
Confidential and Proprietary – Qualcomm Technologies, Inc.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either
Qualcomm Technologies, Inc. or its affiliated companies without the express approval of
Qualcomm Configuration Management.

Qualcomm Technologies, Inc.

80-P7139-4 A

Introduction to Linux Kernel Debug
Feature

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 2 80-P7139-4 A July 2016

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of
Qualcomm Technologies, Inc.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or
registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and international law is strictly
prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2016 Qualcomm Technologies, Inc. and/or its affiliated companies. All rights reserved.

Confidential and Proprietary – Qualcomm Technologies, Inc.

mailto:DocCtrlAgent@qualcomm.com

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 3 80-P7139-4 A July 2016

Revision History

Revision Date Description

A June 2016 Initial release

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 4 80-P7139-4 A July 2016

Contents

 Kernel Memory Debug
 Lock Debug Feature
 References
 Questions?

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 5 80-P7139-4 A July 2016

 This document is an overview of the Linux kernel debug feature for
stability issues, and is intended for engineers that work in kernel driver
development/integration or system crash/hang debug issues.

Introduction

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 6 80-P7139-4 A July 2016

 Kconfig
 arch/lib/Kconfig.debug
 arch/lib/Kconfig.kgdb
 arch/arm64/Kconfig.debug

 Menuconfig
 make -C kernel O=../out/target/product/msm8996/obj/KERNEL_OBJ

ARCH=arm64 CROSS_COMPILE=aarch64-linux-android- KCFLAGS=-mno-
android menuconfig

 Kernel hacking

 CONFIG_DEBUG_FS
 CONFIG_FRAME_POINTER

Kernel Debug Feature Overview

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 7 80-P7139-4 A July 2016

 CONFIG_DEBUG_INFO
 gcc -g

 CONFIG_DEBUG_INFO_REDUCED
 No structure debug info, but have line number

 CONFIG_DEBUG_INFO_SPLIT
 CONFIG_FRME_WARN
 Warn if stack frame larger during build time; default 2048

 CONFIG_READABLE_ASM
 Build kernel assembler code is more readable by disabling some optimizations

Kernel Debug Info

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 8 80-P7139-4 A July 2016

/proc/sysrq-trigger
 c - Performs a system crash by a NULL pointer de-reference.

A crashdump will be taken if configured.
 w - Dumps tasks that are in uninterruptable (blocked) state.

6 normal (mpm, mdss, 2 audio, msm-core, mmc)
 l - Shows a stack backtrace for all active CPUs.
 m - Dumps current memory info to your console.
 q - Dumps per CPU lists of all armed hrtimers (but NOT regular timer_list

timers) and detailed information about all clockevent devices.
 t - Dumps a list of current tasks and their information to your console.

CONFIG_MAGIC_SYSRQ

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 9 80-P7139-4 A July 2016

 CONFIG_LOG_BUF_MAGIC
 Add magic code to log buf record, to get from incomplete/corrupted dump

 CONFIG_DYNAMIC_DEBUG
 Control print on/off dynamically

pr_debug() dev_dbg()
cat /sys/kernel/debug/dynamic_debug/control
arch/arm64/kernel/traps.c:140 [traps]dump_backtrace =_ "%s(regs = %p tsk = %p)\0
12"
echo –n ‘func svc_process +p’ >dynamic_debug/control
echo –n ‘file svcsock.c +p’
echo -n 'module nfsd +p‘

 Log buffer
 Kernel command line log_buf_len=1M 128K
 memblock_virt_alloc_nopanic

 CONFIG_EARLY_PRINTK
 early_printk

CONFIG_EARLY_PRINTK_DIRECT=y
CONFIG_DEBUG_LL=y

 Other API
printk_ratelimited
pr_devel depend DEBUG
pr_debug_once
Pr_devel_once

Printk

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 10 80-P7139-4 A July 2016

• Use to record kernel message of last crash
• CONFIG_PSTORE
 CONFIG_PSTORE_CONSOLE all kernel message
 PSTORE_PMSG usespace message /dev/pmsg0 /sys/fs/pstore/pmsg-ramoops-<ID>
 CONFIG_PSTORE_RAM panic/oops message
 CONFIG_PSTORE_FTRACE ftrace message

 CONFIG_STRICT_MEMORY_RWX

• Need to reserver buffer
+ pstore_reserve_mem: pstore_reserve_mem_region@0 {

+ linux,reserve-contiguous-region;
+ linux,reserve-region;
+ linux,remove-completely;
+ reg = <0x0 0x9ff00000 0x0 0x00100000>;
+ label = "pstore_reserve_mem";
+ };

 Solution 00028866 -- How to enable last kernel message - pstore on kernel 3.10

Pstore

http://linux-bug.ap.qualcomm.com:8080/source/s?path=/dev/pmsg0&project=kernel-3.18

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 11 80-P7139-4 A July 2016

• Use ARM hardware breakpoint register; can set in read-only segment
• A sample module to demo how to set

Kernel/samples/hw_breakpoint/
obj/KERNEL_OBJ/samples/hw_breakpoint/data_breakpoint.ko

• Demo code
attr.bp_addr = kallsyms_lookup_name(ksym_name);
attr.bp_len = HW_BREAKPOINT_LEN_4;
attr.bp_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
sample_hbp = register_wide_hw_breakpoint(&attr, sample_hbp_handler, NULL);

• Handler
static void sample_hbp_handler(struct perf_event *bp,

struct perf_sample_data *data,
struct pt_regs *regs)

{
printk(KERN_INFO "%s value is changed\n", ksym_name);
dump_stack();
printk(KERN_INFO "Dump stack from sample_hbp_handler\n");

}

• You can modify handler to dump_stack or panic or print other useful information
• Solution 31443 -- How to enable Linux kernel hardware breakpoint on ARM/ARM64

CONFIG_HAVE_HW_BREAKPOINT

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 12 80-P7139-4 A July 2016

Kernel Memory Debug

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 13 80-P7139-4 A July 2016

This config can debug the software memory corruption
 When this debug config is set, kernel will generate an exception when read/write

an un-allocated page, to catch code which corrupts memory
 The principle is that to poison/unpoison a page (set poison magic number and

mark read-only) when allocate/free page; it is always used together with
CONFIG_PAGE_POISONING and CONFIG_FREE_PAGES_RDONLY

 Parameters: “debug_guardpage_minorder=” : Kernel is trying to maximize
memory usage, so there are usually not many free pages in the system and buggy
code can corrupt some crucial data. This parameter allows control order of pages
that will be intentionally kept free (therefore protected) by buddy allocator. Bigger
value increases the probability of catching random memory corruption, but
reduces amount of memory for normal system use. Maximum possible value is
MAX_ORDER/2. Setting this parameter to 1 or 2 should be enough to identify
most random memory corruption problems caused by bugs in kernel/drivers code
when CPU writes to (or reads from) random memory location.

