THAPL
Theaterical Programming Language

Matan I. Peled
Department of Computer Science
Technion—Israel Institute of Technology

mipQ@cs.technion.ac.il

Research Proposal
Advised by Prof. Yossi Gil

Abstract

We propose to develop THAPL, a programming language for
generating animations in presentations. THAPL draws inspi-
ration from the literary format of a theater play, for instance
William Shakespeare’s [19] plays.

THAPL focuses on animations of the kind usually found in
slideshows, where elements appear, disappear, move around,
and so on.

1 Introduction

The purpose of this research is to explore an innovative ap-
proach to the declarative/imperative paradigm of program-
ming languages. To demonstrate this approach, we propose
to develop a prototype for domain-specific lanuage inspired by
the scripts of theatrical plays (hence dubbed THAPL), which is
intended to be used in the context of generating animations
for use in presentations (“slide-shows”). The Theater play
metaphor encompasses the concept of a classical theater play
script (e.g. Shakespearian play), enumerating the ‘dramatis
personz’, scenery, text, and actions (e.g. ‘exit chased by a
bear’).

THAPL attempts to expand the declarative/imperative
paradigm by introducing an actor/action model, and special-
ized constructs to describe actions occuring simultaneously.

Examples of domains where THAPL may be useful include
academic courses (especially those that deal with graphs and
algorithms), new product presentations, fiscal reviews, and in
general and domain where it is helpful to visualize concepts
by moving and transforming objects on screen.

For a first look at a THAPL program, please examine Fig. 1.
We see an implementation for a basic presentation, which is
comprised of elements appearing in sequence.

Vision Briefly: Take the play metaphor and play with it in
the context of generating presentations (“slide-shows”).

The “Chicken Chicken” presentation in Fig. 1, used here as
a “lorem ipsum?”, is a very simple one, with limited transitions.
Nonetheless it does contain a few slides with figures that have
elements that appear in sequence. The code shown models
this sequence.

Fig. 1 THAPL implementation of the Chicken Chicken [24]
presentation.

Atomic actions:
show.
hide.
color.

Act Chicken:
Dramatis Personae:
ChickenChickenChickenBox:
ChickenDB.
ChickenQuestion.
Scenery:
ChickenFlowChart.

Action:
show chickenDB then show chickenChickenChickenBox.
# “over” is an example of an elaborator.
show chickenQuestion over chickenFlowChart.

Act ChickenChicken:
Dramatis Personae:

Chickens2.
Chickens4.
Chickens8.
Chickens16.
Action:
# 7||” is a short form of "meanwhile”
show chickens2 || color chickens2: red.
show chickens4 || color chickens4: green.
show chickens8 || color chickens8: blue.
show chickens16 || color chickens 16: purple.

Here and henceforth, our listings use the following conven-
tions:

1. Keywords, such as meanwhile, are typed in blue boldface.

2. Comments, for instance “# note this”, are typed in green
slanted lettering.

3. Other parts of code, such as identifiers, are rendered in
sepia boldface.

The Atomic actions clause is declaring the actions that
are used later on, and can be ignored for the purpose of this
introduction. The code is divided into acts denoted by the
Act keyword, where each act specifies an animation. The acts
shown here are presumed to be executed by an external source
that will embed them in the proper place in the presentation.

Each act contains additional clauses. Dramatis personae
is a list of actor entities that can be part of actions, while


mailto:mip@cs.technion.ac.il

Scenery is list of static entities that remain in the same place
throughout the animation, but can be referenced in actions
(so that actions can be done relative to them). The last part,
marked with the Action keyword, is an execution part, and
contains the steps to create the animation. Each line in the
action part is done in sequence, unless otherwise directed.
For example, using the meanwhile operator actions can be
performed in parallel. This is discussed further in Sect. 2.2.

THAPL is essentially an imperative language, but it has no
variables, nor procedures. Instead it uses actors and actions
on those actors, and acts to organize actions and actors to-
gether. Syntactically, it uses whitespace to denote blocks,
like PyTHON [11], and not curly brackets (“{”) as introduced
by BCPL [17] and made popular by C [9]. Additionally it
has several syntactic features intended to make the language
more flowing and English-like, and to more closely resemble
a dramatic play.

