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A B S T R A C T

We illustrate and compare commonly used benchmark, or reference, methods for probabilistic solar forecasting
that researchers use to measure the performance of their proposed techniques. A thorough review of the lit-
erature indicates wide variation in the benchmarks implemented in probabilistic solar forecast studies. To
promote consistent and sensible methodological comparisons, we implement and compare ten variants from six
common benchmark classes at two temporal scales: intra-hourly forecasts and hourly resolution forecasts. Using
open-source Surface Radiation Budget Network (SURFRAD) data from 2018, these benchmark methods are
compared using proper probabilistic metrics and common diagnostic tools. Practical implementation issues, such
as the impact of missing data and applicability for operational forecasting, are also discussed. We make re-
commendations for practitioners on the appropriate selection of benchmark methods to properly showcase state-
of-the-art improvements in forecast reliability and sharpness. All code and open-source data are available on
Github for reproducibility and for other researchers to apply the same benchmark methods to their own data.

1. Introduction

1.1. Background

As power systems worldwide experience ever-increasing penetra-
tions of variable and uncertain renewable generation resources, such as
wind and solar photovoltaics (PV), renewable energy forecasting is
gaining increasing attention and finding new applications (Kroposki
et al., March 2017). Historical efforts focused on deterministic or point
forecasts, but interest is shifting toward probabilistic forecasts that fully
capture future uncertainty (van der Meer et al., 2018; Hong et al.,
2016). Probabilistic formulations can achieve cost and/or reliability
benefits over their deterministic equivalents (Appino et al., 2018).
Therefore, probabilistic forecasts are valuable for both power system
operators and market participants (Bessa et al., 2017). Applications of
probabilistic renewable energy forecasts have been proposed in market
bidding strategies (Li and Park, 2018), adaptive reserve algorithms
(Fahiman et al., 2019), and robust and/or stochastic unit commitment
and economic dispatch models (Bukhsh et al., 2016; Li et al., 2018).

As interest in probabilistic forecasting applications has increased,
research into advanced probabilistic forecasting methods has expanded
as well. Although wind and load forecasts have received significant
research attention in the past, solar irradiance/power forecasting has

been a developing field during the past few years (Hong et al., 2016). As
recently as 2013, in a comparison of state-of-the-art solar and wind
forecast methods with 18 entrants, none provided probabilistic solar
forecasts (Sperati et al., 2015). In early attempts at probabilistic solar
forecasting, efforts focused on assessing confidence intervals around a
deterministic forecast, such as the 5–95% interval (Mathiesen et al.,
2013; Lorenz et al., 2009; Boland and Soubdhan, 2015; Chu et al., 2015;
Almeida et al., 2015; Scolari et al., 2016; Torregrossa et al., 2016). As
the field has expanded, attention has turned to predicting a full prob-
ability distribution (Alessandrini et al., 2015; Pedro et al., 2018). The
format of information in these forecasts is distinct from point forecasts,
and it must be assessed and validated appropriately.

The recent abundance in probabilistic solar forecasting literature
has given rise to concerns about proper method verification and com-
parisons, given inconsistent practices in forecast validation. A common
inconsistency is the application of improper or inappropriate metrics
(van der Meer et al., 2018). Another is the lack of an appropriate
benchmark method against which to measure improvements (Bracale
et al., 2013; Dong et al., 2013; Abuella and Chowdhury, 2015; Liu et al.,
2016; Nagy et al., 2016). To address these concerns, Lauret et al. (2019)
recently proposed a verification framework for probabilistic solar
forecasting focusing on proper metrics and visual diagnostic tools. To
complement that work, this article delves into benchmark, or reference,
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methods for probabilistic solar forecasting—baseline methods that all
researchers can use to measure the performance of their proposed
techniques.

Benchmark forecasts can serve two key purposes. The first is simply
as a reference for comparison, analogous to a yardstick. For this pur-
pose, the benchmark should be consistent, accessible, and easily re-
producible, though it does not necessarily need be considered a “good”
forecast. The second purpose of a benchmark is to provide a target for
new methods to outperform, analogous to a point on the yardstick. For
this purpose, the benchmark should be close to the state of the art, but
accessibility and reproducibility are still important. Common bench-
mark methods—including numerical weather prediction (NWP) en-
sembles, climatology, and persistence ensembles—will be discussed in
detail. As will be shown, however, the range of implementations is
wide, even within the same general benchmark methodology, resulting
in fundamentally different benchmark forecasts.

The objective of this article is to promote consistent and sensible
methodological comparisons in the probabilistic solar forecasting
community by summarizing current practices, illustrating key differ-
ences among benchmark methods, discussing considerations for missing
data, and making recommendations for researchers. Following a de-
tailed literature review of benchmark probabilistic solar forecasts, ten
common benchmark variants are implemented at two temporal scales.
Benchmark forecasts are generated for the entire year 2018 using
publicly available data from the seven Surface Radiation Budget
Network (SURFRAD) facilities, which are located in diverse climates
throughout the United States (Augustine et al., 2005; NOAA Earth
System Research Laboratory, n.d.). Along with the SURFRAD data, the
R code used to generate these forecasts is made open source with this
paper for reproducibility and for future researchers to apply the same
benchmark methods to their own data (R Core Team, 2017).

This section concludes with an introduction of the relevant time-
scales and terminology for solar forecasting. Section 2 presents a de-
tailed literature review of probabilistic benchmarks seen in the solar
forecasting field. Section 3 introduces the case study data used to
compare common benchmark methods, focusing on the seven SUR-
FRAD sites. For six of the benchmark classes found in the literature
review, Section 4 describes the methodology and considerations for
implementing these benchmarks at two temporal scales. Section 5 in-
troduces metrics and tools for assessing the quality of a probabilistic
forecast, including key attributes such as reliability, sharpness, and
resolution. Section 6 compares the performance of ten benchmark
variants during the entire year 2018 for each SURFRAD site. Finally,
Section 7 summarizes recommendations and concludes.

1.2. Forecast terminology

When discussing any type of forecast, we are commonly discussing a
forecast run, which is a series of forecasts spaced through time. The

temporal parameters that describe a forecast run are illustrated in Fig. 1
(Yang, 2019a). Forecast run k is issued at a time, tk , in advance of its
first forecast valid time by a lead time . The series of forecasts is
equally spaced with resolution during a period of time, the forecast
horizon . Therefore, the series of forecasts is valid for times

= + + + … + +t t t t, , , ( 1)k k k . As new information
becomes available, forecast runs are updated at an update rate, ,
which is the period between the issue times of sequential forecast runs.

In this article, we consider the general categories of intra-hourly
forecasts, which have forecast horizons up to a few hours, and hourly-
resolution forecasts, which have forecast horizons up to a few days.
These temporal scales are typical for power systems operations. Longer
term seasonal or annual forecasts are beyond the scope of this paper.
For example, an intra-hourly forecast might have a 5-min resolution
with a 5-min lead time over a 1-h horizon with a 15-min update rate; it
might be applied in an hourly economic dispatch model updated every
15 min. In contrast, an hourly forecast might have hourly resolution
with a 12-h lead time over a 48-h horizon with a 24-h update rate for
use in a day-ahead unit commitment model.

Different forecasting methods are applied at these different tem-
poral scales. Hourly-resolution forecasts typically employ NWP models,
which are physics-based models run by weather agencies with time
horizons of a week or 10 days (van der Meer et al., 2018). These models
are highly useful for forecasting developing weather patterns, but they
are very computationally intensive and have coarse spatial and tem-
poral scales. Many have only 3-, 6-, or 12-h update rates, which make
them unsuitable for intra-hourly forecasting. One of the highest tem-
poral resolution NWP models is the National Oceanic and Atmospheric
Administration’s (NOAA’s) deterministic High-Resolution Rapid Re-
fresh (HRRR), which is updated hourly with 15-min resolution (NOAA
National Weather Service, n.d). As a result, many intra-hourly fore-
casting techniques make use of machine learning or time-series
methods that require only historical observations as inputs rather than
exogenous weather data (Pedro et al., 2018; David et al., 2016;
Munkhammar et al., 2019a).

