Permalink
Fetching contributors…
Cannot retrieve contributors at this time
274 lines (226 sloc) 10.6 KB
/*
This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
*/
#include "libs/Kernel.h"
#include "libs/Module.h"
#include "libs/Config.h"
#include "libs/nuts_bolts.h"
#include "libs/SlowTicker.h"
#include "libs/Adc.h"
#include "libs/StreamOutputPool.h"
#include <mri.h>
#include "checksumm.h"
#include "ConfigValue.h"
#include "libs/StepTicker.h"
#include "libs/PublicData.h"
#include "modules/communication/SerialConsole.h"
#include "modules/communication/GcodeDispatch.h"
#include "modules/robot/Planner.h"
#include "modules/robot/Robot.h"
#include "modules/robot/Conveyor.h"
#include "StepperMotor.h"
#include "BaseSolution.h"
#include "EndstopsPublicAccess.h"
#include "Configurator.h"
#include "SimpleShell.h"
#include "platform_memory.h"
#include <malloc.h>
#include <array>
#include <string>
#define baud_rate_setting_checksum CHECKSUM("baud_rate")
#define uart0_checksum CHECKSUM("uart0")
#define base_stepping_frequency_checksum CHECKSUM("base_stepping_frequency")
#define microseconds_per_step_pulse_checksum CHECKSUM("microseconds_per_step_pulse")
#define disable_leds_checksum CHECKSUM("leds_disable")
#define grbl_mode_checksum CHECKSUM("grbl_mode")
#define ok_per_line_checksum CHECKSUM("ok_per_line")
Kernel* Kernel::instance;
// The kernel is the central point in Smoothie : it stores modules, and handles event calls
Kernel::Kernel(){
halted= false;
feed_hold= false;
instance= this; // setup the Singleton instance of the kernel
// serial first at fixed baud rate (DEFAULT_SERIAL_BAUD_RATE) so config can report errors to serial
// Set to UART0, this will be changed to use the same UART as MRI if it's enabled
this->serial = new SerialConsole(USBTX, USBRX, DEFAULT_SERIAL_BAUD_RATE);
// Config next, but does not load cache yet
this->config = new Config();
// Pre-load the config cache, do after setting up serial so we can report errors to serial
this->config->config_cache_load();
// now config is loaded we can do normal setup for serial based on config
delete this->serial;
this->serial= NULL;
this->streams = new StreamOutputPool();
this->current_path = "/";
// Configure UART depending on MRI config
// Match up the SerialConsole to MRI UART. This makes it easy to use only one UART for both debug and actual commands.
NVIC_SetPriorityGrouping(0);
#if MRI_ENABLE != 0
switch( __mriPlatform_CommUartIndex() ) {
case 0:
this->serial = new(AHB0) SerialConsole(USBTX, USBRX, this->config->value(uart0_checksum,baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
break;
case 1:
this->serial = new(AHB0) SerialConsole( p13, p14, this->config->value(uart0_checksum,baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
break;
case 2:
this->serial = new(AHB0) SerialConsole( p28, p27, this->config->value(uart0_checksum,baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
break;
case 3:
this->serial = new(AHB0) SerialConsole( p9, p10, this->config->value(uart0_checksum,baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
break;
}
#endif
// default
if(this->serial == NULL) {
this->serial = new(AHB0) SerialConsole(USBTX, USBRX, this->config->value(uart0_checksum,baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
}
//some boards don't have leds.. TOO BAD!
this->use_leds= !this->config->value( disable_leds_checksum )->by_default(false)->as_bool();
#ifdef CNC
this->grbl_mode= this->config->value( grbl_mode_checksum )->by_default(true)->as_bool();
#else
this->grbl_mode= this->config->value( grbl_mode_checksum )->by_default(false)->as_bool();
#endif
// we exepct ok per line now not per G code, setting this to false will return to the old (incorrect) way of ok per G code
this->ok_per_line= this->config->value( ok_per_line_checksum )->by_default(true)->as_bool();
this->add_module( this->serial );
// HAL stuff
add_module( this->slow_ticker = new SlowTicker());
this->step_ticker = new StepTicker();
this->adc = new Adc();
// TODO : These should go into platform-specific files
// LPC17xx-specific
NVIC_SetPriorityGrouping(0);
NVIC_SetPriority(TIMER0_IRQn, 2);
NVIC_SetPriority(TIMER1_IRQn, 1);
NVIC_SetPriority(TIMER2_IRQn, 4);
NVIC_SetPriority(PendSV_IRQn, 3);
// Set other priorities lower than the timers
NVIC_SetPriority(ADC_IRQn, 5);
NVIC_SetPriority(USB_IRQn, 5);
// If MRI is enabled
if( MRI_ENABLE ){
if( NVIC_GetPriority(UART0_IRQn) > 0 ){ NVIC_SetPriority(UART0_IRQn, 5); }
if( NVIC_GetPriority(UART1_IRQn) > 0 ){ NVIC_SetPriority(UART1_IRQn, 5); }
if( NVIC_GetPriority(UART2_IRQn) > 0 ){ NVIC_SetPriority(UART2_IRQn, 5); }
if( NVIC_GetPriority(UART3_IRQn) > 0 ){ NVIC_SetPriority(UART3_IRQn, 5); }
}else{
NVIC_SetPriority(UART0_IRQn, 5);
NVIC_SetPriority(UART1_IRQn, 5);
NVIC_SetPriority(UART2_IRQn, 5);
NVIC_SetPriority(UART3_IRQn, 5);
}
// Configure the step ticker
this->base_stepping_frequency = this->config->value(base_stepping_frequency_checksum)->by_default(100000)->as_number();
float microseconds_per_step_pulse = this->config->value(microseconds_per_step_pulse_checksum)->by_default(1)->as_number();
// Configure the step ticker
this->step_ticker->set_frequency( this->base_stepping_frequency );
this->step_ticker->set_unstep_time( microseconds_per_step_pulse );
// Core modules
this->add_module( this->conveyor = new Conveyor() );
this->add_module( this->gcode_dispatch = new GcodeDispatch() );
this->add_module( this->robot = new Robot() );
this->add_module( this->simpleshell = new SimpleShell() );
this->planner = new Planner();
this->configurator = new Configurator();
}
// return a GRBL-like query string for serial ?
