
KTH ROYAL INSTITUTE
OF TECHNOLOGY

OpenIPSL
A Modelica Library for Power Systems Simulation

Assoc. Prof. Luigi Vanfretti
luigiv@kth.se,

https://www.kth.se/profile/luigiv/

Hands-on Examples!
Please follow these slides to carry out the examples.

Workshop Agenda

OPENIPSL TUTORIAL 22016-11-20

• Very brief introduction to the Open-Instance Power System Library
• Modelling and simulation possibilities by using OpenIPSL and Modelica
• Comparison of the performance with a reference simulation software
• 3 use cases with a dynamic simulation and linearization

Go to our Github repo:
https://github.com/SmarTS-Lab/OpenIPSL/releases/tag/Tuto_UCD_2017

Note: A dedicated package will be prepared for the tutorial and uploaded soon.
Please download (again!) the package on the day of the tutorial so that you have the
most up to date files.

The dedicated package will also be available on a USB stick that we can circulate on the
day of the tutorial.

Download the files for the tutorial:

3/22/17OPENIPSL GETTING STARTED

Click Here!

3

External libraries, such as OpenIPSL, must be loaded in OMEdit to be
used:
• Unzip the package downloaded at the previous step
• Open OpenModelica Connection Editor (OMEdit)
• Browse Windows Explorer to the location of the unzipped folder
• Drag & drop the OpenIPSL.mo file to the Library Browser in

OMEdit.
Note: In OM 1.11 beta, drag & drop does not work, use File/Open

Load the OpenIPSL to OMEdit

2016-11-20OPENIPSL TUTORIAL 4

Once the OpenIPSL is loaded (see previous slide) in OMEdit, you can
load the Tutorial package:
• Browse Windows Explorer to the location of the unzipped folder
• Drag & drop the Tutorial.mo file to the Library Browser in OMEdit.
Note: In OM 1.11 beta, drag & drop does not work, use File/Open

Load an Application Example to OMEdit

2016-11-20OPENIPSL TUTORIAL 5

Library introduction

OPENIPSL TUTORIAL 62016-11-20

OpenIPSL is divided in four main categories:

Library introduction

OPENIPSL TUTORIAL 72016-11-20

Electrical
• The Electrical package contains most of the

components that comprise an actual power network

• E.g., electrical machines, transmission lines, loads,
excitation systems, turbine governors, etc.

• These are used to build the power system network
models

Library introduction

OPENIPSL TUTORIAL 82016-11-20

NonElectrical

• The NonElectrical package is comprised by functions,
blocks or models, which are used to build the
aforementioned power system component models :
Transfer functions, logical operators, etc.

• They perform specific operations which were not available
in the Modelica Standard Library (MSL)

Connectors

• The Connectors package contains a set of specifically
developed Modelica connectors to harmonize the models in
this library (e.g. PwPin a connector, which contains voltage
and current quantities in phasor representation)

Library introduction

OPENIPSL TUTORIAL 92016-11-20

Examples
• In this workshop, the Tutorial package will be used

to showcase the possibilities of the library

• In the packages Example_1, Example_2 and
Example_3 prepared use cases can be found
where steps to build the models are described

• Package Working_Examples and corresponding
sub-packages will be used by attendees of the
workshop to create use cases on their own

Example 1*

OPENIPSL TUTORIAL 102016-11-20

• Single Machine Infinite Bus (SMIB) system

• Analysis of the transient stability of the system including the effects of rotor
circuit dynamics and excitation control

• Four machines represented by one connected via transformer and parallel
lines to the infinite bus

* P. Kundur, “Power System Stability and Control”, Example 13.2

Example 1

OPENIPSL TUTORIAL 112016-11-20

Power flow
• Power flow results were obtained by PSAT

• Prepared Example 1 already exists in
PSAT and can be used for power flow
calculations and dynamic simulations

Example 1

OPENIPSL TUTORIAL 122016-11-20

Power flow
• Example 1 is loaded and the power flow calculations are executed

Example 1

OPENIPSL TUTORIAL 132016-11-20

Power flow
• Static Report can be access where

all of the power flow results are
listed along with the initial values
of various state variables of the
models

• In this tutorial, there is no need to
run the power flow in PSAT since
the data will be provided, but feel
free to explore PSAT later

Example 1

OPENIPSL TUTORIAL 142016-11-20

Power flow
• The summary of all of the relevant data from the power flow is given on

the figure below

Example 1

OPENIPSL TUTORIAL 152016-11-20

Generator model – Step 1
• First, the package where the generator model will be located has to be

created
• This is done by right clicking on the Example_1 in the

Working_Examples package
• The package should be named Generator

Example 1

OPENIPSL TUTORIAL 162016-11-20

Generator model – Step 1
• Within the Generator package, model of the generator shall be created
• Extends from Tutorial.Support.Generator_Example