2. Literature review

To assess current practices relevant to probabilistic solar forecast
benchmarking, 42 recent journal articles and conference papers were
reviewed. Of these, 8 did not contain a benchmark method per se; ra-
ther, they compared variants of their own proposed methods against
each other (Bracale et al., 2013; Dong et al., 2013; Abuella and
Chowdhury, 2015; Almeida et al., 2015; Huang and Perry, 2016; Liu
et al., 2016; Nagy et al., 2016; Lotfi et al., 2020). Including benchmark
forecasts allows the reader a point of comparison to assess the relative
merit of the proposed methods and provides that yardstick for com-
paring salient forecast features, such as sharpness and reliability (Sec-
tion 5). Omitting such benchmarks obscures the value of the new work.

Fig. 1. Illustration of temporal attributes of a forecast run.
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The remaining literature includes a variety of benchmark methods,
from which four major classes emerge. Table 1 summarizes the
benchmarks used in these references, including their application’s
forecast resolution, maximum look-ahead time (notated as + be-
cause of the ambiguity between lead time and horizon in many of these
papers), the general class of the benchmark method, and any specifics
about the training data chosen to calculate the benchmark. Most of
these references focus on solar applications: common forecast variables
are global horizontal irradiance (GHI), direct normal irradiance (DNI),
clear-sky index (CSI—the ratio of GHI to estimated clear-sky GHI),
accumulated GHI (the sum of GHI over the forecast window/resolu-
tion), and PV power output. A few references forecast related renewable
energy variables, such as wind speed.

Note that a few references in Table 1 contain only information about
the fundamental methods that we call benchmarks, but most references
propose a novel method and compare that method relative to a
benchmark. For papers with both novel and benchmark methods, the
table summarizes the benchmark only.

The four major benchmark classes are briefly introduced here;
Section 4 goes into greater detail on their implementations. The first
common class is the climatology benchmark, which is a staple of related
meteorology fields, including wind forecasting (Pinson et al., 2008;
Thorarinsdottir and Gneiting, 2010; Sloughter et al., 2010). A basic
climatology forecast is an empirical cumulative distribution function
(CDF) based on historical measurements over a long period of time; it is
the most naive forecast one can generate, given the statistical properties
of the forecast variable and no knowledge of upcoming conditions.
Though less common in the solar forecasting literature thus far, it has
been applied for both hourly (Iversen et al., 2014; Aryaputera et al.,
2016; Thorey et al., 2018) and intra-hourly (Golestaneh et al., 2016b)
solar applications.

Another standard benchmark class from meteorology is the raw
NWP ensemble (Pinson et al., 2008; Thorarinsdottir and Gneiting,
2010; Sloughter et al., 2010; Möller et al., 2013). Although each NWP
simulation gives one deterministic forecast of future conditions, a
probabilistic perspective can be gained from an ensemble of NWP
forecasts, collected from a variety of NWP models or by perturbing a
model’s initial conditions (van der Meer et al., 2018; Leutbecher and
Palmer, 2008). These ensembles are often post-processed to address
bias and underdispersion, which is the tendency of the ensemble to
underestimate uncertainty in the forecast (Leutbecher and Palmer,
2008). Therefore, a natural benchmark for post-processing techniques is
an empirical CDF of the “raw,” unprocessed ensemble. Because of the
temporal restrictions of NWP modeling, this benchmark has been ap-
plied only to hourly rather than intra-hourly solar forecasts (Aryaputera
et al., 2016; Thorey et al., 2018; Lauret et al., 2019).

The next, very common class of benchmarks is the persistence en-
semble (PeEn) (Sperati et al., 2016; David et al., 2016; Lauret et al.,
2017; Pedro et al., 2018; El-Baz et al., 2018; Munkhammar et al.,
2019a; Chu and Coimbra, 2017; Ni et al., 2017; Panamtash et al.,
2020), often attributed to Alessandrini et al. (2015). PeEn’s are in-
tended to capture weather patterns by collecting recent observations or
CSIs into an empirical CDF. For intra-hourly forecasts, the common
practice is to collect observations from the last few hours, (David et al.,
2016; Pedro et al., 2018; El-Baz et al., 2018), whereas for hourly
forecasts, researchers often use observations at the same time of day
from the last several days (Alessandrini et al., 2015; Sperati et al.,
2016).

The fourth class is the Gaussian error distribution, which is parti-
cularly popular for intra-hourly or continuously-updated, “rolling”
forecasts ( = ). These probabilistic forecasts are generally exten-
sions of a deterministic forecast, in which the deterministic forecast is
dressed in a distribution based on historical errors between the point
forecasts and the observations. This distribution can be a simple em-
pirical CDF (Mathiesen et al., 2013; Torregrossa et al., 2016). It is much
more common, however, to fit a Gaussian distribution to the errorsTa

bl
e
1
(c
on
tin
ue
d)

R
ef
er
en
ce

Fo
re
ca
st
V
ar
ia
bl
e

+
Be
nc
hm
ar
k
M
et
ho
d(
s)

Tr
ai
ni
ng
D
at
a
D
et
ai
ls

Ce
rv
on

e
et

al
.(

20
17

)
PV

po
w
er

1
h

72
h

A
na

lo
g
en

se
m
bl
e
(A

le
ss
an

dr
in
ie

t
al
.,
20

15
)

D
et
er
m
in
is
tic

N
W

P
fo
re
ca

st
an

d
1
yr

of
hi
st
or

ic
al

fo
re
ca

st
sa

nd
m
ea

su
re
m
en

ts
Ve

rb
oi
s
et

al
.(

20
18

)
G
H
I

1
h

24
h

A
na

lo
g
en

se
m
bl
e
(A

le
ss
an

dr
in
ie

t
al
.,
20

15
)

D
et
er
m
in
is
tic

N
W

P
fo
re
ca

st
an

d
2
yr
s
of

hi
st
or

ic
al

fo
re
ca

st
s

an
d
m
ea

su
re
m
en

ts

K. Doubleday, et al. Solar Energy 206 (2020) 52–67

55



(Lorenz et al., 2009; Boland and Soubdhan, 2015; Chu et al., 2015;
Grantham et al., 2016; Golestaneh et al., 2016b; Scolari et al., 2016;
Torregrossa et al., 2016; Chu and Coimbra, 2017), even though solar
and other renewable energy deterministic errors do not typically follow
a Gaussian distribution (Bludszuweit et al., 2008; Zhang et al., 2015;
Golestaneh et al., 2016b; Chu and Coimbra, 2017). Within this class,
researchers have proposed a wide variety of screening methods to select
the most relevant historical errors: similarity of atmospheric condition,
including clear-sky index, solar zenith angle, and/or wind direction
(Lorenz et al., 2009; Mathiesen et al., 2013); most recent errors (Chu
et al., 2015; Golestaneh et al., 2016b); nearest neighbor errors (Chu and
Coimbra, 2017); or all errors in the training data set (Grantham et al.,
2016).

Although the majority of the benchmarks can be categorized into
these four general areas, there is also blurring among them and sig-
nificant internal variation in their implementations. Particularly for
hourly forecasts in which training data are accumulated during pre-
vious days, PeEn variants can blend into climatology variants (Iversen
et al., 2014; Sperati et al., 2016). Iversen et al. (2014) illustrates this
well in Table 1: the authors apply three climatology variants, with in-
creasing down-selection of historical data, until the third variant uses
only observations from the same month and hour of day—very similar
to the PeEn methods in Alessandrini et al. (2015) and Sperati et al.
(2016). The second, intermediate variant in Iversen et al. (2014) uses
all historical measurements at the same hour of day, a benchmark that
was codified in Yang (2019b) as the complete history persistence en-
semble (CH-PeEn). The CH-PeEn hybrid has the statistical consistency
of climatology, but it follows the diurnal solar trend like a PeEn fore-
cast. This hybrid, also used by Panamtash et al. (2020), is the fifth basic
benchmark class detailed in Section 4.

