Smart Transmission Systems Laboratory

Modeling with Modelica

OpenlPSL

A Modelica Library for Power System Simulation

Prof. Luigi Vanfretti
luigiv@kth.se, https://www.kth.se/profile/luigiv/

D iteaz
OpenCPS finoue March 23, 2017

_I L0 Dublin, Ireland -

This work was supported in part by: SHOP ON ‘-
[gf} =1 SYSTEM
e - LING
-

| heard wind power is big deal in Ireland...

Donald J. Trump
realDonald Trump

It's Thursday. , HOW Many Alying leprechauns
did wind turbines kill today? They
are an environmental & aesthetic

disaster.

O DI-¥-Te | flying leprechauns

Outline Smarl S Lab

Smart Transmission Systems I~ "tory

g Vo2

=
s
W
2P S
v e

W
VS
=

) W

L 2\ T

YO

Generalities and the role of
models and simulation

Modelica and power systems

OpenlPSL

Project documentation

On-going developments

The Underlying Question:

Why do we develop models and perform simulations?

To reduce the lifetime cost of a
system

* In requirements: trade-off
studies

* In test and design: fewer
proto-types

The prospective pilot sat in the top section of
this device and was required to line up a
reference bar with the horizon. 1910.

* In training: avoid accidents

* More than half the pilots who died in WW1
were killed in training.

A Failure to Anticipate - Huge Costs!

There are many examples of failures to anticipate problems in power system operation

\ugust | 1. 20073
NorthEastern Blackout

Toronto Sl\"\'line

-
i'-‘,;‘
\fected Region

- 55 Million People
-1 Bi”inll l,nsl I

conomie Activity
- 61.000 MW i|||e|-|'|||.lm|

Before

Others: WECC 1996 Break-up, European Blackout (4-Nov.-2006), London (28-Aug-2003), Italy (28-Sep.-
2003), Denmark/Sweden (23-Sep.-2003)

Failure!: Existing modeling and simulation (and associated) tools were unable to predict these events.

—

The Multiple Roles of Modeling and Simulation
in building Complex Cyber-Physical "Systems-of-Systems”

Product or system Large Number of Vendors for the Final System
ng 787 structure suppliers
Models and simulations are used to test
ted n [] = [L=
- Hawker de K ki O Ci ation: K ki O C ation:
M&S Used to teSt 4 n:vn;:\a: Mas:lva;a F.'x':: a:dr?noa'vs;g M:awva;a F:ral’(erdoh:rpszag:n
. . M Dl Industries: lead: L 3 Industries: Flight deck
prototypes In Varlety Of - n's(m:g nges le:dstran:ng ::gnlfr\‘g:ylgiz Msl:slend?ng o cee
. edges gear well
environments. e Shenyang ==
Corp. Ltd .
NEIWUTKEU COMPULET SYSLEMIS I UIE FUD SyS- Fi:rl‘;adlng mg:"'
tem of systems will be tested in a large-scale distributed simulation facility edge
called the FCS System of Systems Integration Lab. The SoSIL provides a L = [| |
Boeing g .
fabricaton Laning gt
- - structures
- - Training systems bosing
and maintenance o \/ Y scoss: fabricaon
Chengdu Aircraft I IPassenger ;Mrjg-l_o-body
Industrial Group: doors ° :";:?A at
Rudder 4 Ha wviation
M&S are used to train users in =g Fuiew AndUSLTY:
== Industries: -to-!
; . _ — > Yingt
the operational environment - Rotonsutica: Gonter vingbox components
1 1 — Mid and rear Industries: A .
4 enha IleI ng learning. Toray o austres: (@] BJE Rolls Royoe:
Simulation costs 1/10 of Composites ooy wel Hasublsh! - g Gonoral Electric:
q q , =—Engnes
Industries:
running actual scenarios. *Fairing is used to reduce v':m“gsne:s
drag and improve appearance
J

Boelng Commercial Airplanes:

How do modeling and simulation Network communications P snartly

activities, capabilities benefit Boeing?

Tooks Settings Help

Tactical military communications networks—such as Joint

Let us count the ways—9 of them .
A Flying Micro-Grid!
Sfizailial se Scale of networks: cost- ying
Hgi‘i;ﬁbﬁ;m""L‘?‘m‘“Sﬁ.i'm:;"nﬁsﬁﬁlﬁ?;ﬁ'ﬂﬁ;“; " prohibitive or technically Electric Power Generation & Start System (EPGSS)
0 navigating intricate, variable-laden scenarios, or combat cC

impossible for field tests.

