
SpiNNaker2 datasheet version 0.03

August 19, 2021

version 0.03 August 19, 2021

SpiNNaker2 - a chip multiprocessor for
neural network simulation.

Datasheet.

Features

1. 152ARM Cortex M4F processors, each with:

(a) 128 Kbytes of local code and data memory;
(b) Memory Protection Unit (MPU)
(c) DMA controller;
(d) 4 timer/counters
(e) vectored interrupt controller;
(f) low-power ‘wait for interrupt’ mode.

2. Multicast communications router

(a) 6 high-speed serial inter-chip bidirectional links;
(b) 16,384 associative routing entries.

3. 2 LPDDR4 PHYs (16-Bit at maximum 2.4GBit/s)

(a) up to 6.4 Gbytes/s sustained block transfer rate;
(b) using PoP (Package-on-Package).

4. High-speed serial interface for host connection

5. Fault-tolerant architecture

(a) defect detection, isolation, and function migration.

6. Boot, test and debug interfaces.

(a) profiling counters

Introduction

SpiNNaker2 is a chip multiprocessor designed specifically for the real-time simulation of large-scale
spiking neural networks. Each chip (along with its associated SDRAM chip) forms one node in a
scalable parallel system, connected to the other nodes through high-speed serial links.

The processing power is provided through the multiple ARM Cortex M4F cores on each chip.
In the standard model, each M4F models multiple neurons, with each neuron being a coupled pair
of differential equations modeled in continuous ‘real’ time. Neurons communicate through atomic
‘spike’ events, and these are communicated as discrete packets through the on- and inter-chip com-
munications fabric. The packet contains a routing key that is defined at its source and is used to
implement multicast routing through an associative router in each chip.

One Quad Processor Element (QPE) on each SpiNNaker2 chip will normally perform system man-
agement functions; the communications fabric supports point-to-point packets to enable co-ordinated
system management across local regions and across the entire system, and nearest-neighbor packets
are used for system flood-fill boot operations and for chip debug.

2

version 0.03 August 19, 2021

Background

SpiNNaker2 was designed at the University of Manchester and the Technical University of Dresden
within the EU-funded Human Brain Project in collaboration with ARM Limited. The work would
not have been possible without EU funding, and the support of the EU and the industrial partners
is gratefully acknowledged.

Intellectual Property rights

All rights to the SpiNNaker design are the property of the University of Manchester and TU Dresden
with the exception of those rights that accrue to the project partners in accordance with the contract
terms.

Disclaimer

The details in this datasheet are presented in good faith but no liability can be accepted for errors
or inaccuracies. The design of a complex chip multiprocessor is a research activity where there are
many uncertainties to be faced, and there is no guarantee that a SpiNNaker2 system will perform in
accordance with the specifications presented here. The APT group in the School of Computer Science
at the University of Manchester and the Chair for highly parallel VLSI systems and neuromorphic
circuits at TU Dresden were responsible for all of the architectural and logic design of the SpiNNaker2
chip, with the exception of synthesizable components supplied by ARM Limited and others. All design
verification was also carried out by the Manchester and Dresden groups. As such the industrial project
partners bear no responsibility for the correct functioning of the device.

Error notification and feedback

Please email details of any errors, omissions, or suggestions for improvement to:
steve.furber@manchester.ac.uk.

Change history

version date changes

0.00 21/10/16 First draft
0.00 20/11/16 Still coming together
0.00 14/1/17 Yet more draft sections
0.01 7/6/18 Router and Comms Controller updates
0.02 7/6/18 Clean up
0.03 13/7/18 Extensive reorganisation

3

version 0.03 August 19, 2021

Contents

1 System architecture 5
1.1 Routing . 5
1.2 Time references . 6
1.3 System-level address spaces . 6

2 Chip Organization 7
2.1 Block Diagram . 7
2.2 System-on-Chip hierarchy . 8
2.3 High-Level Goals . 8
2.4 Register description convention . 9

3 NoC 10
3.1 Description . 10
3.2 Register summary . 11
3.3 Fault-tolerance . 15
3.4 SDRAM DMA transfers . 15

3.4.1 Features . 15
3.4.2 Description . 15
3.4.3 SDRAM reads and writes . 16
3.4.4 SpiNNaker Router traffic . 16
3.4.5 QPE to QPE DMA transfers . 16
3.4.6 QPE to QPE reads and writes . 17

3.5 Register summary . 17
3.6 Fault-tolerance . 17

4 Quad-core ARM processing subsystem (QPE) 19
4.1 Features . 19
4.2 Description . 19
4.3 Quad-core ARM Cortex M4F subsystem organisation 20
4.4 The QPE DMA and NoC subsystem . 20
4.5 Fault-tolerance . 20

5 ARM Cortex M4F processing element (PE) 23
5.1 Features . 23
5.2 Organization . 23
5.3 Address map . 23
5.4 PE bus description . 25
5.5 Fault-tolerance . 25

6 Crossbar 27

7 DMA Controller (DMAC) 28
7.1 Features . 28
7.2 Limitations . 28
7.3 Operating modes . 28
7.4 Memory-to-memory block transfers . 28

7.4.1 Terminology . 28
7.4.2 General . 28
7.4.3 Read transfers . 29
7.4.4 Write transfers . 30
7.4.5 CRC . 30
7.4.6 SDRAM transfers . 30
7.4.7 QPE transfers . 30

7.5 I/O transfers . 31
7.6 Register summary . 31
7.7 Fault-tolerance . 31

4

version 0.03 August 19, 2021

8 Fixed-point Elementary Function Accelerator 32
8.1 Features . 32
8.2 Description . 32
8.3 Implementation . 33
8.4 Accuracy . 33
8.5 Register summary . 33
8.6 Register details . 34
8.7 Fault-tolerance . 35

9 Random Number Generator 37
9.1 Features . 37
9.2 Description . 37
9.3 Register summary . 37
9.4 Fault-tolerance . 38

10 Stochastic Rounding Accelerator 39
10.1 Features . 39
10.2 Description . 39
10.3 Implementation . 39
10.4 Register summary . 39
10.5 Register details . 39
10.6 Fault-tolerance . 39

11 Machine Learning Accelerator (MLA) 44
11.1 Features . 44
11.2 Overview . 44
11.3 Configuration and Command Registers . 44
11.4 Mode of Operation . 45

11.4.1 Matrix Multiplication . 45
11.4.2 Convolution . 45

11.5 ARM C code & Execution . 46

12 Counter/timer 49
12.1 Features . 49
12.2 Register summary . 49
12.3 Register details . 50
12.4 Fault-tolerance . 51

13 Exchange - the PE communications switch 52
13.1 Features . 52
13.2 Overview . 52

13.2.1 NoC interface . 52
13.2.2 Bus master interface . 53

13.3 Exception subunit . 54
13.3.1 Interrupt exceptions . 54

13.4 Register summary . 54
13.5 Register details . 55

14 Comms unit 58
14.1 Features . 58
14.2 Overview . 58

14.2.1 Area map . 59
14.2.2 Packet transmitter . 59
14.2.3 Packet receiver . 60
14.2.4 Rx Module . 60
14.2.5 Messages . 62

14.3 Register summary . 62
14.4 Register details . 63

14.4.1 Transmitter . 63

5

version 0.03 August 19, 2021

14.4.2 Default receiver . 67
14.4.3 Messages . 70
14.4.4 Miscellaneous . 70
14.4.5 Receiver filters . 71

14.5 Bus bridge . 74
14.6 Monitoring . 75
14.7 Fault-tolerance . 75

15 NoC DMA Submodule (memDMA) 77
15.1 Features . 77
15.2 Description . 77
15.3 Register summary . 77

15.3.1 Flow control . 80
15.3.2 Local bus masters . 80

16 Bus bridge to NoC 81
16.1 Features . 81
16.2 Description . 81

16.2.1 SDRAM mapping . 81
16.2.2 Operation . 82

17 Response unit 83
17.1 Response packet generator submodule . 83

18 SpiNNaker Packet Router 85
18.1 Features . 85
18.2 Description . 86
18.3 Packet formats . 86
18.4 Control byte summary . 87
18.5 Debug access to neighbouring devices . 88
18.6 Internal organization . 89
18.7 Multicast (MC) router . 90
18.8 The core-to-core (C2C) router . 91
18.9 The nearest-neighbour (NN) router . 91
18.10Time phase handling . 91
18.11Packet error handler . 92
18.12Register summary . 92
18.13Register details . 93
18.14Fault-tolerance . 102

19 SDRAM interface 104
19.1 Features . 104
19.2 DMA . 104

19.2.1 DMA Overview . 104
19.2.2 DMA SDRAM read . 105
19.2.3 DMA SDRAM write . 105
19.2.4 DMA SDRAM configuration . 106

19.3 Register summary . 106
19.4 Fault-tolerance . 106

20 Inter-chip transmit and receive interfaces 108
20.1 Features . 108

20.1.1 Key features for the Chip-to-Chip Link . 108
20.1.2 Key features for the LVDS AURORA link . 108

20.2 Configuration . 108
20.2.1 register selection . 108

20.3 Chip-to-Chip Link (C2C Link) . 109
20.3.1 C2C Link Transceiver . 109

6

version 0.03 August 19, 2021

21 Periphery 111
21.1 Start-up Control . 111
21.2 Register File Interface . 111
21.3 GPIO MUX . 113
21.4 Clock Configuration . 116
21.5 Periphery Arm Cortex-M4 . 117
21.6 JTAG . 120
21.7 SPI . 122