Outline. The remainder of this document is organized
as follows. Sect. 2 contains an introductory exposition of
THAPL, including a discussion of the basic concepts and some
notes on syntax. Examples of prior research and similar im-
plementations are presented in Sect. 3. Sect. 4 enumerates
some challenges that may be encountered as part of the work
being proposed. Finally, Sect. 5 concludes.

2 This Proposal

2.1 Thapl language principals

Inspiration As an inspiration for THAPL, let us look to our
primary source, theaterical plays. In Fig. 2, we see a portion
of such a play. Most of it is dialog, which is not very useful
for describing slide-shows, but note the following:

1. Characters entering.

2. Characters acting (climbing the wall).
3. The description of the scenery.
4

. The general shape of the script - indentation and so on.

Basic concepts

Actors are those things which appear on the screen. At its
rawest, the language is concerned with manipulating ac-
tors over time. Actors have names and are addressed
using that name.

Groups Actors belong to groups, which can be hierarchi-
cally organized. Groups are also named and addressed
by name. Any operation that is allowed on a single actor
is also allowed for a group, and is equivalent to apply-
ing the operation to all the members of a group. Open
question: can an actor belong to more than one group?

Atomic actions Actions are operations to be performed,
and execute pre-defined behavior. The actual actions
are not part of the basic language, and may depend on
external libraries like TikZ. They are defined by a con-
figuration file and can be customized by the user.

Fig. 2 Act 2, Scene 1 from William Shakespeare’s “Romeo &
Juliet”

ACT II. Scene I.
A lane by the wall of Capulet's orchard.

Enter Romeo alone.

Rom. Can I go forward when my heart is here?
Turn back, dull earth, and find thy centre out.

[Climbs the wall and leaps down within it.]

Enter Benvolio with Mercutio.

Ben. Romeo! my cousin Romeo! Romeo!

Mer. He is wise,
And, on my life, hath stol'n him home to bed.

Ben. He ran this way, and leapt this orchard wall.
Call, good Mercutio.

[...]

Ben. Come, he hath hid himself among these trees
To be consorted with the humorous night.
Blind is his love and best befits the dark.

Mer. If love be blind, love cannot hit the mark.
Now will he sit under a medlar tree
And wish his mistress were that kind of fruit
As maids call medlars when they laugh alone.
0, Romeo, that she were, 0 that she were
An open et cetera, thou a pop'rin pear!
Romeo, good night. I'll to my truckle-bed;
This field-bed is too cold for me to sleep.
Come, shall we go?

Ben. Go then, for 'tis in vain
'To seek him here that means not to be found.
Exeunt.




Atomic actions can be categorized into the following
types:

1. Actions with no receiver actions:
“dim the lights”, “relax” (insert empty slide.)

2. Nullary actions, which have receiver actions but no
arguments: “show”, “hide”, “exit”, “enter”, etc.

3. Move actions, which act with respect to predefined
locations.

4. Scalar Unary set actions: e.g., “color: red”

5. Scalar Unary actions which act on a stack: e.g.,
“push color: red”, “pop color”

6. Invocation of a previously defined act (see below.)

Note that actions may or may not operate on an actor,
and may accept zero or more arguments.

Atomic elaborators Actions may take elaborators, which
modify the way an action isperformed. All elaborators
an action may take are defined along with the action in
the configuration file. Example of elaborators include

“enter slowly”, “along curve foo”, etc.

Action constructors There are several ways to string to-
gether actions. By default, each action is separate and
is executed separately and sequentially. However, it is
possible to combine actions in the following ways:

Concatenation e.g., “show a then hide a” or
“show a + hide a”. This will execute the two base
actions in sequence.

Meanwhile e.g., “show a meanwhile hide b” or
“show a || hide b”. This will interleave the two
actions, performing both at the same time (see be-
low for a discussion on timing.)

Repeat e.g., “Repeat (show a thenhide a) 3 times”,
or “3 * (show a + hide a)”, repeats the base ac-
tion n times in sequence.

Repeat endlessly e.g., “Repeat (---) endlessly” or
“oo* (--- )7, repeats an action forever. This can be
useful in conjuction with meanwhile.