situations involving complex military maneuvers using expensive

equipment, “on-the-job training” often is not a prudent approach. sil
That's why Boeing Integrated Defense Systems, Commercial
Airplanes and Phantom Works engage in a wide variety of model- th () ‘_b
ing and simulation activitics, designed to provide ever more realis- de M&S used to test and . C
tic to internal across the —and to . a Auxiliary Starter
external customers as well. S o validate networking Generator (ASG) (2
 “There is a tremendous amount of diversity in modeling and . & r
1: ke B Y -
it Mo bood o e g el 10 el e ey .
Modeline and Simulation for IDS. “Rieht now there are more than environment acting as a test Q @ Ea
At ‘ i
Boeing analysts have a variety of tools available—or under de- bl S0a0ssess Vatatle Fraguency Commoniotr
- . . eal plate (2) v
velopment—that can demonstrate concepts and provide significant N QAD adaper () (e Seuso @
cost savings by exploring ideas, developing systems, testing and acts as a distributed virtual —
manufacturing within a virtual environment before committing to tT"s‘ be:r'ma:;o:'; mﬁuni B ﬂ
specific approaches. cations Laboratory in BusPowsr Ganersor Overonage —
Control Uni Contre Transient Protection
El Segundo, Calif., performs (BPIC\;)L('z;" (GCS; ‘(JST Unit (o:m:» (‘4» gposs
a similar function for satellite cuse

L Installed in power panels
communications.

an

B,

{%’ VETENSKAP %

OCH KONST &

s

User Cases and Reqwrem%
(HLA Design using UML Spec and CIM)

The Multiple Roles of Modeling and Simulation
in building the future Cyber-Physical Power Systems (aka ‘smart grids’)

Conceptual Application for the Development of a WT Synchro phasor-Based Controller

User

Models

Requirements &

Validation

»
>

System Performanc
(deployment and demonstrati

Operational

A

System Level

Design & Specifications

(physical modeling and
off-line simulation)

Overall System
Models (incl. grid)

Testing Against Use Cases

Verification

System

Integrated
Systems

v

A

AN

Device Models

Component

Implementation &
Rapid Prototyping
(software-in-the-loop
real-time simulation)

Design Models

Unit Design
Models

A

Testing with other elements
and within the environment

Testing

/

Subsystems

A

v

Components
(SW, HW, Data)

A

Testing each component
in isolation and
with other elements

Imp entation

(Production @
Generation

\

Units
(SW, HW, Data)

Subsystem

Integration & Tests
(hardware-in-the-loop
real-time simulation)

Implementation &
Testing

(hardware-in-the-loop
real-time simulation)

&)

A

« Falling in love with a model
The Pygmalion effect (forgetting that model is not
the real world)

* From the Greek myth of Pygmalion, a sculptor who
fell in love with a statue he had carved.

* Forcing reality into the constraints of a model
The Procrustes effect (e.g. economic theories)

» Procrustes: "the stretcher [who hammers out the
metal]”, a rogue smith from Attica that physically
attacked people by cutting/stretching their legs, so
as to force them to fit the size of an iron bed.

« AProcrustean bed is an arbitrary standard to
which exact conformity is forced.

* Forgetting the model’s level of accuracy
Simplifying assumptions forgotten more than
yesterday’s pudding...

¥ Wlasioge Seslp!
@ www.mdicar.com

Falling in love with a model
The Pygmalion effect (forgetting that model is not
the real world)

* From the Greek myth of Pygmalion, a sculptor who
fell in love with a statue he had carved.

Forcing reality into the constraints of a model

The Procrustes effect (e.g. economic theories)

» Procrustes: "the stretcher [who hammers out the
metal]”, a rogue smith from Attica that physically
attacked people by cutting/stretching their legs, so
as to force them to fit the size of an iron bed.

« AProcrustean bed is an arbitrary standard to
which exact conformity is forced.

Forgetting the model’s level of accuracy
Simplifying assumptions forgotten more than
yesterday’s pudding...

Phenomena modeled from this point on:

Electromechanical
Transients

Line switching

Quasi-Steady
State Dynamics

Sub8ynchronous Resonances,
trapsformer energizations...

Daily load following
| | | | I | } | I |)

107 10° 10° 10+ 103 1072 101 1 10 102 103 104

seconds

Why (open)-standardized modeling languages?

 Modeling tools first gained adoption as engineers looked for ways to simplify SW development and
documentation.

* Today’s modeling tools and their use cases have evolved.

* Now: need for addressing both system level design and SW development/construction.

(Percent of Respondents,l)
Aggregate Automotive

35%
30%
& Standard Language-based « Proprietary Language-based
25%
20%
1=le
‘d [
15%

vdcresearch.com

Current Project In Two Years

Current Project In Two Years

Why equation-based modeling?

 Defines an implicit relation between variables.

of the model (not during the modelling process!)

« Asystem can be seen as a complete model or a set of individual
components.

|t also allows decomposing complex systems into simple sub-models

easier to understand, share and reuse

is a (computer) language, is not a tool!

* Modelica is a free/libre object-oriented modeling
language with a textual definition to describe
physical systems using differential, algebraic and

discrete equations. /) 7.7

MODELICA

A Modelica modeling environment is needed to
edit or to browse a Modelica model graphically in

form of a composition diagram (= schematic). Modelica® - A Unified Object-Oriented

Language for Systems Modeling

« A Modelica translator is needed to transform a Language Specification
Modelica model into a form (usually C-code)
which can be simulated by standard tools. Version 3.3 Revision 1

July 11,2014
A Modelica modeling and simulation environment

provides both of the functionalities above, in
addition to auxiliary features (e.g. plotting)

Key: standardized and open language specification

[]‘ E L |°[A modeling and simulation environment tasks

Modelica
Graphical Editoq| : Modelica :
:l/'\ Modelica

Model Source code
<> €&== Modelica Model

Modeling < <&@ Flat model
Envionment Analyzer Hybrid DAE

"Middle-end"
— = <{mmm Sorted equations

Optimizer
Optimized sorted

— ' equations

~ | Code generator|

- C Code
Executable
14

~
~
~
~
~

Backend

Why MODEL I.E A power systems?