21.7.1 NoC SPI . 122
21.7.2 SPI slave . 124
21.7.3 SPI master . 126
21.7.4 SPI flash start-up controller . 127
21.7.5 Spike SPI slave . 132

21.8 I2C . 135
21.8.1 I2C slave . 135
21.8.2 I2C master . 137

21.9 PWM . 141
21.9.1 PWM0 and PWM1 . 141
21.9.2 PWM2 . 143
21.9.3 GPIO debug output . 144

21.10UART . 145
21.10.1 CUART . 145
21.10.2 Printf UART . 145

21.11SDC Interface . 146

22 Host Interface 152
22.1 UDP Routing . 152

22.1.1 Incoming Packets . 152
22.1.2 Outgoing Packets . 154
22.1.3 Packet Counters . 154
22.1.4 Frame ID Protocol . 154

22.2 UDT . 156
22.2.1 UDT Packet Type . 156
22.2.2 Channel Set up and Shut down . 157
22.2.3 Architecture . 157
22.2.4 UDT Configuration . 158
22.2.5 Buffer Memory . 159

22.3 Register summary . 159
22.4 GPIO MUX . 173
22.5 Register summary . 173
22.6 Fault-tolerance . 173

23 System Controller 174
23.1 Features . 174
23.2 Register summary . 174
23.3 Fault-tolerance . 174

24 Watchdog timer 175
24.1 Features . 175
24.2 Register summary . 175
24.3 Register details . 175

25 Power Management Architecture 178

Appendix A Packaging 180

Appendix B Input and Output signals 181

7

version 0.03 August 19, 2021

Appendix C Electrical Specification 182
C.1 Operating Temperature . 182
C.2 Power Supply . 182
C.3 Current consumption . 182

Appendix D Application Note 183
D.1 External Components . 183
D.2 PCB Integration Guideline . 183

Appendix E SpiNNaker2 Address Map and Register Summary 184
E.1 Core memories . 184

Appendix F NoC packet formats and header definitions 185
F.1 NoC packet format . 185
F.2 NoC header definitions . 185
F.3 NoC packet formats . 189

8

version 0.03 August 19, 2021

1 System architecture

SpiNNaker2 is designed to form a node of a massively parallel system. The system architecture is
illustrated in Fig. 1.

1,2 2,2

2,1

2,0

1,10,1

0,0 1,0

0,2

Chip
SpiNNaker

SDRAM

Figure 1: SpiNNaker2 system architecture

1.1 Routing

The nodes are arranged in a triangular mesh with bidirectional links to 6 neighbors. The system
supports multicast packets (to carry neural event information, routed by the associative Multicast
Router), core-to-core packets (to carry system management and control information, routed by table
look-up) and nearest-neighbor packets (to support boot-time flood-fill and chip debug).

Deadlock avoidance

The communications system has potential deadlock scenarios because of the possibility of circular
dependencies between links. The policy used here to prevent deadlocks occurring is:

1. no Router can ever be prevented from issuing its output.

The mechanisms used to ensure this are:

1. outputs have sufficient buffering and capacity detection so that the Router knows whether or
not an output has the capacity to accept a packet;

2. where this fails the packet is ‘dropped’ to a Router register, and either re-inserted later by
hardware or the Monitor Processor informed;

The expectation is that the communications fabric will be lightly-loaded so that blocked links are
very rare. Where the operating system detects that this is not the case it will take measures to correct
the problem by modifying routing tables or migrating functionality.

9

version 0.03 August 19, 2021

Errant packet trap

Packets that get mis-routed could continue in the system for ever, following cyclic paths. To prevent
this all (apart from nearest-neighbor) packets are time stamped and a coarse global time phase signal is
used to trap old packets. To minimize overhead the time stamp is 2 bits, cycling 00→ 01→ 11→ 10,
and when the packet is two time phases old (time sent XOR time now = 0b11) it is dropped and an
error flagged to the local Monitor Processor. The length of a time phase can be adapted dynamically
to the state of the system; normally, timed-out packets should be very rare so the time phase can be
conservatively long to minimise the risk of packets being dropped due to congestion.

1.2 Time references

Each processor has timer/counters driven from a 100MHz clock which can be used to support time
reference signals, for example a 1ms interrupt could be used to generate the time input to the real-time
neural models. Software may use this to generate the local time phase information.

Firefly synchronization

The local time phase, used for errant packet trapping, can be maintained across the system by
a combination of local slightly randomized timers and local phase-locking using nearest-neighbor
communication.

Time phase accuracy

If the system time phase is F and the skew is K (that is, all parts of the system transition from one
phase to its successor within a time K), then a packet has at least F −K to reach its destination and
will be killed after at most 2F + K. Thus, if we want to allow for a maximum packet transit time of
F −K = T and can achieve a minimum phase skew of K, then T and K are both system constants
and we should choose F = T + K. The longest packet life is then 2T + 3K.

1.3 System-level address spaces

The system incorporates different levels of component that must be enumerated:

1. Each Node (where a Node is a SpiNNaker chip plus SDRAM) must have a unique, fixed address
which is used as the destination ID for a core-to-core packet, and the addresses must be organised
logically for algorithmic routing to function efficiently.

2. Processors will be addressed relative to their host Node address, but this mapping will not
be fixed as an individual Processor’s role can change over time. Internal to a Node there is
hard-wired addressing of each Processor for system diagnosis purposes, but this mapping will
generally be hidden outside the Node.

3. The neuron address space is purely a software issue. Neurons should occupy an address space
that identifies each Neuron uniquely within the domain of its multicast routing path. Where
these domains do not overlap it is possible to reuse the same address, though this must be done
with considerable care. Neuron addresses can be assigned arbitrarily; this can be exploited to
optimize Router utilization (e.g. by giving Neurons with the same routing requirements related
addresses so that they can be routed by the same Router entries).

10

version 0.03 August 19, 2021

2 Chip Organization

2.1 Block Diagram

The primary functional components of SpiNNaker2 are illustrated in Fig. 2.

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

0 1

32

Ser

IO

Ser IOSer IO
Peri-

phery

Ser IO Ser IO HostIF

MEM

A

Ser

IO

MEM

B

76543210

0

1

2

3

4

5

6

7

SpiN
N

aker

 R
outer

X
Y

Figure 2: SpiNNaker2 NoC Topology

Each chip contains 38identical Quad-core Processing Elements. These processors are responsible
for modeling one or more neuron populations - a population being a group of neurons with associated
inputs and outputs (although some processors may be reserved as spares for monitoring or fault-
tolerance purposes).

The Router is responsible for routing neural event packets both between the on-chip processors
and from and to other SpiNNaker2 chips. The SerIO interface components are used to send and
receive SpiNNaker packets to and from other SpiNNaker2 chips. Inputs from the various on- and
off-chip sources are assembled into a serial stream which is then passed to the Router.

Various resources are accessible from the processor systems via the NoC. Each of the processors
has access to the shared off-chip (but co-packaged) SDRAM, and various system components also
connect through the NoC so that all processors have access to these components.

The sharing of the SDRAM is an implementation convenience rather than a functional require-
ment, although it may facilitate function migration in support of fault-tolerant operation.

11

version 0.03 August 19, 2021

2.2 System-on-Chip hierarchy

The SpiNNaker2 chip is viewed as having the following structural hierarchy, which is reflected through-
out the organisation of this data sheet (see Fig. 2):

1. chip-wide NoC connectivity (Section 3)

(a) 4.8 Gbytes/s bandwidth

i. 192-bit flit with 128-bit payload
(b) a regular array of NoC routers (Section 3)

i. each with configuration registers

2. 38Quad-core Processing Elements (QPEs - Section 4)

(a) NoC router (Section 3)
(b) dynamic memory sharing between neighbor PEs
(c) register file with controls for the QPE
(d) four ARM Cortex M4F processor elements (PEs - Section 5), each with:

i. 128Kbyte SRAM memory array
ii. DMA controller (Section 7)

iii. fixed-point exponential and logarithm accelerator (Section 8)
iv. pseudo and true random number generator (Section 9)
v. a machine learning accelerator (Section 11)
vi. timer/counters (Section 12)

vii. interrupt controller
viii. DVFS (Dynamic Frequency and Voltage Scaling) and power switching (Section 25)
ix. memory BIST (Section ??)

3. SpiNNaker packet router (Section 18)

(a) multicast, core-to-core and nearest-neighbour routing functions

4. 2 LPDDR4 SDRAM memory controllers and PHYs (Section 19)

5. 6 bidirectional high-speed serial inter-chip links for SpiNNaker packets (Section 20)

6. bidirectional high-speed serial link to host machine (Section ??)

