized by FBI.

2.6. Upgrades

When “Upgrades” menu is clicked, a submenu appears on the right half of

the screen. In this submenu, there will be a variety of options including

decreasing DEA raid chance, increasing the manufacturing and

distribution rates, upgrades for laundered money, health bonuses and

weapons. Upgrades can be bought depending on the money and the

player’s current rank.

2.7. Ranking System

A rank increase is based on gained experience by completing as many

tasks as possible. Whenever player levels up, the title of the new rank

appears in his/her account.

2.8 End of The Game

Game ends when all of the health of the player is used up or when the

player ends up in jail for 20 times. When game is over, player has to

create a new account to start from scratch.

7

3. Functional Requirements

● Users should be able to create an account by choosing a nickname and
a password.
The system shall have proper and clear Signup/Login process. Users
should be able to signup and login effortlessly.

● Users should be able to Play Game.

1. Users should be able to make digital money and gain experience with
various in-game activities.
The system designed on player’s building their Illegal Mafia Empire by
committing crimes, steal a car, gain money and experience.

2. Users should be able to commit crimes, do drug manufacturing and
rob cars by clicking the relevant slots of the 9x9 game map.

The main game screen contains one big map which shows possible crime
options , drug manufacturing and distribution slots. Users be able to click
the specific slot inside the map, after that subscreen appears about their
selection. (Crime subscreen, Theft-a-car subscreen, etc.)

3. Users should not be able to commit crimes in succession.

After every attempt to commit crime or rob a car, users have to wait for
some pre-calculated time to attempt again. Otherwise, it would be
meaningless to add “commit crime” mechanism.

4. Users should be able to select between five pre-defined crime
options and be able to see his chance to do them successfully.

The systems’ “commit crime” and “ rob a car ” mechanism and their
possibilities are solely based on mathematical calculations on the
back-end side. The chances(risks) are calculated by some predefined
algorithms that rely on user’s current stats such as “rank”, “health
status”, “upgrades they have“ and +- %10 randomness.

8

*2

5. Users should be able to gain digital money, experience(xp) after
every successful crime attempt: unsuccessful attempts could cause the
user end up in Prison.

After clicking the “Go for it!” button on the Crime sub-screen, user has
got five possible scenarios:

1- End up in jail (can not do anything, have to wait) + gain xp

2- Gain money + xp & Lose Health

3- Gain money + xp

4- Lose Health & Get away from the cops (not end up in jail)

5- Get away from the cops (not end up in jail)

6. Users should be able to see multiple parameters/stats about their
account.

Users should be able to easily see their current rank status, health,
upgrades they have and the possibility of the FBI raid at the top banner
of the main screen in realtime.

● Users should be able to adjust sound effects and mute the background
music as if they want

Users should be able to mute the background music by simply clicking
the Settings tab and clicking the Mute icon.

● Users should have a profile page and be able change their profile
picture by image uploading or may choose from the predefined images.

9

Profile pages of the every user designed to be a place where they can add
“wise-sayings” , “mottos” and profile pictures. Users should not be able to
add contents which are abusive and/or racist.

● Users should be able to see informations about other players and view
their profiles.

Users will able to check other players’ profile pages and have more

information about them easily. Also they will be able to see the stats

accomplished by the owner of that profile.

● Users should be able to aware of the end of the game and see the total
account stats.

Users should be able to know the fact that game has been finished. The

End Screen will be appeared and Credits flows.

● Users should be able to get help and additional info about the game.

Every screen has got a “i” or “?” icon on the top-right corner. This will

allow users to get info/help every time they stuck.

● Users should be able to restart the game and delete all of its account’s

data.

If user wants to delete his account or restart the game they should be

able to do those action from the Settings menu.

● Users should be able to continue where they left the game earlier.

After selecting Load Game option and entering their user credentials,

users should be able to keep playing the game where they left earlier.

4. Non-Functional Requirements

● Game graphics and the GUI should be designed as clear as possible in

order to reduce the learning-curve and be more user-friendly.

● Controls of the game should have short response time and will update

the data fast. Thus enabling user to play with minimal delay.

● Plot of the game should be easily understandable.

● The database connection between the client and the server must be

reliable and also shall be encrypted.

10

ugurdogrusoz
Highlight
need to be more specific (otherwise there might be disagreement with the customer when done :)

ugurdogrusoz
Highlight
only promise what you'll actually do

● Some critical client-server connection mistakes such as “affect the other

players by sending data to server from another account” should be

avoided.

Pseudo-Functional Requirements

● Only Java and its popular frameworks such as JavaFX, Spring or Play! for

the Main Classes (main operations) and Node.js, PHP or Python for

Helper Classes (helper operations) shall be used.