 The order of computations is decided
at modelling time

Acausal Causal
R*I = v; i = v/R;
v := R*i;

R := v/1i;

* Most tools make no difference between
“solver” and “model” — in many cases
solver is implanted in the model

« There is no guarantee that the same sdels are black boxes whe
standardized model is implemented in the parameters are shared in a specific
same way across different tools “data format”

« Even in Common Information Model <+ For large models this requires
(CIM) v15, only block diagrams are translation into the internal data format of

provided instead of equations each program

Previous and Related Efforts

M oD ELIcA and Power Systems

&

Modelica for power systems was first attempted in the early 2000’s (Wiesmann & Bachmann,
Modelica 2000) - “electro-magnetic transient (EMT) modeling” approach.

— SPOT (Weissman, EPL-Modelon) and its close relative PowerSystems (Franke, 2014);
supports multiple modeling approaches —i.e. 3phase, steady-state, “transient stability”, etc.

Electro-mechanical modeling or “transient stability” modeling:

— Involves electro-mechanical dynamics, and neglects (very) fast transients

— For system-wide analysis, easier to simulate/analyze - domain specific tools approach
ObjectStab (Larsson, 2002; Winkler, 2015) adopts "transient stability” modeling.

The PEGASE EU project (2011) developed a small library of components in Scilab, which
where ported to proper Modelica in the FP7 iTesla project (2012-2016).

The iPSL - iTesla Power Systems Library (Vanfretti et al, Modelica 2014, SoftwareX 2016), was
released during 2015. Most models validated against typical power system tools.

OpenlPSL takes iPSL as a starting point and moves it forward (this presentation).

F. Casella (OpenModelica 2016, Modelica 2017) presents the challenges of dealing with large
power networks using Modelica, and a dedicated library to investigate them using the Open
Modelica compiler.

M oD ELIcA and Power Systems

Why another library for power systems?

* Why not use one of the existing Modelica projects?

* There is no technical argument: in principle, either SPOT, PowerSystems, or ObjecStab could have
been used instead of creating a new library (iPSL, and OpenlPSL)

Social Aspects (Vanfretti et al, Modelica 2014):

* Resistance to change: an irrational and dysfunctional reaction of users (and developers?)

— Users of conventional power sgstem tools are skeptical about any other tools different to the one they use
(or develop), and are averse about new technologies (slow on thé uptake)

» Change agents contribute (+/-) to address resistance through actions and interactions:
— Strategy: do not impose the use of a specific simulation environment (software tool), instead,

— Propose a common human and computer-readable mathematical “description”:
use of Modelica for unambiguous model exchange.

« Decrease of avoidance forces:
— SW-to-SW validation gives quantitatively an similar answer than domain specific tools.
— Accuracy (w.r.t. to de facto tools) more important than performance

A never-ending effort:

« Our (my) goal has been to bridge the gap between the Modelica and power systems community by
— Addressing resistance to change (see above)
— Interacting with both communities — different levels of success...

The OpenlPSL Project

KTH SmarTS Lab (my research team) actively participated in the group or partners
developing iIPSL until the end of the iTesla project (March 2016)

iIPSL is a nice prototype, but we identified the following issues:

« Development: Need for compatibility with OpenModelica, (better) use of object
orientation and proper use of the Modelica language features.

- Maintenance: Poor harmonization, lack of code factorization, etc.
Human issues: The development workflow was complex, because of
— Different parties with disparate objectives, levels of knowledge, philosophy, etc.

New research requirements and the experiences from previous effort indicated:
- a clear need for a different development approach —
one that should address a complex development & maintenance workflow!

OpenlPSL started as a fork of iPSL
OpenlPSL is hosted on GitHub at https://github.com/SmarTS-Lab/OpenlIPSL

OpenlPSL is actively developed by SmarTS Lab members and friends, as a
research and education oriented library for power systems
- it is ok to try things out! y

Fork: copy of a project going in a
different development direction &%

18

The OpenlPSL Library

OpenlPSL is an open-source Modelica ™"
library for power systems "o

v Machines
» PSAT

* It contains a set of power system v PSSE

» BaseClasses

components for phasor time domain [~} eEnsAL

. . . {~} GENROU

modeling and simulation 1 GENROE

. . [~} GENsAE

* Models have been validated against a ¥} cenots

v Controls

number of reference tools > PoAT

» Simulink
v PSSE
» OEL

OpenlPSL enables: 2
’ 3 PSS2A

{1 PSSz
f~—} STAB2A
- STAB3

« Formal mathematical description of i
models £} IEEEST

i} IEE2ST

* Separation of models from IDEs and £~ sTasve

» CGMES

solvers > Loads

» Banks
» Solar

« Use of object-oriented paradigms " Events
» FACTS

» Essentials
» Sensors

* Unambiguous model exchange

I. | | SystemBase

v NonElectrical
» Logical
» Continuous
» Nonlinear
» Functions
» Connectors

sssssss

©EEEL®E

Voltage magnitude at bus 3359 MSE= 1.6374e-08
T T T T T T T
L ——PSS/E Nordicd4
1 E f
0.995- B 0 : i
0.991 I I I I I I I 1 |
0 1 2 3 4 5 6 7 8 9 10|