7. Periphery module with standard interfaces for boot, test and debug support (Section 21)

2.3 High-Level Goals

SpiNNaker2 is designed with the following high-level design objectives:

1. Power constraints

(a) ¿10x SpiNNaker1 energy-efficiency
(b) 1W node power, for small-scale mobile applications (e.g. drones)

2. Performance

(a) ¿10x SpiNNaker1 within the same power budget: 1nJ per connection/s

3. Scalability: from single node to large-scale system

(a) greater usability of small-scale system than SpiNNaker1

4. much better I/O capability than SpiNNaker1

(a) 1Gbyte/s I/O bandwidth per card

5. Computational neuroscience support

(a) support for 0.1ms time step simulation in real time
(b) 10k efferent synapses per neuron

i. 100k inputs per population with 10% sparse connectivity
(c) neuron models: LIF; Izhikevich; AdExp; GIF; stochastic thresholds; multi-compartmental;

dendritic branches
(d) synapse models: single exponential; double exponential; alpha
(e) plasticity models: STDP; LTP; LTD; BCPNN
(f) other neutron features: gap junctions; neuromodulators
(g) recording: spike data; synaptic weight changes?

12

version 0.03 August 19, 2021

2.4 Register description convention

Registers are 32-bits (1 word) and are usually displayed in this datasheet as shown below:

012345678910111213141516171819202122232425262728293031

E M I Pre S O

reset: 0 0 1 0 0 0 0

1. The grey-shaded areas of the register are unused. They will generally read as 0, and should be
written as 0 for maximum compatibility with any future functionality extensions.

2. Reset values, where defined, are shown against a red shaded background.

Certain registers in the System Controller have protection against corruption by errant code:

012345678910111213141516171819202122232425262728293031

A 0x5EC R A MPID

reset: 0 1 1 1 1 1 1

1. Here any attempt to write the register must include the security code 0x5EC in the top 12 bits
of the data word. If the security code is not present the write will have no effect.

13

version 0.03 August 19, 2021

3 NoC

The SpiNNaker2 NoC (Network-on-Chip) is a shared communications resource that interconnects all
of the processing and related sub-systems on the SpiNNaker2 chip.

3.1 Description

The NoC is organised as a 2D mesh with a NoC router associated with each QPE and additional NoC
routers supporting the SDRAM controller and the SpiNNaker Router. A major concern with NoC
design is traffic management to avoid congestion and, most importantly, deadlock scenarios. On the
SpiNNaker2 NoC deadlock avoidance within the NoC is guaranteed by the use of static X-Y ordered
routing, which ensures that no circular dependencies can arise in routing patterns. External traffic
management ensures packets in the NoC can always exit unimpeded. Traffic management strategies
are particular to the class of traffic, as described below; all these have the common characteristic that
they do not allow packets to enter the NoC unless it is certain that they can leave although different
traffic manages this in different ways.

NoC Router

Each QPE Quad-core processing element includes two independent NoC router as shown in Fig. 3.

PE3 PE2

PE0 PE1

DNoC_Router

NoC
Gateway

Config
Regfile

CNoC_Router

Unbuffered
DVSF

crossbar
interconnects

32
32

32

32

DNoC_Bus_128

CNoC_Bus_32

Figure 3: NoC QPE structure

The Configuration-NoC (CNoC) is using a 32 bit flit width and is running at reference frequency.
It has main function of packet transport during chip initialisation e.g. for PLL configuration, however
the CNoC can be used for management purposes during operation. For the main chip data transfers
the Data-NoC (DNoC) is used. It uses 192 bit wide flits and runs at 500 MHz (change for final
implementation) for maximum data throughput. Both NoCs operate on basis of the packet format
described in Appendix F. A simplified NoC router structure is shown in Fig. 4.

Configuration NoC

Transfers in CNoC are done in a sequence of 32 bit packet parts. First the 32 bit NoC header is
transferred followed by 32bit address and up to 128bit data. The CNoC router operates in a worm-
hole flow control scheme: the route determined by packet header stays established until the last flit
was transmitted. Each CNoC router port contains a combinational packet decoder which determines
the destination port based on the router coordinate and packet destination field. As described before
a x-y routing strategy was implemented. By configuration the algorithm can be set as y-first or x-first

14

version 0.03 August 19, 2021

FIFO
in

FIFO
in

FIFO
in

FIFO
stage

FIFO
stage

FIFO
stage

FIFO
out

FIFO
out

FIFO
out

port
crtl

port
crtl

port
crtl

Packet
Decoder

Packet
Decoder

Packet
Decoder

Crossbar

Router Control

Control
Interface

Route look-up
Interface

Figure 4: DNoC router structure

routing. To ensure fairness in packet transmission around-robin arbitration logic is implemented in
each output port control block.

Data NoC

In DNoC flit size of 192bit is equal to the packet size. Meaning the whole packet is transferred
through NoC in a parallel fashion. In contrast to worm-hole switching im CNoC a packet cannot
block a route through the DNoC router. The packet route is determined by a combinational x-y
routing algorithm (y-first and x-first). Additionally a look-up based route algorithm is implemented.
Which allows to customize the global packet routing strategy. The DNoC router supports multicast
at QPE-level. If the destination DNoC router receives a packet with more than one PE destination
bits set it will replicate the packet to corresponding PE ports. As in CNoC router the output ports
determine the next transferred packet based on a round-robin arbitration scheme.

NoC gateway

By using the same packet format in CNoC and DNoC it is possible to route a given packet using
CNoC or DNoC depending on the C-bit in packet format. If the C-bit is set to one the packet will
be routed via CNoC. In the case that the packet was started from a DNoC sourse it will change at
soon as possible to CNoC via the NoC gateway. The packet is routed via CNoC until the destination
xy coordinate and will change back to DNoC if necessary. By setting the C-bit to zero, the packet is
routed via DNoC and is transferred to CNoC at destination if necessary.

3.2 Register summary

DNoC router enable

The DNoC router is disabled by default. To enable the router bit zero of register
LATEX error: \getReg() failed to find requested information! must be set to one. It is
possible to deactivate router ports individually in the case of physical link faults by setting port bits
to zero. To save power during operation sel we can be enabled. This prevents FIFO writing of unused
data fields e.g. in the case of 32bit payload.

15

version 0.03 August 19, 2021

Register 3.1: dnoc en (0x00000014)

un
us

ed

—

31 11

po
rt

0x1ff

10 2

se
l w

e

0

1

ro
ut

er

0

0

Reset

port (RW�) router port enable
sel we (RW�) selective fifo write enable
router (RW�) router enable

DNoC router decoder

The routing behaviour of the DNoC router can be changed with register 0x00000018 . There a re two
basic mode: combinational and LUT mode selectable via bit 0. Combinational routing determines
the router destination port by the packet destiantion and router position. Here two modes can be
chosen for each router input: X-first or Y-first. For combinational mode packets with a non-existing
destination ID can be dropped automatically by enabling the drop en feature. If this happened the
decode error field is set by the router. The second routing mode is LUT mode. In LUT mode the
destination port is the result of the destination coordinates and the lookup table entry of registers
0x0000001c to 0x00000028 .

Register 3.2: dnoc decode (0x00000018)

un
us

ed

—

31 25

de
co

de
er

ro
r

—

24 16

un
us

ed

—

15 13

xfi
rs
t

0x1ff

12 4

un
us

ed

—

3 2

dr
op

en

1

1

m
od

e

0

0

Reset

decode error (R�) DNoC router decoder error occured
xfirst (RW�) DNoC router decoder x-first routing (only active in combinational

mode)
drop en (RW�) DNoC router decoder drop faulty packets
mode (RW�) DNoC router decoder mode 0-combinational, 1-LUT

Register 3.3: dnoc rt lut0 (0x0000001c)

va
l

0x51504520

31 0

Reset

Register 3.4: dnoc rt lut1 (0x00000020)

va
l

0x52462730

31 0

Reset

16

version 0.03 August 19, 2021

Register 3.5: dnoc rt lut2 (0x00000024)

va
l

0x332f3230

31 0

Reset

Register 3.6: dnoc rt lut3 (0x00000028)

va
l

0x31392020

31 0

Reset

DNoC router statistics trigger modules

The DNoC router contains hardware to monitor NoC traffic during runtime. Each input and output
port has counters which count depending on the configuration of register 0x0000002c .

Register 3.7: dnoc stat mod (0x0000002c)

un
us

ed

—

31 23

fif
o

cn
t
m

od
e

0

22 20

pa
ck

et
si
ze

0

19 17

pa
ck

et
ty

pe

0

16 14

pa
ck

et
m

od
de

st

0

13 9

pa
ck

et
qp

e
de

st

0

8 3

pa
ck

et
cn

t
m

od
e

0

2 0

Reset

fifo cnt mode (RW�) fifo counting mode;0:off; 1:full; 2:empty; 3:almost full; 4:read
packet size (RW�) packet module destination to trigger on
packet type (RW�) packet qpe destination to trigger on
packet mod dest (RW�) packet size to trigger on
packet qpe dest (RW�) packet type to trigger on
packet cnt mode (RW�) count if mached bit0:size, bit2:type, bit3:destination, all set: cnt

any packet

DNoC router statistics reporting

Statistics counter values are periodically sent via CNoC to a desired address (region). The time
between packet creation is determined by cnt max of register 0x00000030 . The internal counter runs
with sys tick. The destination start address can be configured with register 0x00000034 and the last
address by register 0x00000038 . The destination address is incremented if field packet addr incr en
is enabled.