CONFIG_DEBUG_PAGEALLOC

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 14 80-P7139-4 A July 2016

 Unmap pages from the kernel linear mapping after free_pages().
 This results in a large slowdown, but helps to find certain types of memory corruption.

 CONFIG_PAGE_GUARD
 For architectures which don't enable ARCH_SUPPORTS_DEBUG_PAGEALLOC,

fill the pages with poison patterns after free_pages() and verify the patterns before
alloc_pages().

 CONFIG_PAGE_POISONING
 CONFIG_PAGE_GUARD
 Limitations:
 Cannot catch the corruption caused by hardware or firmware bugs or by drivers

badly programming DMA (when memory is written at bus level and CPU MMU is
bypassed)

 Downgrades performance

CONFIG_DEBUG_PAGEALLOC (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 15 80-P7139-4 A July 2016

 CONFIG_FREE_PAGES_RDOLY
 Pages are always mapped in the kernel, i.e., anyone can write to the page if

they have the address. Enable this option to mark pages as read-only to trigger
a fault if any code attempts to write to a page on the buddy list. This may have a
performance impact.

 CONFIG_KERNEL_TEXT_RDONLY
 Make kernel code area read only

 CONFIG_DEBUG_RODATA
 Kernel code and rodata will be read only

Map Read Only

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 16 80-P7139-4 A July 2016

 This config can debug the page allocation stack trace
 Keeps track of what call chain is the owner of a page; may help to find

bare alloc_page(s) leaks; uses a fair amount of memory
 See Documentation/page_owner.c for user-space helper
 When this debug config is set, the struct page will add several data

structures:
#ifdef CONFIG_PAGE_OWNER

int order;
gfp_t gfp_mask;
struct stack_trace trace;
unsigned long trace_entries[8];

#endif

 This structure will be updated once allocation pages.
 It also can be read from debugfs page_owner entry.

Page_alloc.c
__alloc_pages_nodemask()->

set_page_owner():

CONFIG_PAGE_OWNER

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 17 80-P7139-4 A July 2016

 Example
 Parse dump by ‘Linux Ramdump Parser’

Page structure addr: 0xcf290ee0L,
page buff: phy:0x8207d000L, vir: 0xc207d000L
flags 0x0, count 0x0

CONFIG_PAGE_OWNER (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 18 80-P7139-4 A July 2016

 This config can debug slub allocation issues
 When this debug config is set, every slub object will add some extra

information for debugging

##ifdef CONFIG_SLUB_DEBUG
atomic_long_t nr_slabs;
atomic_long_t total_objects;
struct list_head full;

#endif

 It can be checked from sysfs or dump

 CONFIG_SLUB_DEBUG_ON is another debug config which by default
enabled the slub debug; it is equivalent to pass “slub_debug=”in
commandline.

CONFIG_SLUB_DEBUG

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 19 80-P7139-4 A July 2016

/sys/kernel/debug/kmemleak
CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
CONFIG_DEBUG_KMEMLEAK_TEST
CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
DEBUG_TASK_STACK_SCAN_OFF

CONFIG_DEBUG_KMEMLEAK

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 20 80-P7139-4 A July 2016

 Kernel configure
 CONFIG_DEBUG_KMEMLEAK
 Scans the memory manually or uses kthread to do it automatically; prints the

number of new unreferenced objects found
 Command line:

kmemleak=off or kmemleak=on
 Debugfs
 To trigger an intermediate memory scan

echo scan > /sys/kernel/debug/kmemleak
 To display the details of all possible memory leaks

Cat /sys/kernel/debug/kmemleak
 To clear the list of all current possible memory leaks

echo clear > /sys/kernel/debug/kmemleak

Enable and Use Kmemleak

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 21 80-P7139-4 A July 2016

 Parameters written to /d/kmemleak
off - disable kmemleak (irreversible)
stack=on - enable the task stacks scanning (default)
stack=off - disable the tasks stacks scanning
scan=on - start the automatic memory scanning thread (default)
scan=off - stop the automatic memory scanning thread
scan=<secs> - set the automatic memory scanning period in seconds

(default 600, 0 to stop the automatic scanning)
scan - trigger a memory scan
clear - clear list of current memory leak suspects, done by

marking all current reported unreferenced objects grey,
or free all kmemleak objects if kmemleak has been disabled.

dump=<addr> - dump information about the object found at <addr>

CONFIG_DEBUG_KMEMLEAK

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 22 80-P7139-4 A July 2016

 Can be tracked
 Kmalloc, vmalloc, kmem_cache_alloc, …

 Can not be tracked
 Ioremap, page allocations
 How it is tracked
 Pointers, size, stack trace, … saved in a rbtree
 Freeing function calls are monitored ,so that to remove them from rbtree

 How memory block is identified as orphan
 Set all objects as white guys
 Memory scan (data section and stack), to find any pointers to the start, or any location

inside the memory block; if Yes, change the objects to be grey
 The white objects left are considered as orphans

Kmemleak Algorithm

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 23 80-P7139-4 A July 2016

 Wrongly reported as a leak
 How it happens
 The allocated block itself cannot to be freed, and pointers are calculated by

something like container_of
 Temporarily stored in CPU registers or stacks

Use MSECS_MIN_AGE to defer reporting

 APIs to avoid
 kmemleak_not_leak(), kmemleak_ignore()
 Use MSECS_MIN_AGE to defer reporting

Kmemleak False Positive

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 24 80-P7139-4 A July 2016

 Real leak, but not found
 Stale information wrongly considered as the object pointer
 Non-pointer variable, considered as pointer
 Kernel would avoid this

 How to avoid
 Task stack not scanned by default
 APIs like kmemleak_scan_area /kmemleak_erase() to avoid
 Add scan area inside a block
 Erase an old value in a pointer variable