Voltage angle at bus 3359 MSE= 2.6355e-08
T T T T T

= PSS/E Nordic44
= =Modelica Nordic44

[rad]

Voltage [pu]
IS
T

n

=)

:-é? Q%a

5! The Openl/PSL Library — WT Example

v 3¢ OpeniPsL

» P Examples
v Electrical
» Buses
» Branches H
v Machines v w";%AT
» PSAT » Lpomdo Loemdd 5
v PSSE PSSE >
» BaseClasses v L« E | i "
[~} GENSAL » WT3G e
{1 GENROU e — B
; ; £ : WT4G | qgme s i 4, £ lz
|~} GENROE {~F 4G1 EH] ‘
i} GENSAE -
= 1 WT4E1 ,
’i. GENCLS F
v Controls v Submodels
» PSAT .
» Simulink LVACL ,
v PSSE Li ~
ey L HVRCL o
» TG . i Do
v PSS LVPL A
£ PSS2A -
[PSS2B t CCL
f~} STAB2A
¥ STAB3
= LVACL
¥} STABNI ™

v Submodels

=} IEEEST
s Bl vacL

he Low Voltage Active Cur Management block is de

active power unde
The protectior

age scenarios. Thi
ted when

he terminal voltage drops below 0.8 pu and stranglin
[//0.4 pu. For veocltages between 0.8 pu and 0.4 pu to red
: 1 STBSVC ” I HVRCL I_LvPL i t-!odelica.BlocE-cs.In:e:fa:es.?\eal()utput Ip LVACL =;
» CGMES A Modelica.Blocks.Interfaces.Reallnput V& =;
» Loads i Modelica.Blocks.Interfaces.Reallnput Ip LVPL &;
» Banks) eguation
» Solar r I LVPL L if V& < 0.4 then
» Wind e Ip_LVACL —ﬂoé|
» Events | elseif Vi > 0.8 tr
» FACTS le—x CCL Ip LVACL = Ip LVPL;
» Essentials ! else
» Sensors Ip LVACL = Ip LVPL * 1.25 * Vt;
I lSystemBase E"j el
v NonEI(_ectricaI end LVACL;
» Logical
» Continuous 20
» Nonlinear
» Functions

» Connectors

KTH %

5l The Openl/PSL Library — Network Example

OpenlPSL

Systerm Data

v Wﬂ OpenlPSL e model WT4Gl WT4E1

Frequency: 60 Hz extends Modelica.Icons.Example;
c nt Real pi = Modelica.Constants.pi;
v ’ Examp'es ter Real V1 = 1.0;
i) ter Real Al = -1.570655e-05;
» P> Machines ter Real V3 = 0.9999955000000001;
ter Real A3 = 0.025748592;
> ’ Controls ter Real P1 = -1,4988;
fom— ter Real Q1 = -4.334;
» P Loads ter Real Zr = 0.0;
— bsa GEN] C]
b b ter Real Zi = 0.2;
= ’ Solar ‘ e ‘E’ o B ter Real P3 = 1.5;
e < b ter Real Q3 = -5.6658;
. R ;
v P Wind ter Real R1 = 0.025;
- ter Real X1 = 0.025;
v ’ PSSE ter Real Bl = 0.05;
E— ter Real dyrw(1l, 9] = [0.02, 0.02,

U
=

v ’ WT4G K .Electrical.Branches.PwLine pwLini

= K SL.Electrical.Branches.PwLine pwLin

u WT4G1_WTA4E1 OpenIPSL.Electrical.Machines.PSSE.GENCLS :

OpenIPSL.Electrical.Branches.PwLine pwLin

P WT4GH OpenIPSL.Electrical.Wind.PSSE.WT4G.WT4G1 1

OpenIPSL.Electrical.Events.PwFault pwFaul

OpenIPSL.Electrical.Wind.PSSE.WT4G.WT4E]L

inner OpenIPSL.Electrical.SystemBase SysD
. . OpenIPSL.Elec:r%cal.Buses.Bus GEN r;
Many Application Examples Developed!!! OpenIPSL.Electrical.Buses.Bus BUS1 =;
OpenIPSL.Electrical.Buses.Bus INF &;

eguation

.gitattributes |7 _Tutorial > ' WEI‘.G“'p’ ?},:N'p) “"
_ . £ (GEN.p, pwLine2.p) =;
.gitignore [7 AKD > ¢ (pwLine2.n, BUS1.p) n;
travis.yml B9 IEEE9 > sonnect (BUSL.p, pwline.p) @
—_— § connect (pwLinel.p, pwLine.p) =;
> | 2
pllcatlon Examples “ |_1| I;EIZMSMB ; ~onnect (pwFault.p, BUS1.p) n;
unaur connect (pwLine.n, INF.p) =;
e copyrightStatement.html I N44 E c (pwLinel.n, INF.p) =;
-) cor (INF.p, gENCLS2 1.p) n;
- LICENSE |_] NamsskoganGrid_Norway » ~onnect (wT4E1 1.WIQCMD, wT4G1.I gemd) n;
] LICENSE.txt | | PSAT_Systems > ~onnect (wT4E1_1.WIPCMD, wT4Gl.I pemd) n;
[OpenlPSL » [SevenBus " E"g:z—g *g:ii_i-gi i
. connect (wT4G1.V, wT4El 1. 1;
README.md [TwoAreas » £ (WwT4G1.Q, wT4E1l 1.Q) n; 21

;

end WT4GC1l WT4EL;

Initialization (1/3) - General DAE Model

X:f(x,y,n,ﬁ,l),
O:g(x,y,n,ﬁ,t).