17

version 0.03 August 19, 2021

Register 3.8: dnoc stat top ctrl (0x00000030)

un
us

ed

—

31 25

co
nfi

g
st
op

—

24

co
nfi

g
m

od
e

0

23 21

pa
ck

et
ad

dr
w
ra

p
en

0

20

pa
ck

et
ad

dr
in

cr
en

0

19

m
od

de
st

0

18 14

qp
e

de
st

0

13 8

cn
t
m

ax

0

7 1

en
ab

le

0

0

Reset

config stop (R�) stop: max address was reached
config mode (RW�) bit2:reduced mode; bit1:fifo cnt; bit0:packet cnt, one-hot
packet addr wrap en (RW�) wrap around (stop otherwise)
packet addr incr en (RW�) increment address
mod dest (RW�) packet mod desination
qpe dest (RW�) packet qpe desination
cnt max (RW�) cycle cnt max
enable (RW�) enable statistics module

Register 3.9: dnoc stat top start addr (0x00000034)

va
l

0

31 0

Reset

val (RW) start address of stat. packet

Register 3.10: dnoc stat top addr max (0x00000038)

va
l

0

31 0

Reset

val (RW) stop address of stat. packet

CNoC router enable

In contrast to DNoC router , the CNoC router is enabled by default. The CNoC router only supports
combinational routing and X-/Y-decoding can be only enabled for all ports.

Register 3.11: cnoc router ctrl (0x0000003c)

un
us

ed

—

31 22

ou
t
po

rt
en

0x3f

21 16

un
us

ed

—

15 8

po
rt

en

0x3f

7 2

de
co

de
xfi

rs
t

1

1

en
ab

le

1

0

Reset

18

version 0.03 August 19, 2021

out port en (RW�) output port enable
port en (RW�) decoder enable
decode xfirst (RW�) enable x-first routing
enable (RW�) enable of CNoC router

3.3 Fault-tolerance

It is ensured on NoC level that packet loss cannot occur. The NoC is essentially a packet transfer
from FIFO to FIFO. The NoC router is only transferring a packet if the local destination FIFO has
space, otherwise packets are stalled. If FIFO space was feed by a consumer the NoC router will
continue pushing the stalled packets. A packet can be lost on if the NoC stalls an the sender is still
pushing, or if the consumer is discarding received packets.

Reconfiguration

1. TO BE DONE

3.4 SDRAM DMA transfers

3.4.1 Features

1. 6.4 Gbytes/s bandwidth between QPEs and SDRAM

(a) bulk transfer by DMA bursts
(b) individual word (etc.) access by PE processors

2. SpiNNaker packet delivery between QPEs and SpiNNaker Router

3. communication between QPEs

(a) DMA between QPE memories
(b) ‘remote’ reads and writes of QPE memories by any PE

4. event/interrupt signalling via configuration registers

5. guaranteed packet delivery

(a) deadlock-free static routing

3.4.2 Description

The critical bandwidth demand arises from the requirement to enable the SDRAM controller to
deliver data to/from a QPE at the SDRAM’s peak bandwidth of 6.4 Gbytes/s. The NoC supports
this by virtue of carrying 128-bit (16-byte) flits at 400M/s, giving the NoC a peak bandwidth of
6.4 Gbytes/s on a single route.

Traffic management is the responsibility of the QPE requesting the transfer. The QPE has a
central DMA Controller (DMAC) which is responsible for all block transfers between any of the
QPE’s memory areas and the SDRAM. The primary algorithm is that each QPE is restricted to a
single outstanding SDRAM command, and that command will be issued only when:

1. READS: there is a free buffer within the QPE to accept the incoming data burst;

2. WRITES: there is a buffer within the SDRAM controller to accept the outgoing write address
and command. The SDRAM controller then pulls the write data from the source PE when it
has buffer space to accommodate that data.

Each DMAC has multiple channels and can manage multiple ‘concurrent’ transfers although the
individual transfer bursts are regulated to avoid initiating transfers which cannot leave the NoC;
bursts from different channels may be interleaved.

In addition, SDRAM traffic moves horizontally within the 2D NoC framework to avoid any inter-
ference with the SpiNNaker Router traffic, which moves vertically.

19

version 0.03 August 19, 2021

3.4.3 SDRAM reads and writes

Individual PEs can issue individual read and write operations to the SDRAM. These will typically
be low bandwidth and will observe the natural limit of one outstanding command per PE (four per
QPE).

Because processor access is typically more latency critical, individual accesses will take priority
over DMA bursts.

3.4.4 SpiNNaker Router traffic

SpiNNaker Router traffic comprises incoming and outgoing SpiNNaker packets, each of which is a
single NoC flit.

Incoming packets: The SpiNNaker Router will send an incoming multicast packet as multiple
individual packets, one to each QPE that should receive the packet. Within the QPE the packet
is buffered; flow control is regulated by a credit arrangement with the Router (q.v.) where credit
is returned via NoC tokens as the FIFO buffer is emptied. Credit return is done in ‘blocks’ to
avoid acknowledging every incoming packet. This flow control prevents packets ‘backing up’ onto the
NoC without the need to drop packets at the QPE, thus simplifying packet congestion handling by
confining it to the Router.

”Packets in the FIFO are routed appropriately to the PEs, multicast packets being duplicated
appropriately as determined by a 4-bit field in the NoC packet which is filled in by the Router. The
incoming packet should raise an interrupt if it arrives when the input buffer is empty.

Incoming packets could, in principle, arrive at up to the full NoC capacity of 500M packets/s,
though in practice the rate is unlikely to exceed 100M packets/s and will usually be much lower than
this.

Traffic management relies on the incoming packets arriving at an individual QPE no faster than
that can be placed into the input buffer(s) by the local DMA system. In the limit, packets may need
to be dropped to keep things moving, though in practice this should not happen.

Outgoing packets: Outgoing packets are sent when a neuron spikes, and the total rate for the
chip is likely to be in the region of 1M packets/s or lower, although when used to convey SDP packets
this may be ten time higher. This is still much lower than the incoming packet rate.

[SDP – SpiNNaker Datagram Protocol – packets are used to initialise the machine and to set
up application data structures, extract results, send application messages to the host, and such like.
They are a higher-level protocol that uses multiple SpiNNaker point-to-point packets to deliver larger
data payloads.]

Traffic management is achieved by:

1. prioritising internally-sourced packets within the SpiNNaker Router over externally-sourced
packets, thereby ensuring that all internally-sourced packets can clear the Router even if they
are all going out through the same chip-to-chip link

As noted above, SpiNNaker Router traffic moves vertically across the NoC, avoiding interference
with SDRAM traffic, which moves horizontally.

3.4.5 QPE to QPE DMA transfers

QPE to QPE traffic will typically comprise large blocks of data being transferred between QPEs by
DMA. This supports the “synapse-centric” refactoring of the SpiNNaker neuron model, and could
amount to a significant total traffic of up to 3 Gbytes/s (with a 0.1 ms time step), but distributed
across the SpiNNaker2 NoC.

In principle a memory-to-memory DMA in the chip-wide address space could be performed by
a DMAC in any QPE; in practice only the DMAC associated with the source or destination QPE
should be used. This can be enforced by limiting the destination address registers to a (‘virtual’)
range of local addresses. DMA burst requests will only be issued when the DMAC – at QPE level –
has a (temporary) buffer already available to receive the returned data burst at full speed from the
NoC. (Writes to the SRAM – which may be in a somewhat slower clock domain and are subject to
arbitration with PE activity – are likely to be significantly slower; thus the inter-QPE bandwidth seen
by the user for any single transfer channel will be significantly less than the NoC peak bandwidth.)

The source QPE in a QPE-to-QPE DMA also has a data burst buffer dedicated to each potential
transfer. When a burst is requested this buffer is filled using QPE local reads; once it is full and has

20

version 0.03 August 19, 2021

received the burst request indicating a destination buffer is prepared it can transfer the DMA burst
across the NoC at full rate, knowing that it can be received without blocking.

There are different approaches to setting up the DMACs which depend partly on the hardware
design and partly on software choices. At transfer (as opposed to burst) level transactions could be
prearranged and triggered by sending some form of (short) ‘message’ between PEs or – as all DMACs
will be visible to any PE – all programming could be handled from a single PE which could be at
either the source or destination NoC node. In all cases it is important that the resources are
managed and a pair of buffers – one in the source and one in the destination QPE – are
reserved for each logical QPE-to-QPE logical channel. There are <TBC ????> channels in
each DMAC. See the section on the QPE DMAC for full details.

3.4.6 QPE to QPE reads and writes

Individual PEs can address memory directly anywhere across the chip. These will typically be low
bandwidth and will have little hardware management, so could cause problems if used carelessly?

The source QPE can restrict these to single outstanding transaction from each QPE (to any
particular destination) which means that, if a QPE is able to buffer <34-ish> pending requests no
further control protocol is needed.

3.5 Register summary

TO BE DONE - what configuration does the NoC require?

1. Resetting?

2. Its own ID/position (could be ‘pin’ configured on macrocell). The PEs need to be able to find
this, too.

3. Some DMAC channel (resource) allocation: this is probably a software function although there
needs to be some (centralised?) arbitration.

4. More . . .

3.6 Fault-tolerance

The NoC should guarantee delivery of all packets it accepts. This is very important because some
packets are mediating processor bus cycles and that processing element will be stalled indefinitely.
Given the limit on outstanding transactions imposed at the QPE level, this could, over time, ‘take
out’ the entire QPE.

