
Prof. Luigi Vanfretti
luigiv@kth.se, https://www.kth.se/profile/luigiv/

Modeling power systems with Modelica using
OpenIPSL
A Modelica Library for Power System Simulation

Tutorial

Outline

• Generalities and the role of
models and simulation

• Modelica and power systems

• OpenIPSL

• Project documentation

• On-going developments

2

The Underlying Question:
Why do we develop models and perform simulations?

To reduce the lifetime cost of a
system

• In requirements: trade-off
studies

• In test and design: fewer
proto-types

• In training: avoid accidents

• In operation: anticipate
problems

• The prospective pilot sat in the top section of
this device and was required to line up a
reference bar with the horizon. 1910.

• More than half the pilots who died in WW1
were killed in training.

3

Others: WECC 1996 Break-up, European Blackout (4-Nov.-2006), London (28-Aug-2003), Italy (28-Sep.-
2003), Denmark/Sweden (23-Sep.-2003)

Failure!: Existing modeling and simulation (and associated) tools were unable to predict these events.

A Failure to Anticipate à Huge Costs!
There are many examples of failures to anticipate problems in power system operation

4

Large	Number	of	Vendors	for	the	Final	System

The Multiple Roles of Modeling and Simulation
in building Complex Cyber-Physical ”Systems-of-Systems”

A	Flying	Micro-Grid!

M&S	used	to	test	
prototypes	in	variety	of	

environments.

M&S	are	used	to	train	users	in	
the	operational	environment –

enhancing	learning.
Simulation	costs	1/10	of	
running	actual	scenarios.

Scale	of	networks:	cost-
prohibitive	or	technically	
impossible	for	field	tests.

M&S	used	to	test	and	
validate	networking	

protocols	in	laboratory	-
environment	acting	as	a	test	

bed.

5

The Multiple Roles of Modeling and Simulation
in building the future Cyber-Physical Power Systems (aka ‘smart grids’)

Implementation &
Rapid Prototyping
(software-in-the-loop
real-time simulation)

Implementation &
Testing

(hardware-in-the-loop
real-time simulation)

System Performance
(deployment and demonstration)Validation

Verification

Testing

Testing Against Use Cases

Testing with other elements
and within the environment

Testing each component
in isolation and

with other elements

Unit Design
Models

Units
(SW, HW, Data)

Component
Design Models

Components
(SW, HW, Data)

Device Models Subsystems

Overall System
Models (incl. grid)

User
Requirements &

Models

Operational
System

User Cases and Requirements
(HLA Design using UML Spec and CIM)

System Level
Design & Specifications
(physical modeling and
off-line simulation)

Implementation
(Production Code

Generation)

Integrated
Systems Subsystem

Integration & Tests
(hardware-in-the-loop

real-time simulation)

Conceptual Application for the Development of a WT Synchro phasor-Based Controller

6

Dangers of Models and Simulation
• Falling in love with a model

The Pygmalion effect (forgetting that model is not
the real world)
• From the Greek myth of Pygmalion, a sculptor who

fell in love with a statue he had carved.

• Forcing reality into the constraints of a model
The Procrustes effect (e.g. economic theories)
• Procrustes: "the stretcher [who hammers out the

metal]”, a rogue smith from Attica that physically
attacked people by cutting/stretching their legs, so
as to force them to fit the size of an iron bed.

• A Procrustean bed is an arbitrary standard to
which exact conformity is forced.

• Forgetting the model’s level of accuracy
Simplifying assumptions forgotten more than
yesterday’s pudding…

7

Phenomena modeled from this point on:
power system electromechanical dynamics

8

10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104

Lightning

Line switching

SubSynchronous Resonances,
transformer energizations…

Transient stability

Long term dynamics

Daily load following

seconds

Electromechanical
Transients

Electromagnetic Transients

Quasi-Steady
State Dynamics

Phasor Time-Domain
Simulation

Why (open)-standardized modeling languages?
• Modeling tools first gained adoption as engineers looked for ways to simplify SW development and

documentation.

• Today’s modeling tools and their use cases have evolved.

• Now: need for addressing both system level design and SW development/construction.

9

Why equation-based modeling?

• Defines an implicit relation between variables.
• The data-flow between variables is defined right before simulation

of the model (not during the modelling process!)
• A system can be seen as a complete model or a set of individual

components.
• The user is (in principle) only concerned with the model creation,

and does not have to deal with the underlying simulation engine
(only if desired).

• It also allows decomposing complex systems into simple sub-models
easier to understand, share and reuse

10

is a (computer) language, is not a tool!

Key: standardized and open language specification

• Modelica is a free/libre object-oriented modeling
language with a textual definition to describe
physical systems using differential, algebraic and
discrete equations.