Acts are animations, described by a series of actions to be
executed, with additional context to allow the executions
of those actions. An act may be named, enumerated, or
anonymous. Acts may also be nested within each other.

Each act is comprised of three parts:

Dramatis Persona is a hierarchy of groups of actors.

Scenery A list of pieces of scenery. Pieces are similar
to actors, but cannot be acted on by actions. How-
ever, actions can be performed in relation to them,
e.g., “move actor to piece”, after which the actor
will have the same on-screen location as the static
scenery piece. This part is optional and may be
omitted.

Another possibility is “move actor along curve,
which allows an actor to move in a pre-defined path
across the slide.

Action A series of action statements to describe the an-
imation.

Acts can be executed using the perform keyword. The
first act to be executed is selected externally in the pre-
sentation file.

2.2 Time, Frames, and Pauses

Basic definitions
Frames are single slides in the resulting slideshow.
Time is real wall-clock time, measured in seconds.

An act defines an animation. Also, for each atomic and
compound act we know the frames(- - - ) number, which is the
minimal number of frames required for the act. In the result-
ing slideshow, we would like each act to take a certain length
of time.

Translation of frames into time

Timing an act is to manually specify its length in time, ei-
ther completely or partially.

Pause is a chance for the presenter to halt the presenta-
tion temporarily, perhaps to explain a particularly perti-
nent point. The presentation will continue only after the
presenter manually resumes it (i.e., by clicking). While
pause is very similar to relax, they are not identical.

Executing actions in sequence and in parallel Basic

operations in an act translate to a frame. For example,

x show.
y hide.

translates to two frames added to the original stack, while,
x show || y hide.

translates to one frame added to the stack.

At this point it is important to note that we can also include
“blank” or “nop” frames by using the relax action. So, we
can combine actions like

(x show + relax) || (relax + y hide).

which will add two frames to the stack, and would in fact be
identical to the first example given here.

Length in frames of actions executed in parallel
In general, if A; and Ay are executed meanwhile. And A
takes f1 frames and Ay takes fo, then the number of frames
of A1]|As is the least common multiplier of f; and f,

Moreover, there are actions with an unbounded number of
frames, which we will denote as 0. An example is

Hamlet move to balcony.

The function frames(-) takes as argument an action, which
can be atomic or compound and returns the number of frames.
If

frames(A3) =0



and

frames(A4) =0

then
frames(A3/A4) =0 (2.1)
frames(As||A4) =0 (2.2)
frames(A1/As) = f1 (2.3)
frames(Az||A4) = fo (2.4)

Time Time is both discrete and infinitely divisible. In other
words, THAPL can always make something happen twice as
fast. Time can be scaled, using elaborators. For example, the
elaborator slowly makes an action take twice as long as it
would have otherwise. Most primitive actions, like show and
hide, take one time unit.

2.3 Thapl Language Syntax

Basic syntax The THAPL language is case-insensitive. It is
expected that the user will use this language feature to make
the code as English-like as possible, for example by properly
capitalizing proper nouns and the first letter of every line.

Identifiers Identifiers are of the form
[A-Za-z] [A-Za-z0-9-]. Each identifier may or may
not have a “s” suffix, to allow for ease of pluralization. This
is useful in plural contexts, and users are expected to use
this feature to make the code more readable.

THAPL allows multi-word bare identifiers, e.g., foo bar is
a legal identifier.
Number literals There are three different number literals
in THAPL:

Arabic numerals - these are the usual Arabic numerals,
such as 1, 2, 3.

Roman numerals - string literals that use only one of the
seven roman numeral symbols (I, V, X, L, C, D and M)
and can be parsed as a roman numeral, are treated as
numbers.

English number names - string literals that are a proper
name for a number in the English language are treated
as numbers. E.g., one, one hundred and twenty one,
and so on.

Roman numeral literals Roman numerals are included
in THAPL so as to induce a general Shakespearean style and
feel to code. The roman digits are specified in an additive
notation where the digits are ordered from left to right in
decreasing values. For example, III has the value of 3, and
XXIT has the value of 22. In order to avoid repeating the same
character 4 times. If a character were to repeat 4 times, roman
numerals use subtractive notation instead, e.g., IV means 5 —
1, IX means 10 — 1, and so on.