Packets do a significant amount of clock domain resynchronisations; each comes with a very small
(but finite) probability of failure. If possible this should not risk losing a packet; producing a duplicate
packet instead would be preferred if this is an option.

It would be possible to produce additional safeguards around NoC failure at the transaction source.
An example would be a ‘bus’ time-out on a processor operation, resulting in an ARM ‘abort’ if a
read or write operation had not responded within a given (programmable?) interval. (Subsequently
arriving responses can be dropped, within limits.) This would divert the failed operation into an
error recovery routine.

A watchdog mechanism (q.v.) provides a last line of defence by being able to reset and restart a
failing PE.

Fault insertion

1. TO BE DONE

Fault detection

1. TO BE DONE

Fault isolation

1. TO BE DONE

21

version 0.03 August 19, 2021

Reconfiguration

1. TO BE DONE

22

version 0.03 August 19, 2021

4 Quad-core ARM processing subsystem (QPE)

SpiNNaker2 incorporates 38quad-core ARM processing subsystems (Quad Processor Elements - QPEs)
which provide the computational capability of the device. Each of the 152individual cores is capa-
ble of generating and processing neural events, sending spikes and other packets via the NoC and,
alternatively, of fulfilling the role of Monitor Processor.

Although able to operate independently, the cores within a QPE are able to share memory – with
a small timing penalty – and share resources such as access to the system NoC.

4.1 Features

1. NoC router;

2. four synthesized Processing Element (PE) modules each with:

(a) an ARM Cortex M4F processor with:

i. single-precision floating-point hardware;
(b) 128Kbyte SRAM;
(c) fixed-point exponential, logarithm accelerators;
(d) random number generators;
(e) a machine learning accelerator;
(f) extensive DMA functions.

4.2 Description

The QPE (Quad-core Processing Element) represents a node on the SpiNNaker2 NoC. Each QPE
incorporates a NoC router and four PEs each containing an ARM Cortex M4F processor, DMA and
Spike management engines.

The QPE uses a single NoC router for data routing, and the relevant connectivity between this
and the DMA Controller and the 4 PEs is illustrated in Fig. 5.

DNoC
(192)

CNoC (32)

NoC
router

PEPE

PEPE

Config.

32

19
2

Crossbar
interconnect

Adjacent
NoC router

Figure 5: QPE internal routing

23

version 0.03 August 19, 2021

NoC Packet Multiplexer/Demultiplexer

ResponseMLADMAComms.

Bus Interface

Bridge

Numerical
accelerators

TimerExceptions

ARM
Cortex M4F

AHB Crossbar

SRAMSRAM SRAM SRAM SRAM SRAM SRAM SRAM

NoC

AHB

Fr
om

/to
 n

ei
gh

bo
ur

in
g

PE
From

/to neighbouring PE

System
 AH

B

DAHBIAHB

Figure 6: ARM Cortex M4F bus structure

4.3 Quad-core ARM Cortex M4F subsystem organisation

The Cortex M4 has uses several output buses in different areas of its address space. Fig. 6 shows
the arrangement of the AHB interfaces which can connect the PEs locally. More details of the bus
structure are given on page 23 which describes the PE structure; the Cortex-M4 is described in ARM
document DDI 0439D.

The PEs within a QPE are linked by the NoC-Interfaces to the central data NoC-router and the
local shared-memory interfaces. These two, parallel buses link with the PE’s local memory through a
crossbar switch. Part of the address space decodes to neighbours’ local memories and a reference to
this space is routed via the neighbour’s crossbar switch, from where it is switched to the appropriate
bank or RAM. There is a small timing penalty for this [* probably one wait state for writes and two
for reads, but TBC *]. Additional penalties may result from contention for access to particular buses
or RAM banks. It is therefore recommended that this mechanism is used for less frequent accesses
and specifically not for commonly running code or frequently accessed data such as a stack.

Successful operation of this mechanism relies on the corresponding subsystems being driven by
the same clock source. If different clock sources are employed, including separate clocks of nominally
the same frequency, correct operation is not guaranteed.

4.4 The QPE DMA and NoC subsystem

Each of the four PEs within the QPE operates within its own DVFS domain, but there are central
resources within the QPE that operate continuously at the maximum voltage and frequency. In
particular, these include the NoC router and its associated DMA Manager.

In the noc-access module within the PE connected to the local AHB Bus of the ARM core are
submodules for DMA and Spike processing. Those submodules can interact with the central DMA
management module via NoC-packets to issue or receive requests and arbitrate their data transfers.

Fig. 7...

4.5 Fault-tolerance

Fault insertion

1. TO BE DONE

24

version 0.03 August 19, 2021

Fault detection

1. TO BE DONE

Fault isolation

1. TO BE DONE

Reconfiguration

1. TO BE DONE

25

version 0.03 August 19, 2021

Figure 7: PE NoC interface

26

version 0.03 August 19, 2021

5 ARM Cortex M4F processing element (PE)

The ARM Cortex m4f (with its associated memory) forms the core processing resource in SpiNNaker.

5.1 Features

1. single-precision floating-point unit (FPU)

2. nested vectored interrupt controller (NVIC)

3. memory protection unit (MPU)

4. local AHB buses with:

(a) 128Kbyte SRAM memory array
(b) pseudo and true random number generator
(c) fixed-point exponential and logarithm accelerator
(d) machine learning accelerator
(e) 4 timer/counters

5. local power management and test support:

(a) DVFS (Dynamic Frequency and Voltage Scaling) and power switching
(b) memory BIST
(c) scan chain control

6. privileged access to protect configurations (see ARM M4 manual, Control Register)

5.2 Organization

See ARM DDI 0439D: the ARM Cortex M4 Technical Reference Manual.

5.3 Address map

Area From To Size Function

Local SRAM 0000 0000 0001 FFFF 128 KB Tightly bound SRAM
Local SRAM 0002 0000 0007 FFFF 384 KB Direct neighbours local SRAM
Local SRAM 0008 0000 000F FFFF 512 KB Remapped Quad local SRAM
System 3000 0000 DFFF FFFF Memory mapped System access via

NoC
Private Peripheral Bus E000 0000 E010 0000 Reserved by ARM
NMU E010 0000 E010 01FF NMU (Neural Multiplication Unit)

KISS (Pseudo RNG)
NMU E010 0200 E010 020F NMU TRNG (True RNG) Config
NMU E010 0210 E010 03FF NMU TRNG Random
NMU E010 0400 E010 05FF NMU EXP
NMU E010 0600 E0FF FFFF NMU SR
Timer 1 E100 0000 E100 001F Timer 1
Timer 2 E100 0020 E100 003F Timer 2
Comms Config E200 0000 E2FF FFFF NoC Comms Controller
ML ACC E300 0000 EFFF FFFF Machine Learning Accelerator
QPE NoC SRAM F000 0000 F1FF FFFF QPE NoC SRAM (global)
QPE regfile F200 0000 F5FF FFFF QPE regfile (global)
JIB management F600 0000 E600 03FF JIB management regfile (global)
UART 0 F600 0400 F600 04FF UART 0 (global)
UART 1 F600 0500 F600 1FFF UART 1 (global)
JIB Core Regfile F600 2000 F? Jib core regfile (global)

27

version 0.03 August 19, 2021

Tightly bound SRAM map

From To Function

0000 0000 0000 7FFF Instructions
0000 8000 0000 FFFF Data #0
0001 0000 0001 7FFF Data #1
0001 8000 0001 FFFF Data #2

The suggested arrangement is up to the software. The division into four banks (probably 2-way
interleaved) is a recommendation. Programmers should try to avoid instruction and data accesses to
the same bank as collisions will reduce performance although it should still function.

Other cores’ memories within the quad appear above address 0002 0000. The core ‘seen’ in each
space is its position in a cycle of cores/RAMs.

Designating the cores: {PE 0, PE 1, PE 2, PE 3} and the RAMs {RAM 0, RAM 1, RAM 2,
RAM 3}:

Core Base address RAM Speed

PE 0 0000 0000 RAM 0 Fast
PE 0 0002 0000 RAM 1 Slow
PE 0 0004 0000 RAM 2 Slow
PE 0 0006 0000 RAM 3 Slow
PE 1 0000 0000 RAM 1 Fast
PE 1 0002 0000 RAM 2 Slow
PE 1 0004 0000 RAM 3 Slow
PE 1 0006 0000 RAM 0 Slow
PE 2 0000 0000 RAM 2 Fast
PE 2 0002 0000 RAM 3 Slow
PE 2 0004 0000 RAM 0 Slow
PE 2 0006 0000 RAM 1 Slow
PE 3 0000 0000 RAM 3 Fast
PE 3 0002 0000 RAM 0 Slow
PE 3 0004 0000 RAM 1 Slow
PE 3 0006 0000 RAM 2 Slow

This gives typical software an identical view of the system from any core. All four cores may
operate independently – or largely so – in their ‘own’ SRAM; two cores could shut down leaving an
identical pair (say, PE0 & PE2) with extra RAM; a single core could operate with all the RAM, etc.

‘Slow’ access here means at least two cycles for a write operation and three cycles for a read
operation (TBC), plus possibly penalties for collisions; access to other cores’ spaces is therefore
practicable in general code, if not overused.