~

— isthe vector of state variables, X — %,-

is the vector of algebraic variables,y — &.vf

_—
|

— isthe vector of parameters, from discarding %5 and letting E_,S —1

~

— is the vector of discrete variables.

u
f() — are the differential equations, f() E.Sb,- ()
g() - are the algebraic equations, g() E.Sbf ()

[Ref.] F. Milano, Power System Modeling and Scripting, Springer, 2010.

Initialization (2/3) - Power System Approach

- Equation set g is separated in two sets of

algebraic equations: (Gﬂb»l— .
=/ vnall RApEes
Ozgl(x,y, ']»ﬁ)> (B4}
0=g, (Ya 'laﬁ)} (2) N J%%:HVTDTJ

11

Passie Netwo & Mode
-

(1) Is the part which governs how dynamic models will evolve, since they
depend on both x and y, e.g. generators and their control systems.

(2) Is the network model, consisting of transmission lines and other passive
components which only depends on algebraic variables, y

Initialization (3/3) — Differences

« The power system needs to be at rest, i.e. its states must have converged to a fixed
point before a disturbance is applied in simulation, that is x(0) = C
- Q: How can we find this equilibrium for a DAE system?
- A: Set derivatives to zero and solve for all unknown variables!

0= f(x,y,m,u,7),
0=g(x.y.n.ur).

« Some observations that can be made:

- The algebraic equations in corresponded to having the fast differential equations at equilibrium all the time
(in the model and in the timescale considered).

- Finding the equilibrium when most of the variables are unknown is very difficult if when we try to solve this
equation system simultaneously.

* Power system tools do not do this (to the best of my knowledge)!

Modelica attempt to solve this problem!

- In power systems, we attempt to sequentially solve the equation system at {=0.

- First, we need to solve the algebraic equations g that only depend on the algebraic
variables... and then solve =0.

The OpenlPSL - “initial guess” approach

OpenlPSL

An initial guess for all algebraic, continuous and discrete variables need to be
provided to solve a numerical problem!

When solving differential equations, one needs to provide the initial value of the state
variables at rest.

In Modelica, initial values can be either solved or specified in many ways, we use the
following

» Using the "initial equation” construct:
initial equation
x = some_value OR x = expression to solve
« Setting the (frixed=true, start=x0) attribute when instantiating a model, will

« If nothing is specified, the default would be a guess value (start= 0, fixed=faise).

In the OpenlPSL models we do the following:
* The initial guess value is set with (rixed = ra1se) for initialization.
* Model attributes are treated as parameters with value (fixed = true),

In OpenlPSL we use a power flow solution from an external tool (e.g. PSAT or PSS/E) as a
starting point to compute initial guess values through parameters within each model.

* The power flow solution is NOT the initial guess value itself.

 Aim is to provide a better “initial guess” to find the initial values of the DAE system. .

The OpenlPSL - “initial guess” example
Third order model from PSAT implemented in OpenlPSL

Power flow data Open IPSL
V_b 400 Base voltage of the bus (kV)
V_0 1 Initialization
angle_0 0 w 1 v Rotor speed (pu)
PO L v VO true v Generator terminal voltage (pu)
0 0 .
Q P PO/Sb v Active power (pu)
S_b SysData.S_b .
fn SysData.fn Q QO0/Sb v Reactive power (pu)
anglev angle 0 /180 * pi v Bus voltage angle
elq e1q0 v g-axis transient voltage (pu)
model Order3 "Third Order Synchronous Machi with Inputs and Outputs”
import Modelica.Constants.pi;
extends BaseClasses.baseMachine(delta(start = deltal), pe(start = pm00), pm(start = pm0O0)
Real elg(start = elqg0) "g-axis transier oltage (pu)";
protected
parameter Real Xd = xd * CoB "d-axis reactance, "
parameter Real x1d = xdl * CoB "¢ xis t ent reactance, "
parameter Real Xq = xq * CoB " , 1.";
parameter Real m = M / CoB2 "Machanical starting time (2H), kW A";
parameter Real cl = Ra * K "C IT";
parameter Real c2 = x1ld * K "C T";
parameter Real c¢3 = Xg * K " NT";
parameter Real K =1 / (Ra * Ra + Xq * x1d) "CONSTANT";
parameter Real delta0 = atan2(vi0 + Ra * ii0 + Xg * ir0, vr0O + Ra * ir0 - Xg * 110) "Initialitation";
parameter Real vd0 = vr0 * cos(pi / 2 - deltal) - vi0 * sin(pi / 2 - deltaO) "Initi: i
parameter Real vg0 = vr0 * sin(pi / 2 - delta0O) + vi0 * cos(pi / 2 - deltal) "I
parameter Real id0 = ir0 * cos(pi / 2 - delta0l) - ii0 * sin(pi / 2 - deltal) "Ini
parameter Real iq0 = ir0 * sin(pi / 2 - delta0) + 1i0 * cos(pi / 2 - delta0l) "In
parameter Real pm00 = (vg0 + Ra * ig0) * ig0 + (vd0 + Ra * 1d0) * id0 "Initiali
parameter Real vf00 = elq0 + (Xd - x1d) * id0 "Initialitation
parameter Real elg0 = vg0 + Ra * ig0 + x1d * id0 "Initial "
initial equation
der (elq) = 0;
equation 26
der(elq) = ((-elqg) - (Xd - x1d) * id + vf) / Td1lO0;