 False negative eventually becomes positive, after stale information being
replaced/erased if system keep running

Kmemleak False Negative

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 25 80-P7139-4 A July 2016

unreferenced object 0xffffffc05b48d130 (size 72):
comm "init", pid 1, jiffies 4297168232 (age 80.080s)
hex dump (first 32 bytes):

25 00 00 00 25 00 00 00 06 00 00 00 57 02 04 00 %...%.......W...
00 00 00 00 ff ff ff ff 01 00 00 00 00 00 00 00

backtrace:
[<ffffffc00019d500>] create_object+0x140/0x274
[<ffffffc000cf70a8>] kmemleak_alloc+0x7c/0xb4
[<ffffffc000198a6c>] kmem_cache_alloc+0x170/0x220
[<ffffffc0002dd3cc>] avc_alloc_node+0x2c/0x1f4
[<ffffffc0002dd794>] avc_compute_av+0xb8/0x234
[<ffffffc0002de274>] avc_has_perm_noaudit+0x64/0xd4
[<ffffffc0002e198c>] selinux_inode_permission+0xc0/0x150
[<ffffffc0002dba70>] security_inode_permission+0x20/0x34
[<ffffffc0001ac5d8>] __inode_permission+0x84/0x98
[<ffffffc0001ac62c>] inode_permission+0x40/0x4c
[<ffffffc0001acde4>] may_open+0x94/0xec
[<ffffffc0001af7e8>] do_last.isra.39+0x78c/0x9e4
[<ffffffc0001afc44>] path_openat+0x204/0x590
[<ffffffc0001b0cc0>] do_filp_open+0x2c/0x80
[<ffffffc0001a26ac>] do_sys_open+0x160/0x1fc
[<ffffffc0001a277c>] SyS_openat+0xc/0x18

Kmemleak – How to Analyze Logs

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 26 80-P7139-4 A July 2016

 Use the following scripts to collect kmemleak log every 10 seconds:
#!/bin/sh
cat /proc/kmsg >/data/kmsg.txt &
num=1
while ["$num" -ge 0]; do
echo -------------------------------
echo Cycle $num:
echo -------------------------------
echo clear > /sys/kernel/debug/kmemleak
cat /proc/meminfo
cat /proc/pagetypeinfo
cat /proc/slabinfo
top -n 1
free -m
cat /proc/zoneinfo
cat /proc/vmallocinfo
cat vmstat
sleep 10
echo scan > /sys/kernel/debug/kmemleak
cat /sys/kernel/debug/kmemleak > /data/$num.txt
let num=num+1
done

Collect Kmemleak Log

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 27 80-P7139-4 A July 2016

 This config is used to verify that the per_cpu map being accessed has
been set up
 Relate code:
static inline unsigned int cpumask_check(unsigned int cpu)
{
#ifdef CONFIG_DEBUG_PER_CPU_MAPS

WARN_ON_ONCE(cpu >= nr_cpumask_bits);
#endif /* CONFIG_DEBUG_PER_CPU_MAPS */

return cpu;
}

Impact:
 The following two CONFIGS will be force set

CONFIG_CPUMASK_OFFSTACK cpumask_var_t
CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS

 Adds a fair amount of code to kernel memory and decreases performance

CONFIG_DEBUG_PER_CPU_MAPS

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 28 80-P7139-4 A July 2016

 This config is enabled to show the minimum free stack that each task ever
had in the sysrq-T and sysrq-P debug output

 Usage: echo t > proc/sysrq-trigger
Get the message in kernel log; the field in red is the stack information

<6>[5446.999722] task PC stack pid father
<6>[5446.999735] init S ffffffc00008671c 9432 1 0 0x00000000
SNIP
<6>[5447.010547] rcu_preempt S ffffffc00008671c 10776 7 2 0x00000000
SNIP
<6>[5447.034436] watchdog/2 S ffffffc00008671c 13032 17 2 0x00000000

 Impact:
 This option will slow down process creation somewhat

CONFIG_DEBUG_STACK_USAGE

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 29 80-P7139-4 A July 2016

 Dependency
 CONFIG_HAVE_CC_STACKPROTECTOR
 CONFIG_CC_STACKPROTECTOR
 ARM arch support this

 How it works
 This option turns on the "stack-protector" GCC feature.
 At the beginning of functions, a canary value put on the stack just before the return

address validates the value just before actually returning.
 Stack based buffer overflows (that need to overwrite this return address) now also

overwrite the canary, trigger panic in the validation
 Choice
 Menuconfig General Setup
 CC_STACKPROTECTOR_NONE
 Not enable gcc -fstack-protector feature

 CC_STACKPROTECTOR_REGULAR
 Functions will have the stack-protector canary logic added if they have an 8-byte or larger

character array on the stack.
 CC_STACKPROTECTOR_STRONG
 Functions will have the stack-protector canary logic added in any of the following conditions:

 local variable address used as part of the right hand side of an assignment or function argument
 local variable is an array (or union containing an array), regardless of array type or length
 uses register local variables

CC_STACKPROTECTOR

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 30 80-P7139-4 A July 2016

 Dump of assembler code for function workshop_stub2:

0xffffffc00043aa90 <+0>: stp x29, x30, [sp,#-128]!
0xffffffc00043aa94 <+4>: mov x1, x0
0xffffffc00043aa98 <+8>: mov x29, sp
0xffffffc00043aa9c <+12>: str x19, [sp,#16]
0xffffffc00043aaa0 <+16>: adrp x19, 0xffffffc0016ed000 <reset_devices>
0xffffffc00043aaa4 <+20>: ldr x0, [x19,#208]
0xffffffc00043aaa8 <+24>: str x0, [x29,#120]
0xffffffc00043aaac <+28>: add x0, x29, #0x28
0xffffffc00043aab0 <+32>: bl 0xffffffc000318e7c <strcpy>
0xffffffc00043aab4 <+36>: adrp x0, 0xffffffc0011a6000
0xffffffc00043aab8 <+40>: add x1, x29, #0x28
0xffffffc00043aabc <+44>: add x0, x0, #0xfb5
0xffffffc00043aac0 <+48>: bl 0xffffffc000cc3fbc <printk>
0xffffffc00043aac4 <+52>: ldr x1, [x29,#120]
0xffffffc00043aac8 <+56>: ldr x0, [x19,#208]
0xffffffc00043aacc <+60>: cmp x1, x0
0xffffffc00043aad0 <+64>: b.eq 0xffffffc00043aad8 <workshop_stub2+72>
0xffffffc00043aad4 <+68>: bl 0xffffffc0000a308c <__stack_chk_fail>
0xffffffc00043aad8 <+72>: ldr x19, [sp,#16]
0xffffffc00043aadc <+76>: ldp x29, x30, [sp],#128
0xffffffc00043aae0 <+80>: ret