Remapped Quad local SRAM

The the Quad’s SRAM is aliased into another part of the SRAM map to facilitate other programming
models. The SRAM is subdivided into 4 banks each:

28

version 0.03 August 19, 2021

Base address PE 0 PE 1 PE 2 PE 3 Speed

0008 0000 RAM 00 RAM 10 RAM 20 RAM 30 Fast
0008 8000 RAM 01 RAM 11 RAM 21 RAM 31 Fast
0009 0000 RAM 10 RAM 20 RAM 30 RAM 00 Slow
0009 8000 RAM 11 RAM 21 RAM 31 RAM 01 Slow
000A 0000 RAM 20 RAM 30 RAM 00 RAM 10 Slow
000A 8000 RAM 21 RAM 31 RAM 01 RAM 11 Slow
000B 0000 RAM 30 RAM 00 RAM 10 RAM 20 Slow
000B 8000 RAM 31 RAM 01 RAM 11 RAM 21 Slow
000C 0000 RAM 02 RAM 02 RAM 02 RAM 02 Varies
000C 8000 RAM 03 RAM 03 RAM 03 RAM 03 Varies
000D 0000 RAM 12 RAM 12 RAM 12 RAM 12 Varies
000D 8000 RAM 13 RAM 13 RAM 13 RAM 13 Varies
000E 0000 RAM 22 RAM 22 RAM 22 RAM 22 Varies
000E 8000 RAM 23 RAM 23 RAM 23 RAM 23 Varies
000F 0000 RAM 32 RAM 32 RAM 32 RAM 32 Varies
000F 8000 RAM 33 RAM 33 RAM 33 RAM 33 Varies

This mapping intends to leave some fast ‘local’ memory – at the same address for all cores to aid
software distribution – whilst providing a contiguous data space (000C 0000 - 000F FFFF) with the
same absolute map for all cores to aid pointer sharing et alia. Here two banks of ‘local’ memory have
been chosen to facilitate easy, parallel code and data accesses at full speed.

Other alias variants may be included too.

Memory mapped system access

Area From To Size Function

Invalid 0000 0000 2FFF FFFF Local Memory/Peripherals/unused
QPE SRAM 3000 0000 30FF FFFF 152x 128 kB SRAM off all QuadPEs
QPE Regfiles 3200 0000 3203 FFFF 38x 1 kB Register files of all QuadPEs
TBD 3208 0000 5FFF FFFF currently unused
SDRAM 6000 0000 DFFF FFFF 2 GB Memory of external SDRAM
Invalid E000 0000 FFFF FFFF Local Memory/Peripherals/unused

5.4 PE bus description

The Cortex-M4 is master of three AHBs. Two of these, the ‘ICode’ and ‘DCode’ memory interfaces
are at coincident addresses. These are led to a crossbar switch which allows parallel access to local
SRAM providing there is no resource contention. To reduce the possibility of contention for RAM,
the RAM is divided into four [**TBC**] addressable banks and further [** two or four? TBC **]-way
interleaved within each bank. In addition to the ‘ICode’ and ‘DCode’ inputs the crossbar has bus
connections leading from neighbouring PEs within the QPE – via the central crossbar switch – and
an external master from the QPE for global addressing and high-speed DMA access, e.g. for SDRAM
communications.

The majority of the address space is mapped via the ‘System interface’. Accesses on this bus
are regarded as non-local [** with a possible exception regarding local accelerators and peripheral
devices? TBC **] and the bus is routed to the QPE central resources. The cycle time of this is
difficult to predict as it involves clock domain crossing to the QPE and, in some cases communication
to more distant units via the NoC.

The Cortex-M4 ‘Private Peripheral Bus’ (PPB) – an APB interface is [**currently largely up for
grabs; suggestions please! **].

Figure here?

5.5 Fault-tolerance

Fault insertion

1. TO BE DONE

29

version 0.03 August 19, 2021

Fault detection

1. TO BE DONE

Fault isolation

1. TO BE DONE

Reconfiguration

1. TO BE DONE

30

version 0.03 August 19, 2021

6 Crossbar

2Kx32 SRAM

2Kx32 SRAM

crossbar

2Kx32 SRAM

2Kx32 SRAM

decoder

from
M4 D bus

from
M4 I bus

11 10 01 00 QPE

. . .

...

SRAM word 3 word 2 word 1 word 0

crossbar

from
neighbours

to
neighbours

decoder

. . .

11 10 01 00 QPE

from
NoC Communications Controller

from
neighbours

Figure 8: Crossbar organisation

In Fig. 8, the inputs on the individual crossbar elements are indicative of their priority, with
higher priority on the left hand side. The crossbar does not support burst operation, as the slaves
also do not. Bursts are handled like individual nonsequential transfers.

31

version 0.03 August 19, 2021

7 DMA Controller (DMAC)

Each QPE includes a DMA unit which supports a number of different communications modes.

7.1 Features

1. Coming soon!

7.2 Limitations

A number of limitations are imposed on the exact nature and number of DMA transfers to protect
the NoC from overloading and packets ‘backing up’ from destinations. These are enforced firstly by
the number of available DMA channels for the user and latterly by limiting outstanding transactions
on the NoC.

A general strategy is to limit each QPE to a single unsolicited request to any given
destination possibly more aggressive for simplicity? and ensure that there is space
to accept as many such requests at each destination as there are possible senders. A
higher limit or dynamic allocation has certain attractions but becomes considerably
more complicated and the returns may not be great.

7.3 Operating modes

DMAC covers several(??) different classes of operation. These are largely (effectively) independent
but all share the NoC interface and thus may compete for resources.

1. Memory-to-memory block DMA

2. I/O DMA

3. Bridging PEs to the NoC

7.4 Memory-to-memory block transfers

7.4.1 Terminology

Channel: one of several possible ‘places’ where a DMA transfer may be instigated. An illustrative
picture would be to have four channels per QPE with one channel notionally ’owned’ by each
PE.

Transfer: a complete data movement from memory to memory of an arbitrary data size. Transfers
are specified at software level.

Burst: a data ‘item’, typically consisting of several/many words with a well specified upper size.
Multiple bursts will usually be required for one transfer. Bursts are scheduled by hardware.

Initiator: the DMAC which is programmed with the transfer data.

Target: a DMAC responding to a request generates by an initiator DMAC.

Buffer: a hardware-controlled data buffer capable of sourcing/sinking a burst at full NoC speed.
Within the QPE data is moved at local speeds, thus more buffers than channels are needed if
a transfer is not to be unduly delayed.
It is not yet clear if the same buffers should act for inputs and output; it is vital
that every initiator DMAC ensures that at least one buffer is available (or in use)
for target responses at all times, else deadlock could ensue.

7.4.2 General

Both the SRAM and SDRAM transfers have a lot in common. This, and the sections below, try to
unify the commonality. The important issue is to coordinate buffers at each side of the NoC.

Imagine a transfer request to a DMAC at (initiator) software level defining a local and a re-
mote address, a transfer length and a direction. There may be other, minor details such as CRCs,
interrupt/signalling etc. but these can be subsumed in the message.

32

version 0.03 August 19, 2021

All potential, pending or progressing transfers are scheduled locally from a pool of possibilities.
The pool includes all the active block structured transfers; it is limited by the number of channels.

Transfers are (logically) subdivided into data bursts, each burst being no longer than the agreed
DMA burst buffer size. (Division may be done piecemeal as transfers proceed but it is convenient to
think of the bursts from the start of the operation.)

Bursts are scheduled such that at any time only a single burst can be active between the local
DMAC and any specific corresponding unit. Bursts between the local unit and different correspon-
dents may be active simultaneously.

Figure 9 shows an overview of the actions of the corresponding DMACs for (nominal) read and
write bursts. When a buffer is empty– either when its data has been transmitted of when it is written
into local RAM – it is deallocated and recycled (i.e. it the bottom of each column in the figure).

Figure 9: DMA NoC coordination

In addition to acting as an initiator, each DMAC must guarantee to accept as many burst requests
from the NoC as there are possible (remote) initiators.

Several DMA transfers may be active simultaneously. The DMAC supports probably four trans-
fer channels. If there are multiple active transfers the DMAC is responsible for scheduling the bursts
and will interleave bursts from different channels as the local buffer-SRAM bandwidth is typically
much lower than the NoC bandwidth so data will reside in buffers for some time. [Could have some
prioritisation if desired, here.]

The transmission of burst requests (i.e. the initiation of a transaction) must be limited to avoid
more request packets arriving at the destination (in this case the SDRAM interface) than it can
accept from the NoC. The simplest and therefore most likely rationing mechanism is to
limit each QPE to a single outstanding transaction of this type. This does not preclude
multiple DMA transfers operating concurrently as the DMAC will contain several data buffers so a
subsequent burst request can be sent as soon as one burst is received.

It is expected that DMA channels will be allocated in software, typically as one per PE although
this is not enforced by the hardware.

7.4.3 Read transfers

1. From the possible pending bursts, one is chosen according to <some prioritisation scheme>with
the limitation that this must not be to the same correspondent as any currently outstanding
burst.

33

version 0.03 August 19, 2021

2. A read buffer is allocated for the incoming data.

3. A request is sent to the correspondent which includes the details of the data burst required.
On receipt the correspondent schedules the burst amongst competing requests and fills its own
buffer (as and when one is available).

4. The burst is sent and accepted at full NoC speed.

7.4.4 Write transfers

Write transfers are closely analogous to read transfers.