Finally, a Markov-chain mixture (MCM) model was recently pro-
posed as an intra-hourly probabilistic benchmark in Munkhammar et al.
(2019a) as well as Munkhammar et al. (2019b). This model uses a
transition matrix based on historical CSIs to model changes through
time over a forecast run. MCM was shown to outperform a PeEn at short
time scales (Munkhammar et al., 2019a), and this is the sixth and final
method illustrated below.

Note that many of these papers use two or more benchmark fore-
casts, reflective of the two purposes of a benchmark. For example, some
studies use climatology as a yardstick and a near state-of-the-art, raw
NWP ensemble as the point on the yardstick. Similarly, a handful of
papers implement methods from recently published work as state-of-
the-art benchmarks to outperform (Golestaneh et al., 2016b; Scolari
et al., 2016; Lauret et al., 2019), including a series of studies building
on the National Center for Atmospheric Research’s analog ensemble
approach (Alessandrini et al., 2015; Davò et al., 2016; Cervone et al.,
2017; Verbois et al., 2018). In the remaining sections, the key features
of the four major forecast classes, plus CH-PeEn and MCM, will be
further distinguished and illustrated, but remember that more than one
benchmark is often useful to frame the contributions of proposed im-
provements. Lastly, it is important to note that these benchmark
methods produce probabilistic forecasts in the form of CDFs at each
forecast time, rather than scenarios or trajectories over time, as in
Golestaneh et al. (2016a), Woodruff et al. (2018), Sun et al. (2020).
Benchmarking trajectories requires its own set of methods and is be-
yond the scope of this article.

3. Case study data

The remainder of this paper illustrates six of the benchmark classes
using a case study of commonly available data. Because of the wider
availability of solar irradiance than power data, we focus primarily on
irradiance forecasting, though these methods can be adapted to PV
power forecasting as well (e.g., with an upper limit at the power plant’s
AC power rating). Three data sources are used: irradiance observations,
CSI estimates, and NWP ensemble forecasts. All data sets are retrieved
for the entire year 2018 to enable a long-term comparison of bench-
mark methods.

For the irradiance observations, 1-min resolution measurements are
retrieved from NOAA’s seven SURFRAD sites, located in diverse cli-
mates throughout the United States (www.esrl.noaa.gov/gmd/grad/
surfrad). For each of the seven locations, clear-sky irradiance estimates
are available at 1-min resolution from the CAMS McClear Service
(Copernicus Atmosphere Monitoring Service (CAMS), 2019; Lefèvre
et al., 2013). Note that these clear-sky estimates are not operational and
are only available 2 days after the fact; to operationalize the bench-
marks that use a CSI would require these historical clear-sky “ob-
servations” plus an operational deterministic clear-sky forecast. Here,
the CAMS McClear values are used as both. Finally, the European
Centre for Medium-Range Weather Forecasts’ (ECMWF) 51-member
ensemble is selected as the case study NWP ensemble (www.ecmwf.int).
The ECMWF ensemble is available at an hourly resolution and updated
four times per day.

Based on the resolutions of these three data sets, benchmark fore-
casts are compared at two temporal configurations, summarized in
Table 2. First, an intra-hourly forecast is implemented with 5-min re-
solution, 5-min lead time, 1-h horizon, and 1-h update rate. This
schedule is based on a likely economic dispatch schedule and the high
resolution of the SURFRAD observations. Second, an hourly-resolution,
intra-day forecast is implemented with 1-h resolution, 1-h lead time, 6-
h horizon, and 6-h update rate. This schedule is selected based on the
ECMWF resolution, always using the most recent forecast (issued every
6 h). In practical use cases, an hourly resolution forecast might have a
24- to 48-h horizon for applications such as the day-ahead unit com-
mitment. For this exercise, however, forecast runs are configured with
equal horizon and update rate so that each observation is used to va-
lidate a single forecast rather than multiple forecasts submitted at dif-
ferent issue times. The same methods illustrated here for the intra-day
forecasts are directly applicable to day-ahead forecasts with longer
horizons.

Based on these two configurations, the three data sets are pre-
processed, as detailed in the appendices. The R scripts used to execute
the preprocessing are made available online in the kdayday/so-
larbenchmarks Github repository, as are the open-source SURFRAD
and CAMS McClear data. Although the ECMWF data cannot be directly
shared, the scripts used to access and preprocess the ECMWF data are
also provided for those users with ECMWF permissions.

4. Benchmark forecast methods

Based on the literature review in Section 2, six probabilistic
benchmark types were selected for comparison using the case study
data: climatology, a Ch-PeEn, a PeEn, a raw NWP ensemble, a Gaussian
error distribution, and an MCM model. In this section, we show ex-
ample implementations of each class for both hourly forecasts and
intra-hourly forecasts, where applicable. For each class, we also discuss
practical considerations based on data availability. Forecasts are gen-
erated for all times when the sun is up (see Appendix); for all methods,
and the CDF for times when the sun is down is a step function at 0 W/
m2.

Before delving into each forecast type, we will discuss a method that
is common to five of them: the empirical CDF. Our objective is to
generate a full CDF rather than a confidence interval or selected

Table 2
Temporal Configurations of the Intra-Hourly and Hourly Resolution Case Study
Forecast Runs.

Resolution Lead Time Horizon Update Rate

Intra-hourly 5 min 5 min 1 h 1 h
Hourly 1 h 1 h 6 h 6 h
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quantiles. For this purpose, the empirical CDF is widely applied because
it is ostensibly the simplest approach to generate a complete CDF from a
set of discrete data. For a set of n data points = …S t X t X t( ) { ( ), , ( )}n1 , the
empirical CDF P of the forecast variable x is defined by:

=
=

P x t
n

X t x, 1 ( ( ) ),
i

n

i
1 (1)

where is the indicator function. That is, each point in the data set is
considered equally likely, resulting in a “stepped” CDF with a jump at
each discrete value.

Although the empirical CDF appears straightforward, there are
myriad permutations on its implementation. For example, the quan-
tile function in the R stats package offers nine variations on the
empirical CDF. The implementation can change the interpolation
among the discrete members and might result in very different tail
behavior. For instance, linearly interpolating between the members
rather than applying discrete steps is a simple variant that smooths the
forecast distribution (quantile function type = 4), resulting in the
binned probability forecast proposed in Anderson (1996). For a non-
negative parameter such as solar irradiance, reasonably assuming the
lower tail of the empirical CDF begins at 0 W/m2 rather than the lowest
NWP ensemble member could result in very different tail behavior.
Further discussion about three common implementations is also given
in Lauret et al. (2019), including whether and how to assign probability
outside the bounds of S t( ), i.e., below the lowest data point and above
the highest data point.

Whatever choice is made, authors should clearly state which im-
plementation has been applied. For the case study shown here, we obey
the strict definition in (1). The classic stepped empirical CDF has
minimum and maximum values delimited by the minimum and max-
imum values in the forecast data set (quantile function type = 1).
Except for the Gaussian error distribution, the other five reference
classes use this empirical CDF; the key differences are in the selection of
the input data points (i.e., the Xis).

4.1. Climatology

The climatology forecast is the empirical CDF of measurements
during a long period of time. That is, the set of input data S in (1) is a
long set of observations, so the distribution P x t( , ) is essentially static
(no dependence on t) or changes very slowly as new data accumulates.
The implementation of a climatology forecast is the same irrespective of
forecast lead time, update rate, and horizon. Hourly average observa-
tions could be used for an hourly resolution forecast, 5-min averages for
a 5-min resolution forecast, etc. In addition to this simplicity, missing
data handling is trivial for climatology—missing values are simply left
out of the training set.

To generate the data set S, a long historical data set (e.g., during
many decades) is typically seen as ideal, though it assumes that the
climate is static. In solar forecasting applications, two potential issues
arise. First, some sites might have only very recent history available,
given the newness of the hardware installation, e.g., pyranometer, PV
power meter. In the solar forecasting field, the SURFRAD sites used in
this case study are some of the best examples of a long historical data
set with observations extending to between 1994 and 2003 (Augustine
et al., 2005; NOAA Earth System Research Laboratory, n.d.). Second,
there are indicators that the static climate assumption does not hold
and that climate change is impacting available renewable resources
(Craig et al., 2018; Craig et al., 2019). In this regard, using only recent
observations (e.g., last year or few years) might be preferable to capture
recent trends and extremes.