We artificially cap the maximum value re presentable us-
ing roman numeral literals at 3999, or MMMCMXCIX. This is a
reasonable limitation since for large numbers roman numerals
are quite unwieldy.

English named numeral literals The English named
numbers are supported as numeral literals.

The basic rules for English numeral literals are as fol-
lows. For 0-20, there are atomic names: zero, one, ..,
eleven, twelve, .., nineteen, twenty. For 21-99, we con-
catenate a name for the tenth’s place with a name for the
unit’s, unless the unit’s place is zero, like so: twenty one,
twenty two, .., thirty, .., ninety nine. Then from 100
on we concatenate an atomic numeral literal for 0-999 and
a name for the higher decimal place (hundreds, thousands,
millions) with "and” and the numeral literal for the num-
ber in the 0-99 place. E.g., one hundred and twelve,
twenty million nine thousand and eleven, and so forth.

Whitespace THAPL uses whitespace and indentation in or-
der to mark scopes, as made popular by PYTHON. For exam-
ple, when declaring actors, the actor hierarchy in denoted
using differing whitespace:

Dramatis Personae:
one:
two.
three.

In this example, “one” is an actor group which contains
“two” and “three”. THAPL makes heavy use of nesting.

2.4 Demonstration

As a parting note, inspect Fig. 3 for an example of more com-
plicated animations possible with THAPL. It is very similar
to Fig. 1, but shows off possibilities like moving a figure along
a curve and scaling time using meanwhile.

3 Previous Research

When researching existing work in this topic, we found quite
a few tools for making presentations & animations, but none
that fit in the exact niche that we are trying to fill with
THAPL. The programming languages that exist are either
operating at a too low level of abstraction, are not well suited
to creating animations, or are aimed at authoring some other
type of media, and can create slideshows as an after-thought.

There are other tools for creating graphics and anima-
tions [20] not mentioned here since they are less useful for
creating slide-shows.

It is useful to create a dichotomy between approaches that
focus on creating slideshows and allow for animations, as con-
trasted by entries that are mainly animation engines that can
also be used for slideshows.

Slideshow software & tools

PowerPoint [13] is a very impressive application for build-
ing presentations. Through the DCOM interface, we can fully
control everything that is done with it [18], enabling us to cre-
ate presentations and animations programmatically.

This is not a very user-friendly interface, and it is not well
documented, but it does enable one to make pretty impressive
presentations (see the citations, which uses R as the backend
language).



Animations are limited to whatever PowerPoint can do, but
are still rather impressive.

The Animation Pane [12] is of particular note as it
provides a graphical user interface for creating and editing
animations. One might even consider the animation capabil-
ities provided by this as some sort of primitive programming
language. It is however still limited when compared to a more
free-form programming language.

IATEX [10] is the canonical language for making presenta-
tions programmatically. A collection of packages allow us to
make moving pictures—Beamer [22] lets us talk in terms of
slides, TikZ [21] allows us to draw pictures, and the animate
module [7] makes them move.

This is a low-level interface that we would like to abstract
away.

Racket [4] is basically a Lisp [6], or more precisely a
SCHEME [2]. It has a slideshow module that has a very in-
teresting approach to defining slideshows, with definitions of
actors and so on that can be re-used across slides.

It also has a very rudimentary “animate” function, that
allows to generate a set of slides from a function.

The downsides is that it is not very mature, and in our
opinion, not very aesthetically pleasing.

Reveal.js [3] is a slideshow library written in
JAVASCRIPT [5]. Tt can do fancy slide transitions, how-
ever it has very limited support for animations - it only
supports animated SVGs.

It allows extension via plugins.

Others

Scratch [16] is intended to be an educational programming
language, with which young programmers can learn to pro-
gram in a visual programming paradigm by dragging “blocks”
on the screen.

It also makes it very easy to draw things on the screen and
act on them (rotate, morph, etc), making animations very
easy.

It doesn’t seem to have a slideshow standard library. How-
ever, making a slideshow ("press space to continue”) is very
easy [23], and there are many animations and tutorials writ-
ten in Scratch that are basically slideshows.