CC_STACKPROTECTOR Example

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 31 80-P7139-4 A July 2016

 This config is adebug feature which can detect the data corruption in time
 Usage: When this debug configure is set, kernel will trigger panic when detect

data corruption.
 Principal: Detect the data corruption in earlier in order to closer the corruption

scenarios for debug.
 Scenarios
 The double linked list destroy
 Workqueue leaked lock or atomic when scheduled
 Spinlock wrong data

 How to detect
 List add:

prev->next != next || next->prev != prev || new == prev || new == next
list del: entry->next==LIST_POISON1; entry->next== LIST_POISON2; prev->next != entry; next->prev != entry
preempt_count() & ~PREEMPT_ACTIVE) != 0 || (tsk)->lockdep_depth > 0
(spinlock->magic != SPINLOCK_MAGIC

 Reasons
 bitflip issue
 overwrite [much data corruption]

 Example: SR#02446787
 (struct list_head) [D:0xC1D36E74] event_entry = (
 (struct list_head *) [D:0xC1D36E74] next = 0xC5856400,
 (struct list_head *) [D:0xC1D36E78] prev = 0xC5857C00 -> (
 (struct list_head *) [D:0xC5857C00] next = 0xC5857C00,
 (struct list_head *) [D:0xC5857C04] prev = 0xC5857C00)),

CONFIG_PANIC_ON_DATA_CORRUPTION

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 32 80-P7139-4 A July 2016

 This config is a debug feature which can detect data corruption
 How to detect:

(preempt_count() & ~PREEMPT_ACTIVE) != 0 || (tsk)->lockdep_depth > 0
spinlock->magic != SPINLOCK_MAGIC

 The reasons:
 bitflip issue
 overwrite [a lot of data corruption]

 Example: SR#02446787
(struct list_head) [D:0xC1D36E74] event_entry = (
(struct list_head *) [D:0xC1D36E74] next = 0xC5856400,
(struct list_head *) [D:0xC1D36E78] prev = 0xC5857C00 -> (
(struct list_head *) [D:0xC5857C00] next = 0xC5857C00,
(struct list_head *) [D:0xC5857C04] prev = 0xC5857C00)),

CONFIG_PANIC_ON_DATA_CORRUPTION (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 33 80-P7139-4 A July 2016

 It creates kernel_page_tables under /sys/kernel/debug.
CONFIG_DEBUG_FS must be enabled

 Reference
 http://www.spinics.net/lists/arm-kernel/msg499465.html

 For debugging purposes, it would be nice if we could export page tables
other than the swapper_pg_dir to userspace. To enable this, this patch
refactors the arm64 page table dumping code such that multiple tables
may be registered with the framework, and exported under debugfs.

CONFIG_ARM64_PTDUMP

http://www.spinics.net/lists/arm-kernel/msg499465.html

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 34 80-P7139-4 A July 2016

Lock Debug Feature

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 35 80-P7139-4 A July 2016

1. Detect hard and soft lockups, it will create thread watchdog/%u for each core
2. Echo a zero to /proc/sys/kernel/watchdog to disable the watchdog timer.
3. Echo a large number of /proc/sys/kernel/watchdog_thresh in order to reduce the

frequency of OS jitter due to the watchdog timer down to a level that is
acceptable for your workload.

 The priority of watchdog/%u is (MAX_RT_PRIO - 1);
 The watchdog task is a high priority kernel thread that updates a timestamp

every time it is scheduled. If that timestamp is not updated for
2*watchdog_thresh seconds (the softlockup threshold) the 'softlockup detector'
(coded inside the hrtimer callback function) will dump useful debug information
to the system log, after which it will call panic if it was instructed to do so or
resume execution of other kernel code.

CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC_VALUE=1

CONFIG_LOCKUP_DETECTOR

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 36 80-P7139-4 A July 2016

 HARDLOCKUP and SOFTLOCKUP

CONFIG_LOCKUP_DETECTOR (cont.)

A 'softlockup' is defined as a bug that causes the kernel to loop in kernel mode for
more than x defined seconds without giving other tasks a chance to run.

A 'hardlockup' is defined as a bug that causes the CPU to loop in kernel mode for
more than defined seconds, without letting other interrupts have a chance to run.
It uses a periodic NMI in order to detect if the system has become unresponsive.
It is used to detect any kind of fault that can causes interrupt handling to fail.
Examples include badly matched disables, spurious interrupts, and live locks
inside critical sections. (Qualcomm does not use HARDLOCK NMI)

The soft and hard lockup detectors are built on top of the hrtimer and perf
subsystems, respectively. A periodic hrtimer runs to generate interrupts and kick
the watchdog task.

If any CPU in the system does not receive any hrtimer interrupt during that time,
the 'hardlockup detector will generate a kernel warning or call panic, depending
on the configuration.

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 37 80-P7139-4 A July 2016

Process Watchdog/%u will touch watchdog_touch_ts to
get_timestamp by __touch_watchdog, and hrtimer will check if it has
softlock when now is after touch_ts + get_softlockup_thresh()

judge if is softlock by checking watchdog_touch_ts

 How SOFTLOCKUP works

CONFIG_LOCKUP_DETECTOR (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 38 80-P7139-4 A July 2016

A 'hardlockup' is defined as a bug that causes
the CPU to loop in kernel mode for more than
10 seconds, default value is 12 seconds

((watchdog_thresh * 2/5) *3).
Hrtimer will call watchdog_timer_fn every
watchdog_thresh * 2/5 (default 4) seconds to
increase hrtimer_interrupts

In watchdog_check_hardlockup_other_cpu,
only when __this_cpu_read(hrtimer_interrupts)
% 3 == 0, it will check if it has hardlock

CONFIG_LOCKUP_DETECTOR (cont.)