In our example implementations, the hourly and intra-hourly fore-
cast training sets S consist of all available (nonmissing), sunup hourly
average or 5-min average GHI observations, respectively, from 2018.
That is, we generate and validate in-sample forecasts useful for hind-
casting validation only. To provide an operational forecast, the training
data set must contain only observations available prior to the issue
time. Purely from the perspective of methods comparisons, using the in-
sample validation data to create climatological hindcasts has the ad-
vantage of representing a perfectly reliable forecast. Using a sufficiently
long (> year) training data set, however, should show similar though
not quite as exact reliability, so this could be a less important con-
sideration for practitioners (Yang, 2019b).

The classic characteristics of a climatology forecast are evident in
Fig. 2, which shows 3 days of time-series forecast distributions and
observations during the spring for the SURFRAD site in Boulder, CO.
The hourly example consists of 12 consecutive forecast runs with 6-h
horizons each; the intra-hourly example shows 72 consecutive forecast
runs with 1-h horizons each. As illustrated, the climatology forecast
lacks a key attribute: forecast resolution, or the ability to generate case-
dependent forecasts (Lauret et al., 2019). This definition of resolution is
distinct from the temporal resolution ( ) of a forecast run. All daylight
times are forecasted identically regardless of knowledge about the
present conditions. This forecast has long-term reliability (Section 6),
but it lacks both sharpness and the ability to represent solar irradiance/
power’s dependency on sun position and weather.

4.2. Complete-history persistence ensemble

The CH-PeEn forecast is a variant on climatology that captures so-
lar’s diurnal trend through a static daily cycle. These case study CH-
PeEn implementations are based on the method in Yang (2019b). First,
the GHI values in the historical data set are translated to CSI using the
CAMS McClear CSI estimate. Then, CSIs are binned into 24 sets by hour
of day for both the hourly and intra-hourly resolutions. To generate a

Fig. 2. Climatology forecast samples for 3 spring days in Boulder for the (a) hourly forecast and (b) intra-hourly forecast. The fan plots show the prediction intervals
of the probabilistic forecasts, from the 1% to 99% central intervals. The orange line shows the observed hourly or 5-min average irradiance, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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set of GHI values to define an empirical CDF, the data set S t( ) is defined
as the product of the CSI estimate at time t and the set of CSIs from the
same hour of day. For the intra-hourly forecast with 5-min resolution,
all 12 forecasts that fall in the same hour of day receive the same set of
clear-sky indices.

Typical time-series forecasts are shown in Fig. 3. The envelope of the
forecast follows the sun’s diurnal trajectory, but the daily forecast shape
is repeated, accounting only for the slow change in clear-sky irradiance.
This is a baseline that accounts for current sun position and aerosols but
not clouds and other weather impacts. As with the climatology forecast,
the case study hindcasting comparison uses the in-sample 2018 data to
generate the data set S t( ). For hindcasting purposes, Yang (2019b) shows
the calendar year of training data selected (in-sample vs. out-of-sample)
to generate a CH-PeEn forecast has minor impact on the forecast char-
acteristics. For operational, out-of-sample forecasts, this CH-PeEn im-
plementation would require both a different year of training data and
updates to an operational clear-sky irradiance estimate.

4.3. Persistence ensemble

Compared to the previous benchmarks, the PeEn benchmark at-
tempts to achieve basic forecast resolution (Lauret et al., 2019) by ac-
counting for some combination of sun position and weather. Unlike the
static climatology forecast or the CH-PeEn’s simple dependence on
clear-sky irradiance, the PeEn benchmark attempts to forecast each
time uniquely based on recent data. Each probabilistic forecast is an
empirical CDF where the set S t( ) in (1) comprises a much smaller subset
of recent data, assuming that those conditions will persist into the fu-
ture. Typical PeEn methods for intra-hourly and hourly forecasts in the
literature result in quite distinct forecast characteristics, so we consider
each timescale separately.

A key consideration for a reasonable PeEn benchmark is the selec-
tion of which variable should be persisted at a given temporal scale.
Based on the available measurements, the options include CSI, GHI/

DHI, or PV power. For intra-hourly forecasts, the set S t( ) commonly
comprises the most recent n GHI/DNI/power observations from the past
hour or two, for which any of these available variables should be rea-
sonable choices (Chu and Coimbra, 2017; El-Baz et al., 2018). The
exceptions are in the shoulder hours when the sun rises and sets
quickly, which justifies the use of CSI instead. More fundamentally, the
first hour after sunrise presents a complication of how a PeEn should be
defined when no data are available to persist yet. This is usually simply
ignored in the literature.

For the intra-hourly PeEn implemented in this case study, the
=n 24 CSI estimates from the previous 2 h are persisted, inspired by

David et al. (2016) and Pedro and Coimbra (2015). To address the issue
of forecasting early in the day when CSI estimates are unavailable, the
first forecast run issued each day is a deterministic clear-sky GHI
forecast, i.e., the probabilistic forecast is a step function at the fore-
casted clear-sky GHI. The second forecast run uses a PeEn of the last
hour’s =n 12 observed CSIs, and by the third forecast run, a full 24-
member PeEn is available.

In contrast, hourly PeEns typically persist observations at the same
hour of the day from the last n days rather than using intra-day in-
formation (Alessandrini et al., 2015; Sperati et al., 2016). If looking at
the same hour of the day during an intra-seasonal period (e.g., 20 days),
persisting GHI is reasonable; however, there are alternative im-
plementations where CSI is more appropriate, if available. Persisting
GHI across more than an hour within the same day as in Lauret et al.
(2017) should be avoided because of known changes in solar position;
in this case, persisting CSI would be a more realistic alternative. In the
case study implementation, the hourly PeEn comprises the previous

=n 20 available GHI measurements at the same hour of the day, fol-
lowing the commonly referenced method in Alessandrini et al. (2015).

Examples of the two PeEn implementations are shown in Fig. 4. The
intra-hourly forecast is highly dependent on recent conditions, whereas
the hourly forecast is broader, capturing a range of conditions experi-
enced during previous days. The hourly resolution forecast is more

Fig. 4. PeEn forecast samples for 3 spring days in Boulder for the (a) hourly forecast and (b) intra-hourly forecast.

Fig. 3. CH-PeEn forecast samples for 3 spring days in Boulder for the (a) hourly forecast and (b) intra-hourly forecast.
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granular than the CH-PeEn and shows slow evolution as the PeEn
changes from one day to the next. The intra-hourly forecast, in contrast,
changes very quickly. Because the CSI PeEn is maintained over each
hourly forecast run, outliers are persisted through the next set of fore-
casts, resulting in erratic jumps in the forecast.

Finally, a practical implementation of a PeEn must also consider
impacts of missing data. There is a choice between selecting only up to
n members, even if fewer than n members are available in the typical
training period, versus always selecting n members, even if that re-
quires extending the training period to find sufficient available data.
For these case study implementations, an equal length training period is
enforced, even if that results in a PeEn size < n. This selection can be
customized based on the application, and the PeEn might simply be
unsuitable for data sets with significant missing data.

4.4. NWP raw ensemble

NWP ensemble benchmarks are very straightforward to implement:
the training set S t( ) comprises the NWP ensemble members valid at
time t. Each member is weighted equally in the empirical CDF. The case
study implementation uses the ECMWF control forecast plus the 50
members of its perturbed ensemble forecast to produce a 51-member
ensemble, available at hourly resolution. This ensemble is suitable for
hourly forecasting, but because of the NWP computation time, few, if
any, NWP ensembles are currently available for intra-hour forecasting.
NOAA’s HRRR NWP model is one of the only that provides 15-min
resolution forecasts, but its ensemble version (HRRR ensemble) is still
experimental and at hourly resolution. Therefore, the NWP raw en-
semble benchmark is implemented only for the hourly forecast.