Processing.js [15] is a programming language intended
for artists in the visual art space, controlling LEDs and
motors and such to create artwork. Processing.js was cre-
ated as a variant of Processing [14] targeting the web using
JAVASCRIPT.

Processing.js essentially provides a canvas and an API that
makes it simple to draw things—however, any slideshow func-
tionality must be added externally.

D3.js [1] D3.js is a data visualization library written in
JAVASCRIPT. It can do pretty fancy visualizations and tran-
sitions, and it looks very good.

It is unable to create slideshows, focusing on figures. How-
ever, it can be embedded in any HTML/JS slideshow frame-
work. That would prevent the use from creating inter-slide
animations, though.

FOAM [8] is an MVC framework that is written in
JAVASCRIPT but claims to be able to generate any language
for any platform. One of its features is a slideshow module.
It seems to allow very intricate animations and interactions.
However, its main focus is modeling and interactively display-
ing data, and not slide-based presentations.

4 Challenges

During the implementation of this proposal, there are some
challenges that will have to be overcome. These include:

1. Translating the look & feel of a dramatic play, and specif-
ically a Shakespearean play, into a programming lan-
guage.

2. Making the concept of time and parallel execution useful
and intuitive in the context of authoring slideshows.

3. Ensuring that even reasonably complicated slideshows
can be expressed using THAPL. That is, designing the
language to be expressive and flexible so that it can cre-
ate slideshows that were not imagined by the language
designer.

4. Implementation details, such as:

(a) Compiling to WTEXwith TikZ, including having
some integration with these technologies. However,
the THAPL language itself should stay independent
of the backend implementation.

(b)

Specifiying a way for an animation to be spliced in
as part of an existing slideshows.

(c)

Defining a configuration file format for declaring ac-
tions and their precise meaning.

5 Conclusions

We proposed to develop THAPL, a prototype domain-specific
language inspired by scripts of theatrical plays, which is in-
tended to be used in the context of generating slide-shows
in presentations. THAPL attempts to expand the declar-
ative/imperative paradigm by introducing an actor/action
model, and adds specialized constructs that describe actions
occuring simultaneously. We presented the language concept,
and demonstrated its application through examples.

The proposed work contributes to the current state of the
art by exploring an innovative approach to the declarative/im-
perative paradigm of programming languages.

Future development of the concept may be in the context of
a graphical medium with which to describe THAPL directives.



Fig. 3 THAPL code for a presentation on a Lilliputian war
against Blefscu

Atomic actions:

show.

hide.

color.

blur. # dull the actor a bit so as to move it to the background.
focus. # the opposite of blur

play. # play a video or animated graphic

stop.

move.

Act MilitaristicJingoism:

Dramatis Personae:
planes: # some planes
F16 one # note multi—word identifier
F16 two
fireworks # some sort of animated SVG of fireworks
bombastic exclamation # text of some sort, probably decorated

Scenery:
# invisible curves that the planes move along, ending outside the slide
curve a
curve b

Action:
fireworks play / planes show.
move F16 one along curve a, meanwhile move F16 two along curve b.
# note that verb noun ordering is flexible
stop fireworks meanwhile show bombastic exclamation.

Act Battle plan:

Dramatis Personae:
countries:
Lilliput
Blefscu

troops:
infantry:
first infantry
second infantry

mechanized:
tank
tank destroyer

enemy king

Scenery:
ocean

Action:
show countries
pause # give historic context for endianess war
infantry show
pause # talk about our brave troops
mechanized show
pause # mention our superior technology
hide tank destroyer # not relevant today
move tank to Blefscu
# 1st inf. will invade alone to lull the enemy into a false sense
# of complacency, then the 2nd inf. will double time to join them.
move first infantry to Blefscu meanwhile (
relax then move second infantry to Blefscu)
move enemy king to ocean
# Lilliput wins

References

1]
2l
3]

(4]

(8]
(9]
[10]
(11]
[12]

[13]

(14]
(15]

[16]

(17]

18]

[19]

20]

21]

(22]

23]

M. Bostock. D3.js — data-driven documents. https://d3js.
org, 2012. Accessed: 2016-10-08.

K. Dickey. The Scheme programming language. Comp. Lang.,
June 1992.

H. El Hattab. Reveal.js. https://github.com/hakimel/
reveal.js, 2013. Accessed: 2016-10-08.

R. B. Findler and M. Flatt. Slideshow: functional presenta-
tions. Journal of Functional Programming, 16:583—619, July
/ September 2006.