How HARDLOCKUP_DETECTOR_OTHER_CPU works

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 39 80-P7139-4 A July 2016

 Kernel configure
 CONFIG_DETECT_HUNG_TASK
 CONFIG_BOOTPARAM_HUNG_TASK_PANIC_VALUE
 CONFIG_DEFAULT_HUNG_TASK_TIMEOUT
 When a task keeps in D state for longer than certain threshold, one kernel

daemon will detect that, and print the current stack trace
 It is with negligible overhead, and configurable whether to trigger panic when

finding hung task
 procfs
 echo 0 > /proc/sys/kernel/hung_task_timeout_secs
 By-default setting is 120 seconds.
 There is a daemon named khungtaskd, which wakes up periodically and checks

every thread’s context switch count, which is recorded in the task structure

CONFIG_DETECT_HUNG_TASK

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 40 80-P7139-4 A July 2016

 task PonMgr:510 blocked for more than 120 seconds.

PonMgr D c03e08cc 0 510 509 0x00000000
Backtrace:
[<c03e0514>] (__schedule+0x0/0x494) from [<c03e0ad0>] (schedule+0x84/0x8c)
[<c03e0a4c>] (schedule+0x0/0x8c) from [<c03dee44>] (schedule_timeout+0x20/0x1e4)
[<c03dee24>] (schedule_timeout+0x0/0x1e4) from [<c03dfe98>] (__down+0x80/0xb4)
[<c03dfe18>] (__down+0x0/0xb4) from [<c012e190>] (down+0x34/0x48)
[<c012e15c>] (down+0x0/0x48) from [<bf0229a8>] (gpon_evt_read+0x1c/0xc8 [gpon_drv])
[<bf02298c>] (gpon_evt_read+0x0/0xc8 [gpon_drv]) from [<c0195e80>] (vfs_read+0xb8/0x134)
[<c0195dc8>] (vfs_read+0x0/0x134) from [<c0195f40>] (sys_read+0x44/0x70)
[<c0195efc>] (sys_read+0x0/0x70) from [<c000d7a0>] (ret_fast_syscall+0x0/0x30)

Detect Hung Tasks – Log Example

http://m.blog.chinaunix.net/uid-25564582-id-5204177.html
http://www.cnblogs.com/openix/p/4136274.html
http://blog.csdn.net/wh_19910525/article/details/50503269

http://m.blog.chinaunix.net/uid-25564582-id-5204177.html
http://www.cnblogs.com/openix/p/4136274.html
http://blog.csdn.net/wh_19910525/article/details/50503269

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 41 80-P7139-4 A July 2016

 RT Throttling
 If an RT task runs into unexpected bugs, without RT throttling other non-RT

tasks will not be able to run, and the system will hang; for example, for 1
second, the RT is granted to hog CPU for 0.95 seconds

 Kernel configure
 CONFIG_PANIC_ON_RT_THROTTLING
 When detect RT task run out of its time slices, trigger panic

 procfs
 /proc/sys/kernel/sched_rt_period_us

/proc/sys/kernel/sched_rt_runtime_us

 http://book.2cto.com/201302/16291.html
 https://lwn.net/Articles/296419/
 http://www.oenhan.com/task-group-sched

CONFIG_PANIC_ON_RT_THROTTLING

update_curr_rt

sched_rt_runtime_exceeded

dump_throttled_rt_tasks

http://book.2cto.com/201302/16291.html
https://lwn.net/Articles/296419/
http://www.oenhan.com/task-group-sched

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 42 80-P7139-4 A July 2016

CONFIG_PANIC_ON_RT_THROTTLING (cont.)

[59.437232] sched: RT throttling activated for rt_rq
ffffffc0d822e000 (cpu 4)
[59.437232] potential CPU hogs:
[59.437232] ts-kthread (33)
[59.450756] ------------[cut here]------------
[59.455353] Kernel BUG at ffffffc000b03610
[verbose debug info unavailable]
[59.462297] Internal error: Oops - BUG: 0 [#1]
PREEMPT SMP
[59.467764] Modules linked in: core_ctl(PO)
wlan(O)
[59.472632] CPU: 4 PID: 33 Comm: ts-kthread
Tainted: P O 3.10.49-perf-ga375302-dirty #2
[59.481918] task: ffffffc0e1bb1f80 ti:
ffffffc0e1bc8000 task.ti: ffffffc0e1bc8000
[59.489387] PC is at
dump_throttled_rt_tasks+0x64/0x134
[59.494588] LR is at
dump_throttled_rt_tasks+0x64/0x134
............
[59.945111] []
dump_throttled_rt_tasks+0x64/0x134
[59.951366] [] update_curr_rt+0x184/0x1f0
[59.956918] [] task_tick_rt+0x10/0xec

[59.962127] [] scheduler_tick+0x1c8/0x24c
[59.967682] [] update_process_times+0x50/0x6c
[59.973587] [] tick_sched_handle.isra.13+0x40/0x54
[59.979921] [] tick_sched_timer+0x7c/0x18c
[59.985562] [] __run_hrtimer+0x148/0x224
[59.991030] [] hrtimer_interrupt+0xd8/0x1fc
[59.996764] [] arch_timer_handler_virt+0x28/0x38
[60.002925] [] handle_percpu_devid_irq+0xd8/0x16c
[60.009175] [] generic_handle_irq+0x28/0x3c
[60.014905] [] handle_IRQ+0x7c/0xa0
[60.019936] [] gic_handle_irq+0x58/0xa4
......................
[60.105183] [] el1_irq+0x60/0xd0
[60.109956] [] printk+0x6c/0x78
[60.114645] [] ts_scan_switch+0x184/0x1a0
[60.120199] [] synaptics_kthread_dclick_proximity_switch+0xa4/0xb4
[60.127927] [] touchscreen_thread+0x198/0x214
[60.133826] [] kthread+0xac/0xb8

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 43 80-P7139-4 A July 2016

 Usage for this config
 Debug mutex bad magic issue
 Debug mutex recursion issue
 Mutex dead lock
 Mutex waiterlist corruption
 initialization

lock->magic = lock;
 Mutex lock

1. Set waiter as MUTEX_DEBUG_INIT; also initialization waiter‘s magic as waiter
itself

2. Check if waiter list is NULL or not
3. Check if current task is the task mutex wake up
4. If no waiter is there, set waiter as MUTEX_DEBUG_FREE
5. Set mutex owner as current task