Example 1

OPENIPSL TUTORIAL 172016-11-20

Generator model – Step 1
• 6th order model of the generator from the PSAT is used
• The model is added by dragging the generator from the library and

dropping it to the model

Example 1

OPENIPSL TUTORIAL 182016-11-20

Generator model – Step 1
• Parameters of the generator are given in the table

𝑆" 2220 𝑥′′% 0.25
𝑉" 400 𝑇′(,* 8
𝑟, 0.003 𝑇′%,* 1
𝑥(1.81 𝑇′′(,* 0.03
𝑥% 1.76 𝑇′′(,* 0.07
𝑥′(0.3 𝑇,, 0.002
𝑥′% 0.65 𝑀 7
𝑥′′(0.23 𝐷 0

Example 1

OPENIPSL TUTORIAL 192016-11-20

Generator model – Step 1
• Power flow results:

Note: Using the variables (V_0, angle_0, etc.) allow to propagate the
parameters to the “upper layer” of the generator component

𝑉* V_0

𝑎𝑛𝑔𝑙𝑒* angle_0
𝑃* P_0

𝑄* Q_0
𝑉6 V_b

𝑆6 Do not edit

𝑓" Do not edit

Example 1

OPENIPSL TUTORIAL 202016-11-20

Generator model – Step 2
• PSAT model of the AVR Type III is used
• Constant block pss_off will be used as a zero input to the PSS input

signal of the AVR since the PSS is not used
• Parameters:

𝑣9,:,; 7
𝑣9,:<" -6.4
𝐾* 200
𝑇> 1
𝑇? 1
𝑇@ 0.0001
𝑇A 0.015

Example 1

OPENIPSL TUTORIAL 212016-11-20

Generator model – Step 3
• To finish the generator model,

different signals need to be
connected

• Optionally, icon of the generator
model can be altered

Example 1

OPENIPSL TUTORIAL 222016-11-20

Network model – Step 1
• Network package will be created in the Example_1 package
• This package is created by right clicking on the Example_1 in the

Working_Examples package

Example 1

OPENIPSL TUTORIAL 232016-11-20

Network model – Step 1
• Network model will be created in the Network package
• This package is created by right clicking on the Network package
• The name of the network model will be Example_1

Network model – Step 1
• Created generator model (name it machine) and three bus models are

added to the network model

• Also, model OpenIPSL.Electrical.SystemBase shall be added to the
network model which defines base parameters for all of the components
in the network model

• In text view add the inner keyword in front of the component declaration

Example 1

OPENIPSL TUTORIAL 242016-11-20

𝑆6 100
𝑓" 60

Example 1

OPENIPSL TUTORIAL 252016-11-20

Network model – Step 2
• Transformer and line models are added

Example 1

OPENIPSL TUTORIAL 262016-11-20

Network model – Step 2
• Transformer and line parameters

Transformer
𝑅 0.0 𝐺 0.0
𝑋 0.5*100/2220 𝐵 0.0
𝑆6 100

Line 1

𝑅 0.0 𝐺 0.0
𝑋 0.93*100/222

0
𝐵 0.0

𝑆6 100

Line 2

𝑆6 Do not edit 𝑓" Do not edit
𝑆" 2220 𝑘𝑇 1
𝑉6 400 𝑥 0.15
𝑉" 400 𝑟 0

Example 1

OPENIPSL TUTORIAL 272016-11-20

Network model – Step 3
• Infinite bus is added
• Power Flow results are implemented

𝑉 0.90081 𝑎𝑛𝑔𝑙𝑒 0
P -1998 Q 87.066

Infinite bus
𝑉 1 𝑎𝑛𝑔𝑙𝑒 0.4946

P 1997.999 Q 967.92

G1

Example 1

OPENIPSL TUTORIAL 282016-11-20

Network model – Step 4
• 3-phase-to-ground fault is added 𝑅 0 𝑡? 0.5

𝑋 0.01*100/2220 𝑡> 0.57

Fault

Example 1

OPENIPSL TUTORIAL 292016-11-20

Network model – Step 5
• The network model is completed by connecting all of the components

• Now, the model can be simulated and linearized

Example 1

OPENIPSL TUTORIAL 302016-11-20

Simulation
• System will be simulated with 3-phase-to-ground fault at t=0.5s with a

duration of 70ms

• Simulation results will be compared with the reference results from the
PSAT that will be loaded first

• PSAT results are provided in a file “PSAT_dyn.csv”