• A Modelica modeling environment is needed to
edit or to browse a Modelica model graphically in
form of a composition diagram (= schematic).

• A Modelica translator is needed to transform a
Modelica model into a form (usually C-code)
which can be simulated by standard tools.

• A Modelica modeling and simulation environment
provides both of the functionalities above, in
addition to auxiliary features (e.g. plotting)

11

http://modelica.readthedocs.io/en/latest/#

modeling and simulation environment tasks

Modelica Model

Flat model
Hybrid DAE

Sorted equations

C Code

Executable

Optimized sorted
equations

Modelica
Model

Modelica
Graphical Editor Modelica

Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica
Textual Editor

Frontend

Backend

"Middle-end"

Modeling
Environment

12

Present
Modeling

and
Simulation

issues

Causal
Modeling

Model
Exchange

Inconsis-
tency

Modeling
limitations

• The order of computations is decided
at modelling time

• Models are black boxes whose
parameters are shared in a specific
“data format”

• For large models this requires
translation into the internal data format of
each program

• There is no guarantee that the same
standardized model is implemented in the
same way across different tools

• Even in Common Information Model
(CIM) v15, only block diagrams are
provided instead of equations

• Most tools make no difference between
“solver” and “model” – in many cases
solver is implanted in the model

Acausal Causal
R*I = v; i := v/R;

v := R*i;
R := v/i;

Why for power systems?

13

Modelica and Power Systems
Previous and Related Efforts
• Modelica for power systems was first attempted in the early 2000’s (Wiesmann & Bachmann,

Modelica 2000) - “electro-magnetic transient (EMT) modeling” approach.
– SPOT (Weissman, EPL-Modelon) and its close relative PowerSystems (Franke, 2014);

supports multiple modeling approaches –i.e. 3phase, steady-state, “transient stability”, etc.
• Electro-mechanical modeling or “transient stability” modeling:

– Involves electro-mechanical dynamics, and neglects (very) fast transients
– For system-wide analysis, easier to simulate/analyze - domain specific tools approach

• ObjectStab (Larsson, 2002; Winkler, 2015) adopts ”transient stability” modeling.
• The PEGASE EU project (2011) developed a small library of components in Scilab, which

where ported to proper Modelica in the FP7 iTesla project (2012-2016).
• The iPSL - iTesla Power Systems Library (Vanfretti et al, Modelica 2014, SoftwareX 2016), was

released during 2015. Most models validated against typical power system tools.

OpenIPSL takes iPSL as a starting point and moves it forward (this presentation).

• F. Casella (OpenModelica 2016, Modelica 2017) presents the challenges of dealing with large
power networks using Modelica, and a dedicated library to investigate them using the Open
Modelica compiler.

14

Modelica and Power Systems
Why another library for power systems?
• Why not use one of the existing Modelica projects?

• There is no technical argument: in principle, either SPOT, PowerSystems, or ObjecStab could have
been used instead of creating a new library (iPSL, and OpenIPSL)

Social Aspects (Vanfretti et al, Modelica 2014):
• Resistance to change: an irrational and dysfunctional reaction of users (and developers?)

– Users of conventional power system tools are skeptical about any other tools different to the one they use
(or develop), and are averse about new technologies (slow on the uptake)

• Change agents contribute (+/-) to address resistance through actions and interactions:
– Strategy: do not impose the use of a specific simulation environment (software tool), instead,
– Propose a common human and computer-readable mathematical “description”:

use of Modelica for unambiguous model exchange.
• Decrease of avoidance forces:

– SW-to-SW validation gives quantitatively an similar answer than domain specific tools.
– Accuracy (w.r.t. to de facto tools) more important than performance

A never-ending effort:
• Our (my) goal has been to bridge the gap between the Modelica and power systems community by

– Addressing resistance to change (see above)
– Interacting with both communities – different levels of success…

15

• KTH SmarTS Lab (my research team) actively participated in the group or partners
developing iPSL until the end of the iTesla project (March 2016)

• iPSL is a nice prototype, but we identified the following issues:
• Development: Need for compatibility with OpenModelica, (better) use of object

orientation and proper use of the Modelica language features.
• Maintenance: Poor harmonization, lack of code factorization, etc.
• Human issues: The development workflow was complex, because of

– Different parties with disparate objectives, levels of knowledge, philosophy, etc.

New research requirements and the experiences from previous effort indicated:
- a clear need for a different development approach –

one that should address a complex development & maintenance workflow!

• OpenIPSL started as a fork of iPSL
• OpenIPSL is hosted on GitHub at https://github.com/SmarTS-Lab/OpenIPSL
• OpenIPSL is actively developed by SmarTS Lab members and friends, as a

research and education oriented library for power systems
à it is ok to try things out !