CONFIG_DEBUG_MUTEXES

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 44 80-P7139-4 A July 2016

 Mutex unlock
debug_mutex_unlock will be used to unlock

 Check lock->magic equal to lock or not, not equal print debug message
1. Check owner if task current or not
2. Check waiter list if corruption or not
3. Clear owner

CONFIG_DEBUG_MUTEXES (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 45 80-P7139-4 A July 2016

Usage for this config
 Debug spinlock bad magic issue
 Debug spinlock recursion issue
 Spinlock dead lock

How it works
 Initialization

define SPIN_DEBUG_INIT(lockname) \
.magic = SPINLOCK_MAGIC, \
.owner_cpu = -1, \
.owner = SPINLOCK_OWNER_INIT,

 Before trying to get this lock
debug_spin_lock_before -- Try to check magic num and owner_cpu to see if it is

bad magic or recursion issue; if so, all spin_dump

CONFIG_DEBUG_SPINLOCK

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 46 80-P7139-4 A July 2016

 Lock operation
 spin_lock_debug will call arch_spin_trylock loops_per_jiffy * HZ times, if still not

get the spinlock, then it will call spin_dump to print all spinlock information
(owner, magic_num), and call stacks on all cpu cores

 CONFIG_DEBUG_SPINLOCK_BITE_ON_BUG – trigger bite
 CONFIG_DEBUG_SPINLOCK_PANIC_ON_BUG – trigger panic
 Unlock operation
 Check the following situations

SPIN_BUG_ON(lock->magic != SPINLOCK_MAGIC, lock, "bad magic");
SPIN_BUG_ON(!raw_spin_is_locked(lock), lock, "already unlocked");
SPIN_BUG_ON(lock->owner != current, lock, "wrong owner");
SPIN_BUG_ON(lock->owner_cpu != raw_smp_processor_id(),

lock, "wrong CPU")
 If above issues, will call spin_dump to dump the spinlock and call stack

information

CONFIG_DEBUG_SPINLOCK (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 47 80-P7139-4 A July 2016

 This config checks the following:
 Whether any held lock (spinlock, rwlock, mutex or rwsem) is incorrectly freed by

the kernel, in memory-freeing routines (kfree(), kmem_cache_free(),
free_pages(), vfree(), etc.)

 Whether a live lock is incorrectly reinitialized via spin_lock_init()/mutex_init()
 Whether there is any lock held during task exit
 Example:
void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name,

struct lock_class_key *key)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC

/*
* Make sure we are not reinitializing a held lock:
*/
debug_check_no_locks_freed((void *)lock, sizeof(*lock));
lockdep_init_map(&lock->dep_map, name, key, 0);

#endif
lock->raw_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;

lock->magic = SPINLOCK_MAGIC;
lock->owner = SPINLOCK_OWNER_INIT;
lock->owner_cpu = -1;

}

CONFIG_DEBUG_LOCK_ALLOC

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 48 80-P7139-4 A July 2016

• This affects the definition of might_sleep(); when it’s not defined, might_sleep, which does
real work, will not be called

• A function that has sleep possibility and is NOT expected be called in atomic context,
probably calls might_sleep to warn customer by log, or bug when it’s called from atomic
context
kernel/include/linux/kernel.h
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

void __might_sleep(const char *file, int line, int preempt_offset);
/**

* might_sleep - annotation for functions that can sleep
*
* this macro will print a stack trace if it is executed in an atomic
* context (spinlock, irq-handler, ...).
*
* This is a useful debugging help to be able to catch problems early and not
* be bitten later when the calling function happens to sleep when it is not
* supposed to. */
define might_sleep() \

do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
#else

static inline void __might_sleep(const char *file, int line, int preempt_offset) { }
define might_sleep() do { might_resched(); } while (0)

#endif

• There is also might_sleep_if, which does the same thing with a condition
#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)

CONFIG_DEBUG_ATOMIC_SLEEP

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 49 80-P7139-4 A July 2016

CONFIG_DEBUG_ATOMIC_SLEEP (cont.)

The implementation of __might_sleep is located in kernel/kernel/sched/core.c and kernel/kernel/sched/qhmp_core.c

Check if kernel’s in atomic
context, i.e., spinlock, irq

context…

Those logs will be printed out if
__might_sleep is called in

atomic context

Kernel may crash, depending
on this switch

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 50 80-P7139-4 A July 2016

 There are many examples available in CASE, for example: 02428387
 The following log will be printed out when the situation is captured by might_sleep

[1448.551880] BUG: sleeping function called from invalid context at ../../../../../../kernel/kernel/locking/mutex.c:97
[1448.551898] in_atomic(): 0, irqs_disabled(): 0, pid: 20242, name: essaging.vzmsgs
[1448.551905] Preemption disabled at:[<ffffffc000d9ae64>] printk+0x6c/0x78
[1448.551925]
[1448.551937] ------------[cut here]------------
[1448.551944] kernel BUG at ../../../../../../kernel/kernel/sched/core.c:10169!
[1448.551951] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
[1448.551957] Modules linked in: wlan(O) v4l2_hal(O) gb_vibrator(O) gb_vendor_moto(O) gb_usb_ext(O) gb_raw(O) gb_ptp(O) gb_phy(O) gb_mods(O)
gb_loopback(O) gb_light(O) gb_hid(O) gb_display(O) gb_db3(O) gb_camera_ext(O) gb_camera(O) gb_battery(O) greybus(O) moto_crypto(O)
[1448.552041] CPU: 0 PID: 20242 Comm: essaging.vzmsgs Tainted: G W O 3.18.24-g82285f4-00012-g271f546 #1
[1448.552047] Hardware name: Sheridan (DT)
[1448.552054] task: ffffffc06c648c80 ti: ffffffc047350000 task.ti: ffffffc047350000
[1448.552066] PC is at __might_sleep+0x15c/0x16c
[1448.552073] LR is at __might_sleep+0x15c/0x16c
[1448.552080] pc : [<ffffffc0000c4fb4>] lr : [<ffffffc0000c4fb4>] pstate: 80000145
[1448.552085] sp : ffffffc047353d70
[1448.552090] x29: ffffffc047353d70 x28: ffffffc047350000
[1448.552102] x27: ffffffc09c09c780 x26: 0000000000000036
[1448.552114] x25: 00000000ffccf310 x24: ffffffc074b7ca00
[1448.552124] x23: ffffffc002173000 x22: 00000000c0306201
[1448.552135] x21: ffffffc001e5c000 x20: ffffffc001f2d000
[1448.552146] x19: 0000000000000000 x18: 0000000000000000
[1448.552156] x17: 0000000000000000 x16: ffffffc0001e9f94
[1448.552167] x15: 0000000000000000 x14: 0ffffffffffffffe
[1448.552178] x13: 0000000000000000 x12: 0101010101010101
[1448.552188] x11: ffffffff7f7f7f7f x10: fefefebf463439ff
[1448.552199] x9 : 7f7f7f7f7f7f7f7f x8 : 5d302c3532393135
[1448.552209] x7 : 0000000000000000 x6 : ffffff8001c2cc53
[1448.552220] x5 : ffffff8001c00000 x4 : 0000000000000007
[1448.552230] x3 : 0000000000000007 x2 : 0000000000000000
[1448.552241] x1 : 0000000000400000 x0 : 0000000000000000

