
Verkle Tries, Statelessness and The Verge

Agnish Ghosh,
Engineer at TrueZK,
Protocol Fellow at Ethereum Foundation
Ethereum Devconnect Scholarship Recipient

Vector Commitments vs Hash Functions

● Verifying data via Hash functions results in revealing the whole data.
● However, if I use Vector Commitments, I can simply prove that the 2nd index

of this vector is indeed 72, verification happens by making an “opening” at
that point, eventually verifying that point.

● Vector Commitments are inherently based on the concept of Polynomial
Commitment Schemes, just that here we represent each of entries of the
vector as a linear combination of coefficients of an agreed upon polynomial.

Downsides of using the Hash function

Merkle Proofs using Hash functions are including data of all the sister nodes at
each level

Why vector commitments?

No sister nodes are needed in the proof, the proof generation takes a more
“path-specific” approach as they link each commitment in the path to the next.

Advantages?

Good enough….

Verkle Tries + the Verkle
Cryptography API

Initial Mathematical Approach (for Eth1)

● Using Multipoint proofs based on KZG Polynomial Commitment Schemes, for
a Verkle Trie of depth say ‘d’, we could compute a commitment to individual
vectors at each level, which is a_0, a_1,...,a_2^d - 1.

● Where the defn of the Polynomial Commitment is p(X) of degree n a function :
● Here p_i are the coefficients of the individual polynomials
● Degree of p(X) is the depth of the tree, i.e, 2^d - 1.
● Commitments are ideally 48 bytes long, computed on the

BLS12_381 curve.

Demerits of this approach

● As commitments in KZG were essentially group elements, that were
dependent on bilinear pairings

● Pairing based cryptography, in this case, needed a Trusted Setup, which was
usually implemented via secure Multi-Party Computation

● A trusted setup ceremony usually takes some time.

● On the other hand, a new approach based on Inner Product Arguments (kind
of like Bulletproofs) and Pedersen Commitments, were mainly based on the
“Discrete Log Problem”.

● This design did NOT require a Trusted Setup.

A few more things on Pedersen Commitments

● This is a collision resistant hash based commitment scheme, which is used to
commit to a value x ∈ Z_p, where p is a prime, hence we’re dealing with a prime field
here.

Consider a cryptographic group

Hold on…

● Now we can define g, h ∈ R = {0,1,....,q-1}, for m, r ∈ R. Then the hash
function would simply be

● Moreover, these commitments are homomorphic in nature, which means,
comm(m1, r1) + comm(m2, r2) = comm (m1+m2, r1+r2).

● These gives the us the real leverage to use this in multipoint vector
commitments, thereby making verkle proofs mainly path dependent.

Quick Recap

● Verkle uses commitments, so most of the data isn’t revealed.
● Verkle cares about path and not the siblings -> smaller proofs
● Verkle cares about depth, so more children means lower depth, which means

more data aggregated into a single proof -> smaller proof
● Account and storage tries are merged into one, hence again smaller proof.

Why can’t we use a single commitment?

● Getting a vector commitment for the whole state makes the proof generation
very latent.

● We usually think about a trade-off between proof size vs computation time
● Ideally the verkle tries are 4 levels deep and contains 256 children.

Statelessness why???

1. Reduced amount of data to participate in the network
2. Easy and less time-consuming network syncing
3. Lesser baseline for storage specs
4. Reduced amount of data required to process, which shall be easier for

smaller devices
5. Faster access to info

State Expiry

● Every year, the period resets with a new tree
● Data for the current and previous year is stored
● Data for previous years are discarded, except for the state roots
● Accessing data before 2 periods requires data resurrection, and a valid

proof.

State Expiry -> State Resurrection

Period 1Period 0 Period 2

freeze()

Proof

Address Space Extension

1. Increase the no. of bytes in an address from 20 to 32
2. Use bytes 3-5 for the period at which the address was first accessed
3. Use bytes 6-31 (26 bytes) to store the hash of the public key
4. Use byte 0 for version, bytes1-2 are reserved (0)

Connecting ASE with State Expiry

● Simplifying data storage by subdividing state tries into periods, charging for
data storage in exchange of a fee.

● Potential threat: risk of breaking existing contracts, contract bridging by Ipsilon
team

State Networks -> The Portal Network (by Piper)

● A node stores only a subset of the entire data
● Data is requested over the network as per need
● Proofs provided to ensure that the provided data is correct
● Pros: be a validator in Eth2, without storing any data at all!

Some of the existing research going on in EPF

● Verkle Trie library and migration with the existing Eth1 and Eth2 Nimbus
Client, using the Constantine crypto library written in Nim.

● Verkle Trie library for Besu, currently interfacing Arkworks.

Some potential explorations

● Exploring the need for developing a Java cryptographic primitives library
● Possible changes in type 1 (Ethereum Equivalent zkRollups)

https://github.com/mratsim/constantine
https://github.com/arkworks-rs