The example forecast in Fig. 5 shows typical characteristics: the
NWP ensemble is very sharp in comparison to the previous hourly
benchmarks and captures both upcoming weather and the diurnal
trend. The ensemble members are often too clustered, however, and the
observed irradiance falls outside the ensemble—this is a classic NWP
ensemble underdispersion, which many post-processing methods seek
to address (Leutbecher and Palmer, 2008). Finally, note that NWP
models forecast conditions over a grid rather than a single point, so care
should be taken during validation to ensure consistency between the
grid forecast and the point validation. For the case study, ECMWF’s
recommended practices for comparing NWP models to pyranometer
measurements were followed and are available in the supplementary R
code.

4.5. Gaussian error distribution

The final benchmark, the Gaussian error distribution, is distinct
from the others. Rather than generating an empirical CDF as in (1), a
doubly truncated Gaussian forecast of irradiance x is issued at time tk
valid for time t according to:

=
( ) ( )

( ) ( )P x t t, , ,k

x µ t
t

µ t
t

I t µ t
t

µ t
t

( )
( )

0 ( )
( )

( ) ( )
( )

0 ( )
( )

k k

CS
k k (2)

where I t( )CS is the clear-sky irradiance, is the CDF of the standard
normal distribution, and µ and are the mean and standard deviation
of the forecast, respectively. The doubly truncated Gaussian distribu-
tion ensures that no probability density is allocated less than 0 W/m5 or
more than the clear-sky irradiance, given the feasible bounds for solar
irradiance. Given the uncertainty in true clear-sky irradiance, the lower
bound is the more important to enforce, yet untruncated Gaussian
distributions are still applied in the literature.

Applying this model requires selecting µ and . The mean, µ, cen-
ters the forecast, so it is typically a deterministic forecast valid at time t.
The standard deviation, , determines the forecast uncertainty, and it is
typically fit to historical data at the forecast issue time, tk , and is valid
for the entire forecast run. As noted, the literature contains a range of
variants on the idea of a Gaussian error distribution, but there is not a
unified approach to fitting µ and (Lorenz et al., 2009; Mathiesen
et al., 2013; Chu et al., 2015; Golestaneh et al., 2016b; Chu and
Coimbra, 2017; Grantham et al., 2016). In this case study, im-
plementations are selected to be easily reproducible and require
minimal decision-making.

For the intra-hourly forecast, a smart persistence forecast is used for
the forecast mean, µ. Smart persistence, or persistence of cloudiness,
assumes that the last available CSI estimate will be persisted over the
forecast run, persisting weather conditions but accounting for the
diurnal trend (Zhang et al., 2015). The standard deviation, , is cal-
culated from the past 2 h of smart persistence errors, inspired by Chu
and Coimbra (2017) and analogous to the training period used for the
intra-hour PeEn. As with the PeEn, the first 1-h forecast run of each day
is a deterministic clear-sky GHI forecast. The second hour is the smart
persistence forecast based on the last CSI, dressed in a Gaussian dis-
tribution based on the first (up to) 12 accumulated residuals—times
when the sun is down during the training hour are skipped. Assuming
an operational CSI estimate, this approach is readily applicable for
operational forecasting, with the same sensitivity to missing data as the
PeEn described in Section 4.3.

Rather than relying on smart persistence, the hourly implementa-
tion uses the ECMWF control forecast as the forecast mean, µ. All
available residuals from the same hour of the day in the 2018 data set
are used to calculate the standard deviation, , which echoes the CH-
PeEn compromise between simply using all available errors (Grantham
et al., 2016) and developing a more advanced model based on sun
position (Mathiesen et al., 2013; Lorenz et al., 2009). Like the Ch-PeEn
forecast, the long residual data set makes this forecast resilient to
missing data, but the selection of the relevant residuals would need to
be updated to operationalize the forecast.

Resulting forecasts are shown in Fig. 6. The hourly forecast shows
how the Gaussian approach is much smoother than the stepped em-
pirical CDFs produced by other approaches. Although the standard
deviation at, for example, 12 p.m., is the same from one day to the next,
the forecast shape follows the updated information from the ECMWF
control forecast. Like the PeEn, the intra-hourly forecast can be ex-
tremely sharp during clear skies (hours 54–60), but it shows that the
erratic behavior in the observations is reflected in the next forecast run.

4.6. Markov-chain mixture model

In contrast with the Gaussian error distribution’s parametric ap-
proach, the MCM method is an intra-hourly nonparametric method
intended to replicate state changes over the steps in a forecast run. The
implementation used here is based on the approach introduced in
Munkhammar et al. (2019b) and finalized in Munkhammar et al.
(2019a). First, a time-series of training CSIs are binned in N bins evenly

Fig. 5. Hourly ECMWF ensemble forecast samples for 3 spring days in Boulder.
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divided on a b[ , ] from the minimum to the maximum value in the
training set. Second, an ×N N transition matrix M is estimated from
the transitions among the bins in the training time-series. The bin

…i N[1, , ] of the most recent estimate of CSI at the issue of the
forecast run, CSI t( )k , is determined; the piece-wise uniform distribution
forecast of CSI for step D in the forecast run then corresponds to the ith

row of the Dth multiple of the transition matrix: = …M M M M· · ·D . Like
the PeEn and Gaussian error distributions, CSI t( )k is assumed to be 1 for
the first forecast run of each day when no data is available yet. The
distribution will evolve as D is stepped over the course of a forecast run.
To achieve a forecast in terms of uniform quantiles rather than uniform
CSI bins, the model is sampled 1000 times for use in the empirical CDF,
P .

For this implementation, =N 100 bins are used, and time-series of
training data is selected on a rolling basis using the last 20 days of CSIs,
when the sun is up. This approach is similar to training procedure (B) in
Munkhammar et al. (2019a) and was selected for its similarity to other
20-day approaches, such as the 20-day hourly-resolution PeEn. While
this is an intra-hourly method, the longer training window was chosen
because the shorter 2-h training windows for the intra-hourly PeEn and
Gaussian error distribution approaches would not yield enough transi-
tions to populate the matrix M. Munkhammar et al. (2019a) note that
with a high number of bins, a bin can have zero probability of transition
if there were no transitions into and out of the bin in the training set. If
the test observation CSI t( )k falls within that bin, the model cannot
forecast forward. Using the 20-day training set, this issue was not ob-
served in this case study data. In instances where it does occur,
Munkhammar et al. (2019a) suggest forecasting a uniform distribution
from a b[ , ] to transition to the next time step. Repeated occurrences
might make this model less resilient to missing data, requiring a lower
number of bins or a longer training horizon.

A second potential issue identified in Munkhammar et al. (2019a),
which was not observed in their case study, was observed here. The
MCM model cannot account for test data that falls outside the range of
the training set (i.e., below a or above b). To account for these instances
in the case study, the MCM model is extended to account for instances
when the observation CSI t( )k falls outside the boundaries a b[ , ] by as-
signing it the closest boundary value, a or b, based on the re-
commendation in Munkhammar et al. (2019a).

The characteristics of the intra-hourly MCM forecast are shown in
Fig. 7. The probabilistic forecasts are much broader than either the
intra-hourly PeEn or Gaussian error distribution approaches, even
during clear skies. It is also noted that the upper tail of the forecast can
often extend far beyond the likely clear-sky irradiance. The MCM case
study in Munkhammar et al. (2019a) restricted its training and testing
data to the 2 h around noon to avoid low solar angles, while we test a
broader range of times and solar angles. There are outlier CSIs in the
current data set, with CSIs > 2 observed in < 1% of the 5-min average
values; these outlier CSIs, however, can range as high as 72. The impact

of these outliers can be seen in the very high upper quantiles of the
MCM distributions in Fig. 7. In a practical study, a few options might be
considered: retaining outliers if the proposed method has more ad-
vanced outlier handling or low solar angle modeling or restricting the
evaluation period if the model is intended for midday forecasting, as in
Munkhammar et al. (2019a).