std::string Kernel::get_query_string()
{
std::string str;
bool homing;
bool ok = PublicData::get_value(endstops_checksum, get_homing_status_checksum, 0, &homing);
if(!ok) homing= false;
bool running= false;
str.append("<");
if(halted) {
str.append("Alarm,");
}else if(homing) {
str.append("Home,");
}else if(feed_hold) {
str.append("Hold,");
}else if(this->conveyor->is_idle()) {
str.append("Idle,");
}else{
running= true;
str.append("Run,");
}
if(running) {
// get real time current actuator position in mm
ActuatorCoordinates current_position{
robot->actuators[X_AXIS]->get_current_position(),
robot->actuators[Y_AXIS]->get_current_position(),
robot->actuators[Z_AXIS]->get_current_position()
};
// get machine position from the actuator position using FK
float mpos[3];
robot->arm_solution->actuator_to_cartesian(current_position, mpos);
char buf[128];
// machine position
size_t n= snprintf(buf, sizeof(buf), "%1.4f,%1.4f,%1.4f,", robot->from_millimeters(mpos[0]), robot->from_millimeters(mpos[1]), robot->from_millimeters(mpos[2]));
str.append("MPos:").append(buf, n);
// work space position
Robot::wcs_t pos= robot->mcs2wcs(mpos);
n= snprintf(buf, sizeof(buf), "%1.4f,%1.4f,%1.4f", robot->from_millimeters(std::get<X_AXIS>(pos)), robot->from_millimeters(std::get<Y_AXIS>(pos)), robot->from_millimeters(std::get<Z_AXIS>(pos)));
str.append("WPos:").append(buf, n);
str.append(">\r\n");
}else{
// return the last milestone if idle
char buf[128];
// machine position
Robot::wcs_t mpos= robot->get_axis_position();
size_t n= snprintf(buf, sizeof(buf), "%1.4f,%1.4f,%1.4f,", robot->from_millimeters(std::get<X_AXIS>(mpos)), robot->from_millimeters(std::get<Y_AXIS>(mpos)), robot->from_millimeters(std::get<Z_AXIS>(mpos)));
str.append("MPos:").append(buf, n);
// work space position
Robot::wcs_t pos= robot->mcs2wcs(mpos);
n= snprintf(buf, sizeof(buf), "%1.4f,%1.4f,%1.4f", robot->from_millimeters(std::get<X_AXIS>(pos)), robot->from_millimeters(std::get<Y_AXIS>(pos)), robot->from_millimeters(std::get<Z_AXIS>(pos)));
str.append("WPos:").append(buf, n);
str.append(">\r\n");
}
return str;
}
// Add a module to Kernel. We don't actually hold a list of modules we just call its on_module_loaded
void Kernel::add_module(Module* module){
module->on_module_loaded();
}
// Adds a hook for a given module and event
void Kernel::register_for_event(_EVENT_ENUM id_event, Module *mod){
this->hooks[id_event].push_back(mod);
}
// Call a specific event with an argument
void Kernel::call_event(_EVENT_ENUM id_event, void * argument){
bool was_idle= true;
if(id_event == ON_HALT) {
this->halted= (argument == nullptr);
was_idle= conveyor->is_idle(); // see if we were doing anything like printing
}
// send to all registered modules
for (auto m : hooks[id_event]) {
(m->*kernel_callback_functions[id_event])(argument);
}
if(id_event == ON_HALT && this->halted && !was_idle) {
// we need to try to correct current positions if we were running
this->robot->reset_position_from_current_actuator_position();
}
}
// These are used by tests to test for various things. basically mocks
bool Kernel::kernel_has_event(_EVENT_ENUM id_event, Module *mod)
{
for (auto m : hooks[id_event]) {
if(m == mod) return true;
}
return false;
}
void Kernel::unregister_for_event(_EVENT_ENUM id_event, Module *mod)
{
for (auto i = hooks[id_event].begin(); i != hooks[id_event].end(); ++i) {
if(*i == mod) {
hooks[id_event].erase(i);
return;
}
}
}