an

Sy,
FKTHY

L= The Openl/PSL Project Documentation

OpenlPSL
The intention is to have comprehensive Checking for thelcase when E1-E2—
documentation in the repositories: }> master (#144
3tinrabuzin committed 14 days ago
* Documentation of the code changes | |
.. . . Showing 1 changed file with 1 addition and 1 deletion
- Explicit messages in commits
and pull-requests

s Docs » OpenlPSL’s documentation! O Edit on GitHub

* Documentation of the project D

— Presentation
— User guide

— Dev. guidelines & How to
contribute

- The documentation is written in
reStructuredText (reST) hosted on
http://openipsl.readthedocs.io/

OpenIPSLs documentation!

OpenlPSLs documentation! Welcome to OpenlIPSL - The Open-
Instance Power System Library.

This documentation is the main source of
information for users and developers
working with (or contributing to) the o~
OpenlPSL project. x :

OpenlIPSL in short

The OpenlPSL or Open-Instance Power System Library is a Modelica
library, fork of of the iTesla Power System Library developed and

Note: Model documentation is not
included, users are referred to the
proprietary documentations.

maintained by the SmarTS Lab research group, collaborators and friends
(contributions are welcome!).

The library contains a set of power system component models and test
power system networks adopting the “phasor” modeling approach. Time
domain simulations can be carried out using a Modelica-compliant tool,

The OpenlPSL Project
Latest Developments/Contributions

Some of the latest development in the library:

* 100% Compatibility with OM (100% Check, 100% Simulation for Uf:ﬂ‘l’; !‘)"f"tﬂi"ggmg's‘igéﬁ'g?';j
components) through efforts in Continuous Integration adoption P '

« Change in the models to include inheritance (code factorizing) Yersion 2 et
« Fixing and validating network models (thanks to Cl)

« Component for interfacing OpenlPSL with 3 phase models (aka
MonoTri)

o For distribution grid (unbalanced) simulations Sooihoaton (CoMES) | anae
o Starting point for mixed transmission and distribution network Version 2.5 ’
simulations Draft IEC 61970600 Part, Edition 2
Annex F
ENTSO-E IOP: (normative)
* Proof of concept and test model Use of Modelica in the Dynamics profile

« Excitation system and small network model

A OMEdit - Opel
B oo \ol

Ubearies Browser

. Small power network models for analysis of continuous and hybrid =
systems (sampling and discretized AVR model) s

« Process noise (gen./load) pdf-based load models added S
* Frequency estimation model

« Sequential automated re-synchronization and control model for e - i
islanded network ~

New research requirements and the experiences from previous effort indicated a clear need for a different
development approach - one that should address a complex development and maintenance workflow!

How to master a complex development workflow?

Continuous Integration

©

We adopted the pull-request workflow (or GitHub workflow):

A Collaborative Workflow

» Participants fork the repository and work in their repository
« Changes are submitted to the main repository as pull-requests : I
» The pull-requests are reviewed by “admin” members of the repository g

o upon validation the changes are merged in the code of the repository

f
«

« Mistakes can be made by members of our team, we
are still learning! :

» The Git workflow adopted allows to minimize the
impact of these errors.

* Increased library quality!

Toward Continuous Integration

« The previous workflow was used by only few VERSION CONTROL e o
people and resulted in no control over the code - = BuLD
quality, even though DVCS was being used. o rou cuans =

 The newly adopted workflow turned suitable for - = @A
the development team, but generated a strong e (PO | repoRTING
burden for the code review REPOSTORY | ‘M‘é%?.‘cs

This sparked the idea of implementing a Continuous Integration
workflow:

- Focus on “lighter’, more frequent pull-requests, containing /ess code
change, all related to a single feature to facilitate the code validation

- Implement a Cl service to automate recurring code validation tests, to
liberate “admin” resources.