• To load the file, the view should be switched to “Plotting” tab

Example 1

OPENIPSL TUTORIAL 312016-11-20

Simulation
• Result file can be opened by navigating the menu to File->Open Result

File(s)
• In the pop-up menu, one has to select “Comma Separated Values” as a

file type, navigate to the directory where the file is located and open it

Example 1

OPENIPSL TUTORIAL 322016-11-20

Simulation
• In the variable browser, three waveforms from the PSAT results are

loaded which can be displayed on the plot as it is shown in the figure
below

• Loaded waveforms are generator terminal voltage, excitation field
voltage and the generator speed

Example 1

OPENIPSL TUTORIAL 332016-11-20

Simulation
• Before the simulation, solver and its parameters are set to be the same

as in the PSAT

• Solver is chosen to be Runge-Kutta with a fixed step

• More solvers can be chosen in Modelica (depending on the tool),
however, to match the model’s response with the one in PSAT choice of
the solver is limited

Example 1

OPENIPSL TUTORIAL 342016-11-20

Simulation
• Simulation time is set to 10s and

the tolerance of the solver is set to
1e-6

• The time step is set to 0.0001

Example 1

OPENIPSL TUTORIAL 352016-11-20

Simulation
• By pressing the “Simulate” button on the toolbar, simulation of the model

is executed

• Once the simulation is completed,
the Variable Browser is populated with
the simulation results

Example 1

36

Simulation
• To display the simulation results or compare it with the results from

PSAT, one can mark the check-box next to the variable which will be
shown on the plot

• To show the terminal voltage of the generator in PSAT and modelica,
variables “PSAT_dyn.v” and “Example_1.G1.machine.v” have to be
selected

2016-11-20OPENIPSL TUTORIAL

Example 1

OPENIPSL TUTORIAL 372016-11-20

Simulation
• To display the simulation results or compare it with the results from

PSAT, one can mark the check-box next to the variable which will be
shown on the plot

• To show the terminal voltage of the generator in PSAT and modelica,
variables “PSAT_dyn.csv.v” and “G1.machine.v” have to be selected

Example 1

OPENIPSL TUTORIAL 382016-11-20

Simulation
• To be able to distinguish different signals, let’s adjust the thickness and

the pattern of the signal line

Example 1

OPENIPSL TUTORIAL 392016-11-20

Simulation
• Previous steps produce the plot shown in the figure below showing that

the Modelica produces the same simulation results as the PSAT does

Example 1

OPENIPSL TUTORIAL 402016-11-20

Linearization
• To linearize the system, OpenModelica scripting will be needed

• Along with the library, a set of commands was provided
(Command_List.txt) to linearize the model and extract the A matrix

Example 1

OPENIPSL TUTORIAL 412016-11-20

Linearization
• Copy and paste each line from the Command_List.txt for Example 1 to

the command prompt in OpenModelica

Example 1

OPENIPSL TUTORIAL 422016-11-20

Linearization
• The third command will save the A matrix of the linearized state-space

model in the variable a as a string

Example 1

OPENIPSL TUTORIAL 432016-11-20

Linearization
• Copy the output from the previous command without the quotation

marks by pressing Ctrl+C

Example 1

OPENIPSL TUTORIAL 442016-11-20

Linearization
• To save the matrix A as a matrix of Real values type A := and then

press Ctrl+V to paste the copied matrix

Example 1

OPENIPSL TUTORIAL 452016-11-20

Linearization
• It is known that the eigenvalues of the linearized system can be found by

solving the following equation:

• This can be done by executing the last command
(eval,evec) := Modelica.Math.Matrices.eigenValues(A);

𝑑𝑒𝑡 𝑨 − 𝜆𝑰 = 𝟎

Example 1

OPENIPSL TUTORIAL 462016-11-20

Linearization
• The eigenvalues are now stored in the eval variable and they can be

listed by executing eval

• Groups of numbers are listed where the first number is real part of the
system’s pole and the second one is the imaginary part

Example 1

OPENIPSL TUTORIAL 472016-11-20

Linearization
• It can be seen that the pair of conjugate poles exists on the right side of

the stability plane and thus, the behavior of the system is unstable

Example 2

OPENIPSL TUTORIAL 482016-11-20

• In the Example 1, it was shown that the system was unstable with a pair
of poles on the right side of the stability plane

• In the Example 2, Power System Stabilizer (PSS) will be added to the
generator in order to stabilize the system

Example 2

OPENIPSL TUTORIAL 492016-11-20

• The work on Example 2 should continue with the files prepared in a
package Tutorial.Working_Examples.Example_2