The OpenIPSL Project

Fork: copy of a project going in a
different development direction

16

The OpenIPSL Library

OpenIPSL is an open-source Modelica
library for power systems

• It contains a set of power system
components for phasor time domain
modeling and simulation

• Models have been validated against a
number of reference tools

OpenIPSL enables:

• Unambiguous model exchange
• Formal mathematical description of

models
• Separation of models from IDEs and

solvers
• Use of object-oriented paradigms

OpenIPSL

17

OpenIPSL

The OpenIPSL Library – WT Example

18

Many	Application	Examples	Developed!!!

OpenIPSL

The OpenIPSL Library – Network Example

19

Initialization (1/3) - General DAE Model

[Ref.] F. Milano, Power System Modeling and Scripting, Springer, 2010.
20

• Equation set g is separated in two sets of
algebraic equations:

(1) Is the part which governs how dynamic models will evolve, since they
depend on both x and y , e.g. generators and their control systems.

(2) Is the network model, consisting of transmission lines and other passive
components which only depends on algebraic variables, y

Initialization (2/3) - Power System Approach

21

• The power system needs to be at rest, i.e. its states must have converged to a fixed
point before a disturbance is applied in simulation, that is x(0) = C
- Q: How can we find this equilibrium for a DAE system?
- A: Set derivatives to zero and solve for all unknown variables!

• Some observations that can be made:
- The algebraic equations in corresponded to having the fast differential equations at equilibrium all the time

(in the model and in the timescale considered).
- Finding the equilibrium when most of the variables are unknown is very difficult if when we try to solve this

equation system simultaneously.

• Power system tools do not do this (to the best of my knowledge)!
- In power systems, we attempt to sequentially solve the equation system at t=0.
- First, we need to solve the algebraic equations g that only depend on the algebraic

variables… and then solve f=0.

Initialization (3/3) – Differences

Modelica –compliant tools attempt to solve this problem!

22

• An initial guess for all algebraic, continuous and discrete variables need to be
provided to solve a numerical problem!

• When solving differential equations, one needs to provide the initial value of the state
variables at rest.

• In Modelica, initial values can be either solved or specified in many ways, we use the
following

• Using the ”initial equation” construct:
initial equation

x = some_value OR x = expression to solve
• Setting the (fixed=true, start=x0) attribute when instantiating a model, will
• If nothing is specified, the default would be a guess value (start= 0, fixed=false).

• In the OpenIPSL models we do the following:
• The initial guess value is set with (fixed = false) for initialization.
• Model attributes are treated as parameters with value (fixed = true),

• In OpenIPSL we use a power flow solution from an external tool (e.g. PSAT or PSS/E) as a
starting point to compute initial guess values through parameters within each model.

• The power flow solution is NOT the initial guess value itself.
• Aim is to provide a better “initial guess” to find the initial values of the DAE system.

OpenIPSL

The OpenIPSL – “initial guess” approach

23

OpenIPSL

The OpenIPSL – “initial guess” example
Third order model from PSAT implemented in OpenIPSL

24

The OpenIPSL Project Documentation

The intention is to have comprehensive
documentation in the repositories:

• Documentation of the code changes
à Explicit messages in commits

and pull-requests

• Documentation of the project
– Presentation
– User guide
– Dev. guidelines & How to

contribute
à The documentation is written in

reStructuredText (reST) hosted on
http://openipsl.readthedocs.io/

Note: Model documentation is not
included, users are referred to the
proprietary documentations.

OpenIPSL

25

The OpenIPSL Project
Latest Developments/Contributions

Some of the latest development in the library:
• 100% Compatibility with OM (100% Check, 100% Simulation for

components) through efforts in Continuous Integration adoption
• Change in the models to include inheritance (code factorizing)
• Fixing and validating network models (thanks to CI)
• Component for interfacing OpenIPSL with 3 phase models (aka

MonoTri)
o For distribution grid (unbalanced) simulations
o Starting point for mixed transmission and distribution network

simulations

ENTSO-E IOP:
• Proof of concept and test model
• Excitation system and small network model

OpenCPS Models
• Small power network models for analysis of continuous and hybrid

systems (sampling and discretized AVR model)
• Process noise (gen./load) pdf-based load models added
• Frequency estimation model
• Sequential automated re-synchronization and control model for

islanded network

26

How to master a complex development workflow?

Continuous Integration

New research requirements and the experiences from previous effort indicated a clear need for a different
development approach - one that should address a complex development and maintenance workflow!