Continuous Integration (Cl) Service

A Cl service was implemented and integrated to the repository. The
Modelica support was achieved with the following architecture:

» Travis as Cl service provider

* Docker as the “virtualization™ a N ThE Docker is

* DockerHub to host a Dg instantiated to tailored
The latest ver~ create a Y '

i New changes the libr== ¢ _ replicable ;-rheence
are submitted as The pass / fail ‘ronment
a new pull flag from the the tests ~ ~dcesare

request to the 7 ¢ tests on Travis arried out ,)ulled from a
master branch is sent to Github , < 2 dedicated

o7
-

u
)
=

OpenlPSL Repository

Application Examr Increment the version number for v1.0.0 3 months aao

cl - Go to the OpenlIPSL Github repo: https://github.com/SmarTS-Lab/OpenlPSL, see runTest.py

OpenlPSL Merged branch master into master 2 months ago
Support Update addCopyright with all App E -
docs (doc) Update some links €& README.md

.gitattributes Add a git attributes file that allows 1

Click to see the 10 from Travis

=) .gitignore Merge branch 'docUpdate’ into rele

] .travis.yml no message A

) LICENSE nitial commit for aunching opene. - OPENIPSL: Open-Instance Power System Library:
=) LICENSE.txt Resets the EOL of all files and remc

The OpenlPSL or Open-Instance Power System Library is a fork of of the iTesla Power System Library, currently

README.md (dod) Fix link to the Get Started doc¢ developed and maintained by the SmarTS Lab research group, collaborators and friends (contributions are welcome!).

==== Check Summary for OpenIPSL

Number of models that passed the check is: 268

Number of models that failed the check is: @

/Application Examples/TwoAreas/package.mo is successfully loaded.
==== Check Summary for TwoAreas ====

Number of models that passed the check is: 16

Number of models that failed the check is: @

/Application Examples/SevenBus/package.mo is successfully loaded.
==== Check Summary for SevenBus ====

Number of models that passed the check is: 4

Number of models that failed the check is: @

/Application Examples/N44/package.mo is successfully loaded.
=== Check Summary for N44 =—==

Number of models that passed the check is: 38

Blog Status Help

SmarTS-Lab / OpenlIPSL

Branches Build History Pull Requests

 PullRequest #86 Update tutorial package 79 #146 passed

Elapsed time 5 min 2

Commit 1f8d 1ff

7 days ago

#86: Update tutorial package

Branch master

@ Maxime Baudette authored and committed

ob log View config

Worker information
Build system information

$ export DEBIAN_FRONTEND=noninteractive
$ git clone --depth=50 https://github.com/SmarTS-Lab/OpenIPSL.git SmarTS-Lab/OpenIPSL

$ sudo service docker start
$ bash -c "echo $BASH_VERSION'

4.3.11(1)-release

$ docker pull smartslab/ci_openipsl
$ docker run -i -t -v $(pwd):/OpenIPSL smartslab/ci_openipsl sh /OpenIPSL/CI/changeUser

2017-01-30 10:57:35,609 - OMCSession - INFO - OMC Server is up and running at
file:////tmp/openmodelica.smartslab.objid.ccfdcd8d55c94521a04f0d9abcf737a5
/OpenIPSL/package.mo is successfully loaded.

Number of models that failed the check is: @

/Application Examples/KundurSMIB/package.mo is successfully loaded.
==== Check Summary for KundurSMIB ====

Number of models that passed the check is: 7

Number of models that failed the check is: @

/Application Examples/IEEE9/package.mo is successfully loaded.
==== Check Summary for IEEE9 ====

Number of models that passed the check is: 5

Number of models that failed the check is: @

/Application Examples/IEEE14/package.mo is successfully loaded.
=== Check Summary for IEEE14 ====

Number of models that passed the check is: 6

Number of models that failed the check is: @

/Application Examples/AKD/package.mo is successfully loaded.
==== Check Summary for AKD ====

Number of models that passed the check is: 3

Number of models that failed the check is: @

The command "docker run -i -t -v $(pwd):/OpenIPSL smartslab/ci_openipsl sh /OpenIPSL/CI/changeUser.sh" exited with 0.

Done. Your build exited with 0.

Extension of the CI Service

The first implementation eliminated parts of the ‘rebarbative’ tasks by
automating the code checks:

* Avoid error propagation in the library, models “out-of-sync”

« Implementation entirely based on OpenModelica
- 100% OM Compatibility achieved !

From this successful implementation, an extension was investigated to include
model validation into the CI service:

* Model validation tests were carried out “offline” during
the model development stages
- We did it before!

» Automated model validation (aka regression testing),
ensures code changes won't affect existing models
—> Library integrity guaranteed

Model Validation Workflow (SW-to-SW) (1/2)

In the original implementation of the models of the OpenlPSL, a software-
to-software validation workflow was designed and carried out “offline”:

Models are implemented from several reference programs

« PSAT, domain specific tool in MATLAB/Simulink by F. Milano

« PSS/E, domain specific tool from Siemens PTI

Modelica models were validated using small scale power network

The traces from the Modelica models were qualitatively and
quantitatively assessed: compared to the reference traces

T

05

- Gives confidence to users having a long (
experience with these reference software ...

an

:-é?’/\i’s%a
gKTH;% = =
&4 Model Validation Workflow (SW-to-SW) (2/2)
é Y a N
Reference SW Tool Modelica Model
2 3 ‘ e ‘
LOAD GEN02 s)) L -
2 $ Power Flow weon | = | £
oufs v T Caloulations JL |
10 0.0 00 00 0.0 = =
1000 . mof 90 00 | 00 00 &
S e fioo ftho Kl
\ v