Finally, it should be noted that while MCM model is only shown
here for intra-hourly forecasting, there is no inherent reason why it
cannot be applied to hourly-resolution forecasting. However, the lack of
exogenous data inputs, such as NWP models, will likely deteriorate its
quality over longer horizons, similar to other time-series and machine
learning methods. For that reason, we restrict our view to intra-hourly
forecasting, which is also the focus of its proposed applications in
Munkhammar et al. (2019a) and Munkhammar et al. (2019b).

5. Probabilistic forecast evaluation

In addition to describing the time-series characteristics of the
benchmark methods, their aggregate long-term performances will be
measured using proper probabilistic metrics and diagnostic techniques.
Three salient probabilistic forecast characteristics have been described
in the meteorology literature: reliability/calibration, resolution, and
sharpness (Gneiting et al., 2007; Gneiting and Raftery, 2007; Lauret
et al., 2019). Reliability, or calibration, is the statistical consistency of a
probabilistic forecast. That is, in a sufficiently long data set, the nom-
inal coverage rate should equal the observed coverage rate, e.g., the
20% confidence level covers 20% of the observations. A calibrated
forecast avoids systemic bias. Reliability/calibration can be assessed
visually using a reliability diagram, which plots the observed coverage
vs. the nominal coverage to observe deviation from the ideal (Pinson
et al., 2007; Lauret et al., 2019).

Forecast resolution is the ability of the method to produce case-
dependent forecasts; a static climatology forecast provides a counter-
example with zero resolution; however, forecast resolution cannot be
measured independently and is usually inferred from other analyses.

Fig. 7. Intra-hourly MCM forecast samples for 3 spring days in Boulder.

Fig. 6. Gaussian error distribution forecast samples for 3 spring days in Boulder. The hourly forecast (a) is fit to the deterministic ECMWF ensemble, i.e., the control
member of the 51-member ensemble. The intra-hourly forecast (b) is fit to a smart persistence deterministic forecast.
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Sharpness is a measure of how concentrated the probabilistic in-
formation is without considering the resulting observation—a forecast
with narrow prediction intervals is sharper than one with broad pre-
diction intervals. Sharpness on its own is not a measure of forecast
quality, however, because a sharp forecast can be wildly unreliable.
Therefore, Gneiting et al. (2007) states that the objective of a prob-
abilistic forecast is to maximize forecast sharpness, subject to calibra-
tion. Sharpness is intuitive to measure via the average interval width, ,
of a central ×(1 ) 100%interval of interest during an evaluation
period T (Pinson et al., 2007):

=
=T

P t P t1 1
2

,
2

, ,
t

T

1

1 1

(3)

where P is the forecast method’s CDF (e.g., P or P ). A sharpness dia-
gram that plots the average widths of the 10%, 20%, …, 90% central
intervals can be used to visually assess sharpness (Lauret et al., 2019).

In addition to individual assessments of these characteristics, the
continuous ranked probability score (CRPS) has been widely applied to
measure all three in one proper metric. CRPS is defined as the squared
difference between the forecasted and observed CDFs, where the ob-
served CDF is simply a step function at the observation, y (Hersbach,
2000):

=t P x t x y t dxCRPS( ) [ ( , ) { ( )}] .2
(4)

P is the CDF of the forecast variable, x, and is the indicator
function representing the observed CDF. CRPS is negatively oriented
(i.e., lower is better) and presented in the units of the forecasted vari-
able. A forecast that is narrow (sharp) and close to the observed value
(resolved) will achieve the best CRPS. During an evaluation period T, an
average CRPS, CRPS, can be calculated as:

=
=T

P x t x y t dxCRPS 1 [ ( , ) { ( )}] .
t

T

1

2

(5)

Given that this single metric describes multiple desired forecast traits,
methods have been proposed to decompose CRPS into its reliability,
resolution, and uncertainty components, where uncertainty is a func-
tion of the variability in the observations only. Hersbach (2000) pro-
posed a CRPS decomposition suitable for raw ensemble forecasts, which
Candille and Talagrand (2005) generalized for any continuous dis-
tribution function. Although these decompositions are widely cited as
theoretically feasible, only the simpler decomposition in Hersbach
(2000) for ensemble forecasts is commonly implemented. The authors
note that the decomposition in Candille and Talagrand (2005) is non-
standardized and subject to user decision-making, severely limiting its
practical implementation; in fact, the authors opted to disregard this
decomposition in subsequent work (Candille and Talagrand, 2008).
Given the need to compare multiple probabilistic methods and not only
ensemble forecasts, we opt to rely on the visual diagnostics of reliability
and sharpness diagrams and turn instead to an investigation of forecast
tail behavior.

Rather than decomposing CRPS into reliability and resolution
components, it can also be decomposed by quantile to illustrate
strengths and weaknesses in different regions of the forecast distribu-
tion. In the literature, CRPS is often described as the integral of the
Brier score (BS) over all thresholds in the dimension of the forecast
variable (Hersbach, 2000): x t dxBS( , ) ; however, each threshold in x
does not have a clear interpretation in solar forecasting, where a 200-
W/m2 threshold has a much different meaning at sunrise than at noon.
Instead, CRPS can alternatively be decomposed as the integral of the
quantile score (QS) over all quantiles (Laio and Tamea, 2007; Gneiting
and Ranjan, 2011):

=
=T

P t y t dCRPS 1 QS ( ( , ), ( )) ,
t

T

0

1

1

1

(6)

where the QS at the level (0, 1) is:

= y t P t P t y tQS 2( { ( ) ( , )} )( ( , ) ( )).1 1 (7)

Without the constant scaling factor of 2, QS is also known as the pinball
loss (Steinwart and Christmann, 2011). Through this decomposition,
diurnal trends are naturally accounted for in the time-varying forecast
CDFs, P. Additionally, different regions of the distribution can be
weighted more heavily to illustrate strengths and weaknesses that can
be obscured by CRPS (Lauret et al., 2019; Gneiting and Ranjan, 2011).
For example, the lower tail of the distribution might be of particular
interest to power system operators because times when solar power is
unexpectedly low are more likely to impact system reliability. Gneiting
and Ranjan (2011) proposes weighted quantile scores of the form

= wwQS ( )QS , which can be substituted into (6) to calculate a
weighted average CRPS, wCRPS, which preferentially scores selected
areas of the distribution. Two quantile-weighting functions are applied
as defined by Gneiting and Ranjan (2011): a left tail w( )l and right tail
w( )r weighting function, for each level (0, 1):

=
=
=

w
w
w

( )
( ) (1 ) , if left-tail weighted
( ) , if right-tail weighted

l

r

2

2 (8)

In the case study results shown next, the benchmark forecasts are
compared using these diagnostics: unweighted and weighted CRPS
values to compare aggregate performance as well as reliability and
sharpness diagrams to illustrate different characteristics. For these
benchmarks to be useful in practice, however, the proposed methods
should be compared to a selected benchmark to illustrate improvement.
Authors can use a skill score, such as the CRPS skill score, to quantify
improvement over the benchmark (Lauret et al., 2019):

=CRPSS 1
CRPS

CRPS
.proposed

benchmark (9)

Using a proper score such as CRPS, a forecast with negative skill score is
worse than the benchmark, a skill score of 0 is on par with the
benchmark, and a skill score of 1 is ideal.

6. Comparative results of benchmark methods

Using the entire year 2018 data set, each of the ten benchmark
methods summarized in Table 3 (5 hourly, 5 intra-hourly) were as-
sessed for the 7 SURFRAD sites using the diagnostic techniques de-
scribed in Section 5. The annual aggregate results further demonstrate
the main features of each benchmark method illustrated for the 3 days
in Figs. 2–7. For example, Fig. 8 shows the average widths of the central
10%–90% intervals for the hourly forecasts for the SURFRAD site in
Boulder, CO. As expected, climatology is consistently the least sharp
and has the broadest intervals, whereas the NWP ensemble—known for
having clustered ensemble members—is consistently the sharpest.
Adding the Gaussian distribution around one ECMWF member pro-
duces a significantly broader forecast than the ensemble approach. In-
terestingly, the PeEn and Ch-PeEn show similar sharpness, showing that
for this site, a 20-day subset can have about as much spread as the
entire year.