Example 2

OPENIPSL TUTORIAL 502016-11-20

Generator model – Step 1
• The first step is to add the model of the PSS Type II and the summation

block to the model of the generator

Example 2

OPENIPSL TUTORIAL 512016-11-20

Generator model – Step 1
• The internal control structure of the PSS can be accessed by right-

clicking on the PSS block and selecting “View Class”

Example 2

OPENIPSL TUTORIAL 522016-11-20

Generator – Step 1
• PSS should be parameterized as shown in the table

PSS
𝑣O,:,; 0.2 𝑇? 0.154
𝑣O,:<" -0.2 𝑇> 0.033
𝐾P 1.41 𝑇Q 1
𝑇P 0.001 𝑇R 1

Example 2

OPENIPSL TUTORIAL 532016-11-20

Generator – Step 2
• When the signals of the generator model are connected as shown,

model of the generator is completed

Example 2

OPENIPSL TUTORIAL 542016-11-20

Simulation
• Simulation steps can be repeated as it was shown in the Example 1
• This time, reference simulation results from the PSAT can be found in

the file “PSAT_dyn_PSS.csv”
• After the simulation is executed, variable browser should look as it is

shown below

Example 2

OPENIPSL TUTORIAL 552016-11-20

Simulation
• Simulation results can be plotted again
• Comparison of the PSAT and Modelica simulation results of the PSS

signal is shown on the figure below

Example 2

OPENIPSL TUTORIAL 562016-11-20

Linearization
• To linearize the system, OpenModelica scripting will be needed

• Along with the library, a set of commands was provided
(Command_List.txt) to linearize the model and extract the A matrix

Example 1

OPENIPSL TUTORIAL 572016-11-20

Linearization
• Copy and paste each line from the Command_List.txt for Example 1 to

the command prompt in OpenModelica

Example 2

OPENIPSL TUTORIAL 582016-11-20

Linearization
• The rest of the steps shall be repeated as it was shown in Example 1

• The same procedure with a linearized system from Example 2 results in
the new set of eigenvalues

Example 2

OPENIPSL TUTORIAL 592016-11-20

Linearization
• The conjugate pair of poles that was on the right side of the plane in

Example 1 was, by introducing the PSS, moved to the left side of the
stability plane and, thus, the system is now stable

Example 3

602016-11-20OPENIPSL TUTORIAL

Example 3

OPENIPSL TUTORIAL 612016-11-20

• Example 3 contains the model of the IEEE 9 Bus system

• It is pre-configured with all of the power flow and dynamic data

• In the previous two examples, you learned how to build the models of the
power system, introduce the faults, run the dynamic simulations and
perform the linearization of the model

• In Example 3 you are free to explore the model and introduce various
faults

Example 3

OPENIPSL TUTORIAL 622016-11-20

• You can, for instance, introduce the bus fault …

Example 3

OPENIPSL TUTORIAL 632016-11-20

... or open the line at the given time instant*

*Model of the line with opening is OpenIPSL.Electrical.Branches.PwLine2Openings

Example 3

OPENIPSL TUTORIAL 642016-11-20

• Step disturbance to the voltage reference of the generators can be
introduced by setting the desired refdisturb_x parameter to true

Questions?

65

Luigi Vanfretti Tin RabuzinAchour
Amazouz

Mohammed
Ahsan Adib Murad

Francisco José
Gómez

Jan Lavenius Le Qi Maxime
Baudette

Mengjia Zhang Tetiana
Bogodorova

Giusseppe
Laera

Joan Russiñol
Mussons

Thanks to all current and former OpenIPSL Developers @ KTH

2016-11-20OPENIPSL TUTORIAL

Join us!

OPENIPSL TUTORIAL 662016-11-20

Bonus Stuff!
Other goodies and topics…

Bonus: KRK 2-Area model

OPENIPSL TUTORIAL 672016-11-20

Once the OpenIPSL is loaded (see previous slide) in OMEdit, you can
load the Tutorial package:
• Browse Windows Explorer to the location of the unzipped folder
• Drag & drop the TwoAreas.mo file to the Library Browser in OMEdit.

Demo of Modelica and Other Tools

OPENIPSL TUTORIAL 682016-11-20

Modelica and Python
Python opens countless new applications for OpenIPSL.
In this demo, the integration of Modelica and Python will be leveraged to
perform a root locus.

Demo of Modelica and Other Tools

OPENIPSL TUTORIAL 692016-11-20

Modelica and FMI (Functional Mockup Interface)
FMI is a standard for model exchange between different tools. Modelica is
FMI compliant. Python opens countless new applications for OpenIPSL.
In this demo, FMI and the FMI toolbox will be leveraged to simulate an
OpenIPSL model in Matlab