Time-domain

simulation

n
1
RMSE = Ez(xi —¥i)?
=1

; ; Graphical and
& Time-domain phical:
Signal P . . Quantitative
\ simulation
Assessment
0.8 T T T
) — Modelica
0.7 -= PSS/E
0.6 Model Validation Result
EXAC1 Fail
0.5}
04 EXAC2 Fail
03} EXST1 Pass
02l Signal RMSE Plot
P 2.8389-3 +
0.1}

10
Time (s)

Continuous Integration (ClI)
Full workflow implementation

Developer

- X

A/ \
Workﬂow Summary Modelica Model Reference Modelo
Display Errors *.mo T.raw
 Atwo-stage process 'y
. i
— Modelica syntax check v O —O
l 1 Fai ode eference
— Model validation check oO—= \ghgck' e
« Fully automated through online =
Cl services v 0
Model
Simulation Reference
. . J Waveforms
—> Diagnostic help to the developers — .
ompute vietric *.csV
to locate the error -
Yes

Continuous Integration (ClI)
GitHub Integration

benIPSL/Examples/Controls/PSSE/ES/IEEEX1.mo
:80:readonly] Error: Variable iEEEX1_1: In
er (KA = 75), class or component KA not found
in <OpenIPSL.Electrical.Controls.PSSE.ES.
IEEEX1SiEEEX1_1>. n
Error: Error occurred while flattening model OpenIPSL.
Examples.Controls.PSSE.ES.IEEEX1

Merging Blocked

All checks have failed
1 failing check

@ X continuous-integrationftravis-ci/pr — The Travis

O Required statuses must pass before merging

T T T All required status checks on this pull request must run
=== Reference waveform
.-
/ 1 j
’ \ A
’ e B I~ Merge pull request | You can also open this in GitHub
<3 1 ’
s ol \ i
o N ! \
2+ \ I \ 4
8 \ ! \ !
T4+ \ 1 \ i
ES \
a W s/
s 1 AT
- -
_8 L L L L L L L 1 L
0 1 2 3 4 5 6 7 8 9 10

Time (s)

T T T
=== Reference waveform
== Simulation results
3 il
3
&
& . }o All checks have passed
250 il
3 1 successful check
>
T
2, -
5 This branch has no conflicts with the base branch
E Merging can be performed automatically.
()'(> 15 4
ol CE RTS8 You can also open this in GitHub De

Questions?

Main Take Away(s)

The implementation of Continuous Integration
services allows to:

« Systematically check the code syntax

« Systematically check the integrity of the library
(through SW-to-SW validation)

- Easier collaboration with more developers
- Easier to diagnostic potential errors
- Better code quality

Other existing Modelica libraries could adopt CI:
- Better compatibility with OM and
- Modelica language version(s).

»
>

Developer

L

Display Errors

.

Yes

Modelica Model Reference Model o
*.mo .raw
9 @
A
Model Reference
Check Simulation
Pass
v a
Model
Simulation Reference
J Waveforms
Compute Metric |- *.csv
e>T
No
Succesful
Test

The OpenlPSL library can be found online: https://github.com/SmarTS-Lab/OpenIPSL

Let’s now learn to use Open/PSL!

€ - C | & nttps//github.com/SmarTS-Lab/OpenlPSL Q\;

ff%j;&%g The OpenlIPSL can be found online @

%%zmzmﬁg e https://github.com/SmarTS-Lab/OpenlPSL OpenlPSL: Open-Instance Power System Library:

s

The OpenlPSL or Open-Instance Power System Library is a fork of of the iTesla Power System Library developed and
maintained by the SmarTS Lab N and friends (contributions are welcomel).

Rers of this project at SmarTS Lab where key :

Our work on OpenlPSL has been published =
in the Softwa rex Journal o e mfoct o e roscal ‘:;:?:csr;alg::e“:p::li;:’?:vlka\:dh

order to develop the library in the d ers/professors.

« http://dx.doi.org/10.1016/j.s0ftx.2016.05.001 re—— A —

free alternative for power system dynamic

simulation), to provide as many as possib
such way that the i brary can effici emly b

garch and teaching, and to be developed in|
thin Modelica-based workflows (i.e. helping

iTesla RaPIld SoftwareX

Available online 25 August 2016 '

: M| RaPld, a system identification software
BTl —— | ~ | that uses OpenlPSL can be found at:

RaPIp: A modular and extensible toolbox for parameter
estimation of Modelica and FMI compliant models

2 o R Luigi Vanfretti®®, Maxime Baudette® & - &, Achour Amazouz®, Tetiana Bogodorova®, Tin Rabuzin®, Jan 1 h ttps ://q ith u b - Co m/S m a rTS - La b/iTeS I a Ra P I d

Lavenius?, Francisco José Goméz-Lépez®

e * http://dx.doi.org/10.1016/j.s0ftx.2016.07.004

Get rights and content

Abstract

Contents

Under a Creative Commons license

Thanks to all current and
former students and

Luigi Vanfretti Achour Mohammed Francisco Giusseppe Tin Rabuzin develope rs at

Amazouz Ahsan Adib José Gomez Laera

Smart Transmission Systems Laboratory

Le Qi Maxime Mengijia Tetiana
Baudette Zhang Bogodorova

Joan Russinol
Mussons