As stated, however, sharpness in the absence of reliability does not
indicate a high-quality forecast. To investigate statistical reliability/
calibration, Fig. 9 shows the reliability of the 1st to 99th percentiles by
comparing the nominal percentile to the proportion of observations that
fell below the corresponding quantile. Though not sharp, climatology
and its relative, the CH-PeEn, show perfect reliability—this is expected
by definition, given that the forecast is made from the sample set. The
20-day PeEn shows reasonable reliability as well as a stepped char-
acteristic because of the relatively small set of discrete points used to
define its empirical CDF. The ECMWF ensemble, in contrast, shows
clear reliability deficiencies. Although it is the sharpest forecast, it is
underdispersed: the lower quantiles are too high (observed far more
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frequently than expected), and the upper quantiles are too low (not
observed frequently enough), and it shows that the 50th percentile
might be slightly biased too low. Dressing the ECMWF control member
in a Gaussian distribution produces a more reliable lower tail, but the
forecast is regularly biased too high.

When turning to the intra-hourly temporal resolution, Figs. 10 and
11 show that the reliability and sharpness characteristics of the cli-
matology and CH-PeEn methods are the same. Two of the other
methods—PeEn using the last 2 h of data and the smart persistence

Gaussian error distribution—are much sharper. The MCM model,
trained on the last 20 days of data, is not quite as sharp, particularly at
the outer (70–90%) central intervals. In contrast with the 20-day PeEn
for hourly resolution forecasts, the intra-hourly version is not nearly as
reliable and tends to be underdispersed—that is, it underestimates the
spread of uncertainty. The smart persistence Gaussian error distribution
shows even more bias and regularly underestimates the observed irra-
diance. The MCM model, in contrast, shows much better calibration
than either the PeEn or Gaussian error distribution, while being slightly

Table 3
Summary of Case Study Benchmark Implementations.

Benchmark Class CDF Temporal Scale Training Data Selection

Climatology P Hourly 2018 1-h average GHI
Intra-hourly 2018 5-min average GHI

CH-PeEn P Hourly 2018 CSIs from same hour-of-day + hourly clear-sky GHI
Intra-hourly 2018 CSIs from same hour-of-day + 5-min clear-sky GHI

PeEn P Hourly GHI from same hour-of-day from previous 20 d
Intra-hourly CSI from previous 2 h + clear-sky GHI forecast

ECMWF Ensemble P Hourly 51-member ECMWF ensemble
Intra-hourly —

Gaussian Error Distribution P Hourly ECMWF control forecast + errors from same hour-of-day in 2018
Intra-hourly Smart persistence forecast + errors from previous 2 h

MCM P Hourly —
Intra-hourly 1000 samples from MCM model trained on previous 20 days of CSIs

Fig. 8. Average width of 10%–90% central intervals for five benchmark hourly resolution forecasts for the Boulder SURFRAD site in 2018.

Fig. 9. Reliability diagram of the 1st to 99th percentiles for five benchmark hourly resolution forecasts for the Boulder SURFRAD site in 2018.
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overdispersed in the middle of the distribution.
The CRPS—both unweighted and weighted—measures the overall

performance of each of these methods for each SURFRAD site, reported
in Table 4 for the hourly resolution forecasts and Table 5 for the intra-
hourly forecasts. Though not achieving perfect reliability, the ECMWF
ensemble and Gaussian error distribution of the ECMWF control
member achieve the best (lowest) CRPS for the hourly resolution
forecasts, reflecting the benefits of their forecast resolution and sharp-
ness. The one exception is for the Desert Rock site in Nevada, which
achieves the best CRPS using the CH-PeEn forecast. This site is an
outlier because of its very dry and clear weather, for which this simple
forecast capturing the diurnal trend appears competitive.

The ECMWF ensemble and Gaussian error distribution also achieve
the best left-tail and right-tail weighted CRPS, with the NWP ensemble
performing slightly better for the right tail and the Gaussian error
distribution performing slightly better for the left. These trends can be
seen in more detail in Fig. 12, which shows the quantile score decom-
positions both with and without the tail-weighting functions. In
Fig. 12(a), the ECMWF ensemble’s quantile scores are skewed, with the
right tail significantly outperforming the left tail because of the en-
semble’s tendency to underestimate the range of low outcomes. The
Gaussian error distribution scores in Fig. 12(b) are much more sym-
metrical, with the right tail only slightly outperforming the left tail.

For the intra-hourly forecasts, the MCM model achieves the best

Fig. 10. Average width of 10%–90% central intervals for five benchmark intra-hourly forecasts for Boulder SURFRAD site in 2018.

Fig. 11. Reliability diagram for five benchmark intra-hourly forecasts for Boulder SURFRAD site in 2018.

Table 4
Average unweighted and weighted CRPS [W/m2] over 2018 for hourly-resolution forecast methods: climatology (CLI), CH-PeEn (CH-P), PeEn, ECMWF ensemble
(NWP), and ECMWF control Gaussian error distribution (GAU). The best scores are in bold.

Unweighted =wCRPS( 1) Left-weighted =w wCRPS( )l Right-weighted =w wCRPS( )r

CLI CH-P PeEn NWP GAU CLI CH-P PeEn NWP GAU CLI CH-P PeEn NWP GAU

Bondville, IL 153 78.1 84.8 50.8 52.7 41.2 26.5 27.7 16.7 16.6 50.7 20.3 23.3 15.5 15.6
Boulder, CO 163 75.7 85.0 64.6 64.2 44.8 26.4 29.2 23.9 21.2 53.1 19.2 22.2 17.4 18.0
Desert Rock, NV 177 37.7 47.0 39.2 42.5 51.6 15.0 17.5 11.0 13.9 54.7 8.5 11.7 14.1 12.1
Fort Peck, MT 146 64.8 70.1 48.0 49.9 39.2 22.5 23.7 16.6 16.0 48.8 16.5 18.7 13.9 14.6
Goodwin Creek, MS 163 82.3 87.8 56.4 58.3 44.1 28.4 29.1 18.3 18.5 53.5 21.0 23.7 17.4 17.0
Penn State, PA 140 83.4 88.0 57.4 55.1 35.9 25.5 26.7 19.1 16.9 48.4 24.2 26.0 17.1 16.8
Sioux Falls, SD 145 74.3 83.5 49.7 50.6 38.6 24.9 27.2 17.3 16.4 48.9 19.6 22.9 14.1 14.5
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scores in almost all cases, including for its highly reliable tails.
Following MCM, the PeEn and smart persistence Gaussian error dis-
tribution are competitive with each other, with the Gaussian error
distribution outperforming PeEn for the majority of sites. In all cases,
the CH-PeEn achieves a distant fourth place, with climatology
achieving the worst CRPS. In this instance, the MCM model’s high re-
liability and intermediate sharpness outperforms the sharper but un-
reliable PeEn and Gaussian approaches. Putting aside the MCM model,
the Gaussian error distribution consistently performs better for the left
tail-weighted CRPS, while the PeEn consistently performs better for the
right tail, echoing the trends shown in Fig. 11. The quantile score de-
compositions for these two methods for the Boulder site are shown in
Fig. 12c) and – both are relatively symmetrical, but slightly skewed,
resulting in the tail performance also shown in the weighted CRPS
scores.

In addition to the selected results shown in Figs. 2–11 for the
Boulder site, the open-source kdayday/solarbenchmarks R re-
pository on Github generates more than 200 figures showing the results
for all sites, including probability integral transform (PIT) histograms,
quantile score decompositions, and sharpness and reliability diagrams.
Additionally, the solarbenchmarks code generates data files with the
1st to 99th forecast quantiles for each benchmark and site, for use by
other researchers.