27

A Collaborative Workflow

We adopted the pull-request workflow (or GitHub workflow):

• Participants fork the repository and work in their repository
• Changes are submitted to the main repository as pull-requests
• The pull-requests are reviewed by “admin” members of the repository

o upon validation the changes are merged in the code of the repository

• Mistakes can be made by members of our team, we
are still learning!

• The Git workflow adopted allows to minimize the
impact of these errors.

• Increased library quality!

28

Toward Continuous Integration

• The previous workflow was used by only few
people and resulted in no control over the code
quality, even though DVCS was being used.

• The newly adopted workflow turned suitable for
the development team, but generated a strong
burden for the code review

This sparked the idea of implementing a Continuous Integration
workflow:
à Focus on “lighter”, more frequent pull-requests, containing less code

change, all related to a single feature to facilitate the code validation
à Implement a CI service to automate recurring code validation tests, to

liberate “admin” resources.

29

Continuous Integration (CI) Service

A CI service was implemented and integrated to the repository. The
Modelica support was achieved with the following architecture:
• Travis as CI service provider
• Docker as the “virtualization” architecture
• DockerHub to host a Docker image with Python & OpenModelica

The CI performs automated syntax checks on the library.New changes
are submitted as

a new pull
request to the
master branch

The pull
request triggers

the Travis CI

The tailored
Docker image

is pulledThe
reference
traces are

pulled from a
dedicated

server

The latest version of
the library containing

the changes is
pulled from GitHub

The Docker is
instantiated to

create a
replicable

environment
where the tests
are carried out

The pass / fail
flag from the

tests on Travis
is sent to Github

30

Go to the OpenIPSL Github repo: https://github.com/SmarTS-Lab/OpenIPSL, see runTest.py

Click to see the IO from Travis

31

Extension of the CI Service

The first implementation eliminated parts of the ‘rebarbative’ tasks by
automating the code checks:
• Avoid error propagation in the library, models “out-of-sync”
• Implementation entirely based on OpenModelica

à 100% OM Compatibility achieved !

From this successful implementation, an extension was investigated to include
model validation into the CI service:
• Model validation tests were carried out “offline” during

the model development stages
à We did it before!

• Automated model validation (aka regression testing),
ensures code changes won’t affect existing models
à Library integrity guaranteed

32

Model Validation Workflow (SW-to-SW) (1/2)
In the original implementation of the models of the OpenIPSL, a software-
to-software validation workflow was designed and carried out “offline”:

• Models are implemented from several reference programs
• PSAT, domain specific tool in MATLAB/Simulink by F. Milano

• PSS/E, domain specific tool from Siemens PTI

• Modelica models were validated using small scale power network

• The traces from the Modelica models were qualitatively and
quantitatively assessed: compared to the reference traces

à Gives confidence to users having a long
experience with these reference software …

33

Model Validation Workflow (SW-to-SW) (2/2)

Power Flow
Calculations

Time-domain
simulation

Graphical and
Quantitative
Assessment

Reference SW Tool Modelica Model

Time-domain
simulation

𝑅𝑀𝑆𝐸 =
1
𝑛(𝑥* − 𝑦* -

.

*/0

�

34

Continuous Integration (CI)
Full workflow implementation

Workflow Summary:

• A two-stage process
– Modelica syntax check
– Model validation check

• Fully automated through online
CI services

à Diagnostic help to the developers
to locate the error

35

Continuous Integration (CI)
GitHub Integration

OR

Syntax Error

Model Error

Merging Blocked

All OK !
Merging Allowed

36

Questions?
Main Take Away(s)
The implementation of Continuous Integration
services allows to:
• Systematically check the code syntax
• Systematically check the integrity of the library

(through SW-to-SW validation)
à Easier collaboration with more developers
à Easier to diagnostic potential errors
à Better code quality

Other existing Modelica libraries could adopt CI:
à Better compatibility with OM and
à Modelica language version(s).

The OpenIPSL library can be found online: https://github.com/SmarTS-Lab/OpenIPSL
Let’s now learn to use OpenIPSL!

37

Our work on OpenIPSL has been published
in the SoftwareX Journal:
• http://dx.doi.org/10.1016/j.softx.2016.05.001

Luigi Vanfretti Tin RabuzinAchour
Amazouz

Mohammed
Ahsan Adib

Murad

Francisco
José Gómez

Jan Lavenius Le Qi Maxime
Baudette

Mengjia
Zhang

Tetiana
Bogodorova

Giusseppe
Laera

Joan Russiñol
Mussons

The OpenIPSL can be found online
• https://github.com/SmarTS-Lab/OpenIPSL

RaPId, a system identification software
that uses OpenIPSL can be found at:
• https://github.com/SmarTS-Lab/iTesla_RaPId
• http://dx.doi.org/10.1016/j.softx.2016.07.004

Thanks to all current and
former students and
developers at

38