1. From the possible pending bursts, one is chosen according to <some prioritisation scheme>with
the limitation that this must not be to the same correspondent as any currently outstanding
burst.

2. A request is sent to the correspondent which includes the details of the pending data burst.
On receipt the correspondent schedules the burst amongst competing requests and allocates its
own buffer (as and when one is available).

3. The initiator fills a transmit buffer from its local memory, then waits for permission to transmit.

4. When a receive buffer is available, the target sends an acknowledgement, allowing the burst to
be sent (as and when it is ready).

5. The burst is sent and accepted at full NoC speed.

7.4.5 CRC

** TBC **

7.4.6 SDRAM transfers

SDRAM transfers are the primary reason for the employment of DMA. The expected operations are
dominated by reads from – and, to a much lesser extent, writes to – the SDRAM from individual
PEs. DMA transfers are performed as bursts so that ‘trains’ of data are carried across the NoC to
make best use of both NoC and SDRAM bandwidth.

The anticipated bandwidth requirements w.r.t SDRAM transfers is:

1. Reads <some number of words per second>.

2. Writes <some lesser number of words per second>.

7.4.7 QPE transfers

DMA between PE SRAMs is allowed to enable the passing of messages. In a similar manner to the
SDRAM transfer the message (or a burst thereof) is assembled in a buffer in the transmitting QPE
and sent when informed there is a free receiver buffer.

In principle there is no difference in the protocols in transferring to/from SDRAM or QPE SRAM.
A feature of such transfers is the ability to generate an interrupt (at receiver or sender) when they

are complete, flagged on the last burst of a transfer.
In operation a (short) request packet from the sender can cause a receiver to reserve a buffer and

reply when ready; transfers then occur when buffers at both ends are primed.
The bandwidth requirements w.r.t SRAM transfers is hard to predict and will depend on future

software requirements. It is anticipated that individual transfers will be less frequent than SDRAM
operations but there may be more of them running in parallel and independently. The nature on the
NoC helps with this as its bandwidth is aimed at satisfying a peak demand on an individual path
whereas inter-QPE traffic will occupy many different paths.

1. Reads <some number of words per second>.

2. Writes <some lesser number of words per second>.

34

version 0.03 August 19, 2021

7.5 I/O transfers

I/O transfers are primarily concerned with incoming spike packets. The spike receiver is basically a
UART and can buffer several (how many? q.v.) incoming spikes locally. Like a UART it can have
an associated DMA request (as an alternative to a Rx interrupt) which can cause incoming packets
to be placed in SRAM. To assist with buffering a ‘modulo’ mechanism can be set up with the DMA
address.

A mechanism for indicating to the appropriate PE that this has been done – pre-
sumably an interrupt – is needed. In this operating mode the DMAC may need to take
responsibility for this. ** TBC **

7.6 Register summary

The size and local destination(/source) address of the transfer are programmable. The address is
confined to within the (Q)PE so is expressed with a local alias rather than using the global address
space. Likely to be a PE ID plus an address within that PE.

The ‘remote’ address in the transfer is also decomposed into a local address and a QPE/PE
address. For convenience this is done in hardware so the register view specifies an address in the
global address space.

Transfers are broken down into bufferable-sized bursts. Bursts are buffered off(/for) the NoC in
the QPE so that reception(/transmission) is possible at full speed on the NoC itself. The burst length
is programmable, up to the hardware buffer size of <some number of>words.

** TBC **

7.7 Fault-tolerance

All TBC
Note: there is an assumption that every NoC packet is delivered correctly. In the event of failure

problems could multiply quite quickly. Some form of ‘back-stop’ – presumably a time-out mechanism
– may be appropriate to trap problems. ** TBC **

Fault insertion

1. TO BE DONE

Fault detection

1. TO BE DONE

Fault isolation

1. TO BE DONE

Reconfiguration

1. TO BE DONE

35

version 0.03 August 19, 2021

8 Fixed-point Elementary Function Accelerator

Accelerator for the calculation of exponential and natural logarithm functions is included as an AHB
slave within each ARM Cortex M4F processor sub-system.

8.1 Features

1. Evaluate ex or log(x) (base e).

2. s16.15 and s0.31 fixed-point (input/output formats can be mixed)

3. Single-precision floating-point format (IEEE 754-2008) with subnormals on input and output
is supported

4. Programmable accuracy (1 to 16 iterations)

5. 1-2 ulp accuracy and monotonicty in most of the available numerical formats

6. 7-22 clock cycles per operation, depending on accuracy

7. Saturation when arguments are out of range

8. Bus error when x ≤ 0 for logarithm.

8.2 Description

The unit employs the standard s16.15 (accum), s0.31 (signed long fract) fixed-point or single-precision
float formats for both operand and result. Results are accurate to one least-significant bit (LSB/ulp)
for almost all operands, functions and numerical formats when compared to C double-precision func-
tion accuracies (see below for the summary). If the operand would yield a result that is too small for
the fixed-point format, a zero (binary value: 0x00000000) is returned. If the operand would result
in an overflow, the maximum value of the fixed-point data format (binary value 0x7FFFFFFF) is
returned. When the accelerator is used in floating-point format, for exponential, if the argument is
±0, then 1 is returned, if −∞, then +0 is returned, if +∞, then +∞ is returned. For floating-point
logarithm, if ±0 is given, −∞ is returned, if the argument is 1, +0 is returned, if the argument is
negative, NaN is returned and bus error is signalled, if +∞ is given, +∞ is returned. In both floating-
point functions, if NaN argument is given, NaN is returned. Input ranges of different functions and
numerical formats are shown in tables 1 and 2.

s16.15 inputs (operands) to the exponential function unit are written to AHB address 0xE0100400.
Results stored in the output registers are read in the same format from the same AHB address. With
fixed-point formats, there is also an option to read an answer in a different format from the argument,
this is achieved by reading from a different address. The unit stores up to four outputs internally,
depending on the address used. The unit can have at most one value in calculation and it will hold
the answer in the output registers until another calculation is requested. If there is no value in the
calculation pipeline (e.g. after restarting the unit), a read access returns an undefined result.

There is no error monitoring implemented in the unit. Users have to ensure correct interfacing to
the unit. The unit has an internal FSM that will ignore any requests for a new calculation when it
is already working on another operation (inputs will be stalled by the AHB protocol).

Table 1: Approximate minimum and maximum ranges of values of exp operation with different 32-bit
2’s complement formats. ∗ - saturates to 0x0 below this range; † - saturates to 0x7fffffff above this
range.

Format I/O exp input range exp output range
s16.15/s16.15 −10.397...∗ to 11.09...† 0.00003... to 65534.5...
s0.31/s0.31 −1 to (−2−31)† 0.367... to 0.99...
s16.15/s0.31 −21.487...∗ to (−2−15)† ∼ 2−31 to 0.99...
s0.31/s16.15 −1 to 1− 2−31 0.367... to ∼ e
float/float −103.278... to 88.722... ∼ 2−149(sub.) to ∼ 3.403× 1038

36

version 0.03 August 19, 2021

Table 2: Approximate minimum and maximum ranges of values of ln operation with different 32-bit
2’s complement formats. ‡ - saturates to 0x80000000 below this range; † - saturates to 0x7fffffff above
this range.

Format I/O ln input range ln output range
s16.15/s16.15 2−15 to 216 − 2−15 −10.397... to 11.09...
s0.31/s0.31 0.367...‡ to 0.99... −0.99... to ∼ −2−31

s16.15/s0.31 0.367...‡ to ∼ e† −1 to 0.99...
s0.31/s16.15 2−31 to 0.99... −21.487... to 0
float/float ∼ 2−149(sub.) to ∼ 3.403× 1038 −103.278... to 88.722...

8.3 Implementation

The main algorithm is based on the shift-and-add algorithm presented in chapter 8 of the book
Elementary Functions: Algorithms and Implementation, 3rd. ed. by J-M. Muller. The architecture
of the unit is shown in Fig. 10. The core part of the unit performs two iterations of the algorithm
in one cycle and this is what defines the accuracy of the functions. One iteration roughtly finds two
bits of the answer. Range reduction and range reconstruction units are reducing the values to the
convergence domain of the iterative algorithm - refer to the book for more information.

8.4 Accuracy

The implementation was verified by sweeping over all meaningful operands for the full accuracy
setting and a subset of arguments for lower accuracy settings, and measuring the error relative to the
C double-precision math.h libraries. Tables 3-5 give accuracies of some of the configurations.

Table 3: Accuracy of s16.15 functions for the different numbers of iterations N . ulp = 2−15 =
0.000030517578125 (absolute)

exp log
N Max error Average Monotonic Max error Average Monotonic

16 1 ulp 0.477 ulp Y 2ulp 0.5ulp Y
14 8 ulp 0.564 ulp Y 2ulp 0.5ulp Y
12 125 ulp 3.172 ulp Y 2ulp 0.5ulp Y
8 30044 ulp 693.33 ulp Y 2ulp 0.56ulp N

Table 4: Accuracy of s0.31 functions for the different numbers of iterations N . ulp = 2−31 (absolute).

exp log
N Max error Average Monotonic Max error Average Monotonic

16 2ulp 0.29ulp Y 2ulp 0.54ulp Y
14 9ulp 2.22ulp Y 7ulp 2.32ulp Y
12 127ulp 39.13ulp Y 87ulp 34.3ulp Y
8 32416ulp 9537ulp N 22644ulp 8737ulp N

8.5 Register summary

Base address: 0xE0100400.