● The Database-Client connection may use Server-less approach and

therefore use some Cloud APIs.

● Many-to-Many Database Design shall be implemented.

● For mockups, graphical design objects and several illustrations we shall

use Adobe Photoshop, Sketch, Adobe Illustrator.

5. System Models

5.1 Use Case Models

11

ugurdogrusoz
Highlight
are you planning a distributed game with a backend / server side?

ugurdogrusoz
Highlight
Starting a new game is not a good UC (nobody would choose your software because a game can be *started* with your software, right?)
Play Game is the UC here

ugurdogrusoz
Highlight
This is your database; it's part of your "software" (what you will build), not an outside module! Databases do not belong in UC Diagrams.

ugurdogrusoz
Highlight
Not a UC (shouldn't be connected to the actor)! Login is a sub-use case for some of the UCs.
Also, naming is incorrect.

5.1.1 Login Manager
Use Case Name: Login Manager
Actor: Player
Entry Condition: Player selects “Login Manager” from main menu or when
attempting to play the game.
Exit Condition: Player is logged in.
Flow of Events:

1. Player enters a name and a password.
2. Player presses log in.
3. System verifies name and password.

Alternative Flow of Events:
4. At any time player can hit cancel to leave login screen.
5. If the password and the name do not match, return to step 1.
6. If player wants to create an account they can press “Sign up”.
7. Player enters a name and a password.
8. If the name exists return to step 7.
9. Else system saves the name and the password to a file.

5.1.2 Change Settings

Use Case Name: Change Settings
Actor: Player
Entry Condition: Player selects “Settings” from the main menu or in-game menu.
Exit Condition: Settings are changed.
Flow of Events:

1. Player makes changes on the available option.
2. Player confirms the changes.
3. System enacts the changes.
4. Player is returned to the previous screen.

Alternative Flow of Events:
5. If player decides not to make any changes press cancel to exit Settings.
6. Player can select “Restore to Default” option to restore the default settings.

5.1.3 View Help

Use Case Name: View Help
Actor: Player
Entry Condition: Player selects “Help” from the main menu or the top right corner if a
game is in session.
Exit Condition: Player is satisfied with the explanation.
Flow of Events:

1. System prints a premade guide.
2. Player reads relevant parts.
3. Player presses the close button.
4. Player returned to the previous screen.

12

ugurdogrusoz
Highlight
We don't refer to UI design at this stage (not done yet). No menus, screens when possible.

5.1.4 Start New Game

Use Case Name: Start New Game
Actor: Player

Entry Condition: Player selects “New Game” button from the main menu.

Exit Condition: System successfully initialised the game.

Flow of Events:

1. System creates an instance of the game.
2. System sets the game values to default or random values.
3. Player proceeds to play the game.

5.1.5 Load Game

Use Case Name: Load Game

Actor: Player

Entry Condition: Player selects “Load Game” button from the main menu a save file is
available.

Exit Condition: Save file is read. System successfully initialised the game.

Flow of Events:

1. System reads the save file.
2. System creates an instance of the game.
3. System sets all the values to the values recorded in the save file.
4. Player proceeds to play the game.

5.1.6 Play Game

Use Case: Play Game

Actor: Player

Entry Condition: An instance of a game is initialised.

Exit Condition: The player runs out of health and dies or goes to prison too many
times.

Player selects “Back to the Main Menu” from.

13

Main Flow of Events:

1. Player starts playing the game.
2. Player click the slots inside the map.
3. Subscreen appears for each clicked slot on right-side of the main screen.
4. Player attempt to commit crimes or theft a car or do drug business.
5. Player gains money and experience .
6. Player tries to get the uppermost rank available + build a Mafia Empire
7. Player loops through the steps 2-3-4-5-6.

Alternative Flow of Events:

8. At any time the player can select “Save Game”. Resume the ordinary flow of
events.

9. If player goes to prison too many times, system ends the game.
10. If player runs out of health, system ends the game.
11. Player selects “Return to Main Menu”, system ends the game.

5.1.7 Save Game

Use Case: Save Game

Actor: Player

Entry Condition: Player selected “Save Game” while a game is in session.

Exit Condition: A save file is successfully created.

Flow of Events:

1. System creates a file.
2. System writes values to the file.

Alternative Flow of Events:

3. System failed to create a file cannot be created due to external errors.
4. Print an error message.
5. Resume game.

14

References

● *1 *2: Figures are from Omerta.com

● https://omerta.com.tr

● http://clickingbad.nullism.com

15

http://clickingbad.nullism.com/