D. Flanagan. JAVASCRIPT:
Media, Inc., 6" edition, 2011.

P. Graham. ANSI Common LISP. Prentice Hall, 1995.

A. Grahn. The animate package.
macros/latex/contrib/animate/animate.pdf, 2011.
cessed: 2016-10-08.

K. Greer, A. Vy, and J. Stone. Foam — Feature Oriented Ac-
tive Modeller. https://github.com/foam-framework/foam,
2014. Accessed: 2016-10-08.

B. W. Kernighan and D. M. Ritchie. The C Programming
Language. Software Series. Prentice-Hall, 2™ edition, 1988.

L. Lamport. Latezx. Addison-Wesley, 1994.

M. Lutz. Programming PYTHON. O’Reilly, first edition, Oct.
1996.

Microsoft Corporation. Powerpoint 2010: Change or remove
an animation effect. https://goo.gl/e050ii. Accessed:
2016-10-08.

Microsoft Corporation. Powerpoint product page. https:
//products.office.com/en/powerpoint. Accessed: 2016-10-
08.

C. Reas and B. Fry. Processing: programming for the media
arts. AI & SOCIETY, 20(4):526-538, 2006.

J. Resig, B. Fry, and C. Reas. Processing.js.
processingjs.org/, 2008. Accessed: 2016-10-08.

M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Sil-
ver, B. Silverman, et al. Scratch: programming for all. Com-
munications of the ACM, 52(11):60-67, 2009.

M. Richards and C. Whitby-Strevens. BCPL, the language
and its compiler. Cambridge University Press, 1980.

A. Salam. Create amazing PowerPoint slides us-
ing R the basics. http://asifsalam.github.io/
R-and-PowerPoint-Part-1/, 2015. Accessed: 2016-10-08.

W. Shakespeare, J. E. Burdick, and H. N. Hudson. Complete
works, volume 1. Current Literature Publishing Company,
1909.

F. X. Suiiol Galofre. Tools for creating latex-integrated graph-
ics and animations under gnu/linux. The PracTeX Journal,
2010(1):236-248, 2010.

T. Tantau. The tikz and pgf packages, manual for version
3.0.0. http://mirrors.ctan.org/graphics/pgf/base/doc/
pgfmanual.pdf, 2013. Accessed: 2016-10-08.

T. Tantau, J. Wright, and V. Miletic. The latex beamer
class. http://latex-beamer.sourceforge.net, 2003. Ac-
cessed: 2016-10-08.

The Scratch Wiki.  Animation Projects — the scratch
wiki. https://wiki.scratch.mit.edu/w/index.php?title=
Animation_Projects&oldid=152223, 2016. Accessed: 2016-
10-08.

the definitive guide. O’Reilly

http://tug.ctan.org/
Ac-

http://


https://d3js.org
https://d3js.org
https://github.com/hakimel/reveal.js
https://github.com/hakimel/reveal.js
http://tug.ctan.org/macros/latex/contrib/animate/animate.pdf
http://tug.ctan.org/macros/latex/contrib/animate/animate.pdf
https://github.com/foam-framework/foam
https://goo.gl/e05Oii
https://products.office.com/en/powerpoint
https://products.office.com/en/powerpoint
http://processingjs.org/
http://processingjs.org/
http://asifsalam.github.io/R-and-PowerPoint-Part-1/
http://asifsalam.github.io/R-and-PowerPoint-Part-1/
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://latex-beamer.sourceforge.net
https://wiki.scratch.mit.edu/w/index.php?title=Animation_Projects&oldid=152223
https://wiki.scratch.mit.edu/w/index.php?title=Animation_Projects&oldid=152223

[24] D. Zongker. Chicken chicken chicken: Chicken chicken. Annals
of Improbable Research, 12(5):16-21, 2006.



	Introduction
	This Proposal
	Thapl language principals
	Time, Frames, and Pauses
	Thapl Language Syntax
	Demonstration

	Previous Research
	Challenges
	Conclusions