7. Recommendations and conclusions

This paper reviewed and implemented ten probabilistic solar fore-
cast variants from six benchmark classes relevant for both hourly and
intra-hourly forecasting. While the hourly resolution forecasts were il-
lustrated here with an intra-day horizon, it is important to note that the
hourly-resolution methods are equally applicable to day-ahead fore-
casts with longer and potentially overlapping horizons. The bench-
marks range from reliable but low resolution—such as climatology and
CH-PeEn—to the very sharp but less reliable NWP ensemble and
Gaussian error distribution approaches. None is an ideal forecast in
every respect; however, the strengths of each can be used to bound the
space where method improvements can be made.

To that end, we recommend that future researchers use at least two
benchmarks to compare their proposed methods: a highly reliable
(though potentially naive) yardstick benchmark and a highly resolved
or state-of-the art point-on-the-yardstick benchmark. Although me-
teorology has classically relied on climatology for the former, we re-
commend CH-PeEn as in Yang (2019b). CH-PeEn, which is essentially
climatology tailored to solar forecasting’s diurnal trend, has the same
firm reliability as climatology but gains some basic forecast resolution.
Unlike PeEn, a long historical data set makes CH-PeEn resilient to
missing data issues. CH-PeEn also improves upon the coarse reliability
of a PeEn, and it can be applied similarly for both intra-hourly and

Table 5
Average unweighted and weighted CRPS [W/m2] over 2018 for intra-hourly forecast methods: climatology (CLI), CH-PeEn (CH-P), PeEn, smart persistence Gaussian
error distribution (GAU), and MCM. The best scores are in bold.

Unweighted =wCRPS( 1) Left-weighted =w wCRPS( )l Right-weighted =w wCRPS( )r

CLI CH-P PeEn GAU MCM CLI CH-P PeEn GAU MCM CLI CH-P PeEn GAU MCM

Bondville, IL 157 92.1 52.8 52.8 48.7 42.4 30.5 16.9 15.7 15.8 52.1 24.5 15.7 17.2 14.1
Boulder, CO 166 91.3 61.6 56.7 51.6 45.8 31.3 19.9 16.8 16.6 54.1 23.7 18.2 18.7 15.2
Desert Rock, NV 173 47.3 35.2 36.2 29.4 50.6 18.5 11.7 10.7 10.2 53.0 11.0 10.1 12.0 8.1
Fort Peck, MT 149 77.0 46.3 46.1 39.8 40.1 26.2 14.6 13.3 12.9 49.5 20.1 14.0 15.7 11.7
Goodwin Creek, MS 168 98.4 59.7 57.9 52.5 45.6 33.0 19.1 17.2 17.1 55.1 25.9 17.7 18.9 15.0
Penn State, PA 146 98.1 60.0 56.4 53.0 37.4 29.3 18.4 16.5 16.4 50.6 29.1 18.6 18.7 16.0
Sioux Falls, SD 149 86.8 47.8 44.0 41.0 39.7 28.6 15.0 12.9 13.1 49.8 23.4 14.6 14.6 12.2

Fig. 12. Quantile score decompositions of the unweighted and weighted CRPS for selected methods for the Boulder, CO SURFRAD site. Top row shows hourly (a)
ECMWF ensemble and (b) ECMWF Gaussian error distribution methods. Bottom row shows intra-hourly (c) PeEn and (d) smart persistence Gaussian error dis-
tribution methods.
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hourly forecasts. Any decent operational forecast should be able to beat
this benchmark in terms of resolution and CRPS, though likely with
some degradation in reliability.

The second benchmark should describe a less naive benchmark,
ideally closer to the state of the art. For an hourly forecast, a raw NWP
ensemble is a natural choice. NWP models are widely used in operation
and therefore give a useful point of comparison. Typically, raw NWP
ensembles are very underdispersed, resulting in a highly sharp though
unreliable forecast. Together, CH-PeEn and the raw NWP ensemble can
bound the desired region of forecast characteristics: on one extreme is a
benchmark with high reliability/low sharpness, and on the other is a
benchmark with high sharpness/low reliability. Comparing the relia-
bility diagrams, sharpness diagrams, and CRPS skill scores of a pro-
posed method to these benchmarks can help position it within that
region.

For intra-hourly forecasting, there is not an obvious choice to use as
this second benchmark. Intra-hourly probabilistic forecasts are still rare
in operation. The proposed methods in the literature rely on a variety of
statistical and machine learning approaches, so there is less of a clear
state of the art than with hourly resolution forecasting. Of the five
methods reviewed here, however, the MCM model clearly out-
performed the other four in terms of CRPS, with the PeEn and Gaussian
error distribution providing alternative options. While it can experience
convergence failure due to zero probability transitions or outlier test
data, reasonable workarounds are identified in Munkhammar et al.
(2019a).

In addition to the two generic benchmarks that allow easier com-
parison among articles, authors may wish to include more advanced
benchmarks to contrast among methods within the article. While the
benchmark methods provided here are developed to be reproducible
and widely applicable, they do not make use of exogenous information
such as wind speed and temperature. For novel methods that use exo-
genous information, a fairer comparison will also include benchmarks
with the same amount of information as inputs. For example, a paper
could include the generic MCM approach, as well as a variant that
downselects training data, conditional on the values of exogenous
variables, like the atmospheric flow approach in Mathiesen et al.
(2013).

Finally, we also recommend that other authors include a data
handling section or appendix to describe small but important details,
such as missing data handling, boundary conditions applied to the
forecast distribution, and the programmatic implementation. For ex-
ample, a truncated vs. an untruncated Gaussian error distribution can
result in very different tail behavior—or even a nonsensical forecast. In
this paper, implementation details are described throughout, and data
preprocessing is documented in the appendices, which follow.
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Appendix A. SURFRAD and CAMS McClear Data Preprocessing

Based on the temporal resolutions of the intra-hourly and hourly
forecasts, the SURFRAD and McClear data are averaged from 1-min
values to 5-min or 1-h values, respectively. Only time periods when
average SURFRAD solar zenith angle indicates the sun is at least 5°
above the horizon (i.e., zenith angle is 85 ) are used, both for training
and validation data. A NetCDF file is produced for each site with the
preprocessed average GHI observations, clear-sky GHI estimates, and
logical indicators of whether the sun is up for each temporal resolution
during the year 2018. A similar file is produced with data from the last
20 days of 2017 for use in the hourly PeEn. All the associated files are
provided online the kdayday/solarbenchmarks Github repository,
including the raw SURFRAD and CAMS McClear data files, the R pre-
processing script, and the final NetCDF data files.

Appendix B. ECMWF Forecast Preprocessing

Temporal and spatial preprocessing of the ECMWF NWP ensemble
members are described here. Although the ECMWF data are not open
source, researchers are often given permission to access historical data
for research purposes. Unlike the SURFRAD data, the ECMWF data used
in this case study cannot be included with this paper; however, the
accompanying files include both a batch script used to retrieve data
from ECMWF’s Meteorological Archival and Retrieval System (MARS)
and an R script that executes the preprocessing steps summarized as
follows. Other researchers with permission to access MARS can re-
plicate these steps to gather the same set of input data used here.

Fifty-one historical forecasts (50 members of the perturbed en-
semble forecast + 1 control forecast) were retrieved from MARS for
the entire year 2018. Forecast runs are issued at midnight, 6 a.m., noon,
and 6 p.m. ( = 6 h) with hourly resolution; the first six forecasts from
each run are retained, so that every time step is forecasted using the
most recent run. ECMWF reports surface irradiance through its surface
solar radiation downward (SSRD) (J/m2) parameter, which is accu-
mulated irradiance during the modeling period (https://apps.ecmwf.
int/codes/grib/param-db?id=169). Average hourly irradiance (W/m2)
is assessed as the difference between subsequent values, divided by the
modeling period. The data were retrieved over a latitude/longitude grid
of 0.2° ×0.2°. The forecast values at the four closest grid points were
spatially interpolated using the coordinates of the SURFRAD sites to
generate a forecast for each location. Like the SURFRAD and CAMS
McClear data, the preprocessed ECMWF data are saved to NetCDF files
for each site for use in the benchmark_forecast_comparison.R
script available in the kdayday/solarbenchmarks Github re-
pository.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.solener.2020.05.051.
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