CONFIG_DEBUG_ATOMIC_SLEEP (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 51 80-P7139-4 A July 2016

 When this debug config is set, the event of a stack overrun will be checked
 The principle is as follows:
 STACK_END_MAGIC(0x57AC6E9D) will be set at the end of stack when create a task, :

 Then it checks when task is scheduling, the change of magic number
representing stack overrun, and a kernel exception will be triggered

CONFIG_SCHED_STACK_END_CHECK

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 52 80-P7139-4 A July 2016

 When this CONFIG_DEBUG_LIST is set, it turns on extended checks in the
linked-list walking routines

1. Add manipulation checks list next, to see if prev is corrupted; also checks if new
node is double add or not

2. Delete manipulation checks if list is corrupted; also checks if del mode is double
delete by LIST_POISON1/LIST_POISON2

3. Open CONFIG_PANIC_ON_DATA_CORRUPTION, which gets ram dump; without
this, only a warning message is printed out in kernel log

 When this CONFIG_DEBUG_PI_LIST is set, it turns on extended checks in the
priority-ordered linked-list (plist) walking routines; this adds plist_check_head to
check the entire list multiple times during each manipulation; a warning message
will be printed out in kernel log if corruption is detected

CONFIG_DEBUG_LIST

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 53 80-P7139-4 A July 2016

 This config collects information about the timer events which are fired in a
Linux system over a sample period
 Name of the process which initialized the timer
 Function where the timer was initialized
 PID of the task (process) which initialized the timer
 Callback function which is associated to the timer
 Number of events (callbacks)

 To activate a sample period issue:
echo 1 >/proc/timer_stats

 To stop a sample period issue:
echo 0 >/proc/timer_stats

 The statistics can be retrieved by:
cat /proc/timer_stats

CONFIG_TIMER_STATS

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 54 80-P7139-4 A July 2016

Timer Stats Version: v0.3 （Test Result on MTP8996）
Sample period: 8.703 s
Collection: inactive

47, 0 swapper/4 hrtimer_start_range_ns (tick_sched_timer)
34, 7 rcu_preempt rcu_gp_kthread (process_timeout)
9, 9693 appsearch_threa hrtimer_start_range_ns (hrtimer_wakeup)

14D, 29 ksoftirqd/4 add_timer (cpufreq_interactive_timer)
33, 0 swapper/5 hrtimer_start_range_ns (tick_sched_timer)

....
6, 11 watchdog/0 start_bandwidth_timer (sched_rt_period_timer)

....
1, 3458 logd.reader.per add_timer (cpufreq_interactive_nop_timer)
1, 5836 Google Conversi hrtimer_start_range_ns (hrtimer_wakeup)

1D, 1473 Binder_2 add_timer (cpufreq_interactive_timer)
1, 384 mmc-cmdqd/0 blk_add_timer (blk_rq_timed_out_timer)
1, 3457 logcat add_timer (cpufreq_interactive_nop_timer)

1D, 2409 Binder_10 add_timer (cpufreq_interactive_timer)
597 total events, 68.597 events/sec

The first column is the number of events, the second column the pid, the third column
is the name of the process. The forth column shows the function which initialized the
timer and in parenthesis the callback function which was executed on expiry.

Added flag to indicate 'deferrable timer' in /proc/timer_stats. A deferrable
timer will appear as follows:

1D, 2409 Binder_10 add_timer (cpufreq_interactive_timer)

CONFIG_TIMER_STATS (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 55 80-P7139-4 A July 2016

1. Turn on KGDB
 CONFIG_HAVE_ARCH_KGDB=y
 CONFIG_KGDB=y
 CONFIG_KGDB_SERIAL_CONSOLE=y
 CONFIG_KGDB_KDB=y

2. Turn off CONFIG_MSM_WATCHDOG_V2
 Otherwise, when kgdb breaks, dog will trigger reset

3. Add uart support for KGDB; there are 2 ways to do this:
 Configure kgdboc at boot using kernel parameters:

kgdboc=ttyS0,115200

 Configure kgdboc after the kernel has booted:
echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc
Stop kernel execution (break into the debugger)

4. Use gdb on a host PC, connect with uart

CONFIG_KGDB

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 56 80-P7139-4 A July 2016

1. Connect with GDB
To connect to gdb via kgdboc, the kernel must first be stopped. There are several ways to stop the

kernel which include using kgdbwait as a boot argument, via a sysrq-g, or running the kernel
until it takes an exception where it waits for the debugger to attach.

2. When logged in as root or with a super user session you can run:
echo g > /proc/sysrq-trigger

Example using minicom 2.2
1. Press Ctrl+ A
2. Press F
3. Press G

3. When you have telneted to a terminal server that supports sending a remote break
1. Press Ctrl+]
2. Type “send break”
3. Press Enter
4. Press G

4. Connect from gdb
Example (using a directly connected port):

% aarch64-linux-android-gdb ./vmlinux
(gdb) set remotebaud 115200
(gdb) target remote /dev/ttyS0

5. Once connected, debug the kernel the way an application program is debugged

CONFIG_KGDB GDB

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 57 80-P7139-4 A July 2016

 Usage for ftrace
 Stability issue debug
 Events info gets more history info,like clock/regulator/cpufreq/HW

controller(I2C/SPI/USB), more info than RTB; include the setting value
 Enable related tracer for other stability issues such as ETM

 Performance tuning
 Scheduler tuning, latency, irq/wakeup
 Android systrace

 Power tuning
 CPU usage /cluster LPM distribution/ bus frequency
 DDR frequency/regulator

CONFIG_FTRACE

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 58 80-P7139-4 A July 2016

 FTRACE configurations
 CONFIG_TRACEPOINTS
 CONFIG_FUNCTION_TRACER
 CONFIG_CONTEXT_SWITCH_TRACER
 CONFIG_IRQSOFF_TRACER
 CONFIG_PREEMPT_TRACER
 CONFIG_SCHED_TRACER
 CONFIG_NOP_TRACER
 CONFIG_STACK_TRACER
 CONFIG_FUNCTION_GRAPH_TRACER

CONFIG_FTRACE (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 59 80-P7139-4 A July 2016

CONFIG_FTRACE (cont.)

 Block diagram

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 60 80-P7139-4 A July 2016

CONFIG_FTRACE (cont.)

 CONFIG_HAVE_DYNAMIC_FTRACE reduce overhead

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 61 80-P7139-4 A July 2016

 events
#Ftrace
echo 1 > /sys/kernel/debug/tracing/tracing_on
#Clock
echo 1 > /sys/kernel/debug/tracing/events/power/clock_disable/enable
echo 1 > /sys/kernel/debug/tracing/events/power/clock_enable/enable
echo 1 > /sys/kernel/debug/tracing/events/power/clock_set_rate/enable
echo 1 > /sys/kernel/debug/tracing/events/power/clock_state/enable
echo 1 > /sys/kernel/debug/tracing/events/power/cpu_frequency_switch_end/enable
echo 1 > /sys/kernel/debug/tracing/events/power/cpu_frequency_switch_start/enable

Example1 for Stability

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 62 80-P7139-4 A July 2016

 Retrieving ftrace from dump
crash> extend ../crash/crash7.1.0/extensions/trace.so
../crash/crash-7.1.0/extensions/trace.so: shared object loaded
crash> trace dump -t rawtracedata
adroidbug$ trace-cmd report -l rawtracedata

 trace-cmd:
website: http://git.kernel.org/cgit/linux/kernel/git/rostedt/trace-cmd.git/

Example1 for Stability (cont.)

http://git.kernel.org/cgit/linux/kernel/git/rostedt/trace-cmd.git/

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 63 80-P7139-4 A July 2016

 events
cfinteractive-272 [004] 25370.268716: cpu_frequency_switch_start: start=691200

end=1017600 cpu_id=0
cfinteractive-272 [004] 25370.268722: clock_set_rate: a53_clk
state=1017600000 cpu_id=4
cfinteractive-272 [004] 25370.268727: regulator_set_voltage:
name=apc0_corner (4-9)
cfinteractive-272 [004] 25370.268741: regulator_set_voltage:
name=pm8950_s6_level_ao (384-448)
cfinteractive-272 [004] 25370.268748: regulator_set_voltage_complete:
name=pm8950_s6_level_ao, val=384
cfinteractive-272 [004] 25370.268750: regulator_set_voltage:
name=pm8950_s5 (975000-1165000)
cfinteractive-272 [004] 25370.268862: regulator_set_voltage_complete:
name=pm8950_s5, val=975000
cfinteractive-272 [004] 25370.268877: regulator_set_voltage_complete:
name=apc0_corner, val=4

Example1 for Stability (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 64 80-P7139-4 A July 2016

 Configuration and get interface
cat /sys/kernel/debug/tracing/trace_pipe

Ftrace sysfs

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 65 80-P7139-4 A July 2016

Tracer Example

 Function

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 66 80-P7139-4 A July 2016

Tracer Example (cont.)

 Sched_switch

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 67 80-P7139-4 A July 2016

Tracer Example (cont.)

 Irqsoff

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 68 80-P7139-4 A July 2016

Tracer Example (cont.)

 preemptirqsoff

Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATIONPAGE 69 80-P7139-4 A July 2016

Questions?
https://createpoint.qti.qualcomm.com

https://support.cdmatech.com/

	Introduction to Linux Kernel Debug Feature
	Confidential and Proprietary – Qualcomm Technologies, Inc.
	Revision History
	Contents
	Introduction
	Kernel Debug Feature Overview
	Kernel Debug Info
	CONFIG_MAGIC_SYSRQ
	Printk
	Pstore
	CONFIG_HAVE_HW_BREAKPOINT
	Kernel Memory Debug
	CONFIG_DEBUG_PAGEALLOC
	Map Read Only
	CONFIG_PAGE_OWNER
	CONFIG_SLUB_DEBUG
	CONFIG_DEBUG_KMEMLEAK
	Enable and Use Kmemleak
	CONFIG_DEBUG_KMEMLEAK
	Kmemleak Algorithm
	Kmemleak False Positive
	Kmemleak False Negative
	Kmemleak – How to Analyze Logs
	Collect Kmemleak Log
	CONFIG_DEBUG_PER_CPU_MAPS
	CONFIG_DEBUG_STACK_USAGE
	CC_STACKPROTECTOR
	CC_STACKPROTECTOR Example
	CONFIG_PANIC_ON_DATA_CORRUPTION
	CONFIG_ARM64_PTDUMP
	Lock Debug Feature
	CONFIG_LOCKUP_DETECTOR
	CONFIG_DETECT_HUNG_TASK
	Detect Hung Tasks – Log Example
	CONFIG_PANIC_ON_RT_THROTTLING
	CONFIG_DEBUG_MUTEXES
	CONFIG_DEBUG_SPINLOCK
	CONFIG_DEBUG_LOCK_ALLOC
	CONFIG_DEBUG_ATOMIC_SLEEP
	CONFIG_SCHED_STACK_END_CHECK
	CONFIG_DEBUG_LIST
	CONFIG_TIMER_STATS
	CONFIG_KGDB
	CONFIG_KGDB GDB
	CONFIG_FTRACE
	Example1 for Stability
	Ftrace sysfs
	Tracer Example
	Questions?