37

version 0.03 August 19, 2021

Table 5: Accuracy of single-precision floating-point functions for the different numbers of iterations
N . Ulp value relative to the exponent of the numbers.

exp log
N Max error Average Monotonic Max error Average Monotonic

16 1ulp 0.066ulp Y 192ulp 0.25ulp Y
12 1ulp 0.086ulp Y 2043ulp 0.27ulp Y
8 252ulp 15ulp N ∼ 10Mulp 8.28ulp N

Name Offset R/W Function

r0: s16.15 exp 0 0x00 R/W Operand/Result
r1: s16.15 exp 1 0x04 R/W Operand/Result
r2: s16.15 exp 2 0x08 R/W Operand/Result
r3: s16.15 exp 3 0x0C R/W Operand/Result
r4: s0.31 exp 0 0x10 R/W Operand/Result
r5: s0.31 exp 1 0x14 R/W Operand/Result
r6: s0.31 exp 2 0x18 R/W Operand/Result
r7: s0.31 exp 3 0x1C R/W Operand/Result
r8: float exp 0 0x20 R/W Operand/Result
r9: float exp 1 0x24 R/W Operand/Result
r10: float exp 2 0x28 R/W Operand/Result
r11: float exp 3 0x2C R/W Operand/Result
r12: unused
r13: unused
r14: unused
r15: unused
r16: s16.15 log 0 0x40 R/W Operand/Result
r17: s16.15 log 1 0x44 R/W Operand/Result
r18: s16.15 log 2 0x48 R/W Operand/Result
r19: s16.15 log 3 0x4C R/W Operand/Result
r20: s0.31 log 0 0x50 R/W Operand/Result
r21: s0.31 log 1 0x54 R/W Operand/Result
r22: s0.31 log 2 0x58 R/W Operand/Result
r23: s0.31 log 3 0x5C R/W Operand/Result
r24: float log 0 0x60 R/W Operand/Result
r25: float log 1 0x64 R/W Operand/Result
r26: float log 2 0x68 R/W Operand/Result
r27: float log 3 0x6C R/W Operand/Result
r28: Accuracy control 0x70 R/W Number of iterations to do (1-16, default is 16)

8.6 Register details

r0 - r3, r16-r19: Operand/Result

012345678910111213141516171819202122232425262728293031

S integer fraction

The functions of these fields are described in the table below:

Name bits R/W Function

S 31 R/W result/operand sign bit
integer 30:15 R/W 16-bit integer part of result/operand
fraction 14:0 R/W 15-bit fractional part of result/operand

38

version 0.03 August 19, 2021

r4-r7, r20-23: Operand/Result

012345678910111213141516171819202122232425262728293031

S fraction

The functions of these fields are described in the table below:

Name bits R/W Function

S 31 R/W result/operand sign bit
fraction 30:0 R/W 31-bit fractional part of result/operand

r8-r11, r24-27: Operand/Result

012345678910111213141516171819202122232425262728293031

S exponent significand

The functions of these fields are described in the table below:

Name bits R/W Function

S 31 R/W result/operand sign bit
fraction 30:23 R/W exponent of the result/operand
significand 22:0 R/W significand of the result/operaand

r28: Accuracy control

012345678910111213141516171819202122232425262728293031

iter.

reset: 1111

The functions of these fields are described in the table below:

Name bits R/W Function

iterations 3:0 R/W Number of iterations to do = value specified + 1

8.7 Fault-tolerance

Fault insertion

1. The fault-detection software could have an “insert fault” option.

Fault detection

1. Software could test random operand/result pairs from time to time.

Fault isolation

1. If this unit is faulty it should not be used.

Reconfiguration

1. Exponentials can be computed in software, or the functionality migrated to another processor
subsystem.

39

version 0.03 August 19, 2021

Clock 1

Clock 2

Clock 3 to
N+3

Clock N+4

Clock N+5

32-bit input and address

Data and address from AHB ready

Significand, exponent, various flags
based on the input

En and Ln

Results in fixed-point

Results in float

Data preprocessing

32

Range reduction

39

Finished iterating?

Iteration n1

Iteration n2

Range reconstruction

Float construction

Out to AHB

Log
LUTs

[n1,n2]

39

52

32

k

9

Numerical
format

Numerical
format

Figure 10: Architecture of the elementary function accelerator.

40

version 0.03 August 19, 2021

9 Random Number Generator

A pseudo-random number generator is included as AHB slave within the ARM processor sub-system.
It provides high-quality pseudo random number generation and can optionally be randomized by a
true random number signal.

True random numbers are generated using the phase frequency detection signals of the ADPLL
clock generators. This true random number signal bus is globally available on the chip. It is used for
randomization of the pseudo random number generator within the ARM subsystem in the Exec PM.

9.1 Features

1. a dedicated global True Random Number Generator (TRNG) with different ring oscillator
architectures and simple postprocessing blocks

2. a set of global Pseudo Random Number Generators (PRNG) for stand alone use or as postpro-
cessing elements for the TRNG

3. a 2-Bit True Random Bus (TRB) for distributing entropy between different sources and different
receivers. Sources, that can be coupled onto any of the 2 wires are: PFD signals of all ADPLLs,
outputs of oscillators of the TRNG, synchronized or unsynchronized values of the TRB itself.

4. an AHB TRNG slave for each ARM Core reading from the TRB.

5. an AHB PRNG slave for each ARM Core for stand alone use or operation with scrambling by
TRB data.

9.2 Description

Pseudo-Random Number Generator (PRNG)

The PRNG gives access to apparently random (though repeatable sequences of) values with a minimal
time overhead. Once set up, a ‘random’ value is provided simply by reading the appropriate register.

Two different PRNG algorithms [** TBC **] are available. These are both KISS (‘Keep it Simple
Stupid’) algorithms for efficiency combined with reasonable ‘randomness’ and long repeat periods.
One is based on ‘KISS32’, the second on ‘KISS64’ [** reference/description?? ** ** something on
seed meaning/whole algorithm? **].

In addition to this the generators have multiple, concurrent ‘seed’ values so pseudo-random values
from different parts of the cycles can be available; for instance different asynchronous threads or
processes can have their own seeds which can provide a ‘private’ repeatable source.

A value is obtained by reading the appropriate output. This action prompts the hardware to
derive the next number for that channel ‘behind the scenes’ so – unless reads are very close together
– there will be no waiting the next time the register is read.

The outputs are available in two forms: the first is as a simple, 32-bit ‘integer’; the second takes
24 bits from that value and recodes it into IEEE single precision (32-bit) floating point format. These
are alternative representations and reading either causes a new value to be generated.

The floating point output format is appropriately normalised and coded to represent equally
spaced values x such that 1 > x >= 0 (i.e. a separation of approx. 6.10−8) with the proviso that the
’0’ value is replaced with the (denormalised) minimum positive value (approx. 10−38).

To initialise/reset the PRNG the various seed values for that sequence must first be written. It is
then necessary to read the corresponding output register (discarding the value) to cause the seed to
be used by the generator.

??? KISS32 sequences and ??? KISS64 sequences are available in each PRNG [** both TBC **].

True Random Number Generator

*** TO BE DONE ***

9.3 Register summary

Base address: 0x20000000.

41

version 0.03 August 19, 2021

Name Offset R/W Function

r0: k32 0 s 0 0x00 R/W kiss32 0 seed 0
r1: k32 0 s 1 0x04 R/W kiss32 0 seed 1
r2: k32 0 s 2 0x08 R/W kiss32 0 seed 2
r3: k32 0 s 3 0x0C R/W kiss32 0 seed 3
r4: k32 0 Rint 0x10 R kiss32 0 random INT
r5: k32 0 Rflt 0x14 R kiss32 0 random Float32
r6: k32 0 C 0x18 R/W kiss32 0 seed carry
r8: k32 1 s 0 0x20 R/W kiss32 1 seed 0
r9: k32 1 s 1 0x24 R/W kiss32 1 seed 1
r10: k32 1 s 2 0x28 R/W kiss32 1 seed 2
r11: k32 1 s 3 0x2C R/W kiss32 1 seed 3
r12: k32 1 Rint 0x30 R kiss32 1 random INT
r13: k32 1 Rflt 0x34 R kiss32 1 random Float32
r14: k32 1 C 0x38 R/W kiss32 1 seed carry
r15: k64 s 0 0x40 R/W kiss64 seed 0
r17: k64 s 1 0x44 R/W kiss64 seed 1
r18: k64 s 2 0x48 R/W kiss64 seed 2
r19: k64 s 3 0x4C R/W kiss64 seed 3
r20: k64 Rint 0x50 R kiss64 random INT

9.4 Fault-tolerance

Fault insertion

1. TO BE DONE

Fault detection

1. TO BE DONE

Fault isolation

1. TO BE DONE

Reconfiguration

1. TO BE DONE

42

version 0.03 August 19, 2021

10 Stochastic Rounding Accelerator

Accelerator for performing stochastic rounding of numbers to a specified bit position is included as
an AHB slave within each ARM Cortex M4F processor sub-system.

10.1 Features

1. Rounding and saturation of 64, 32 and 16-bit values
2. Stochastic (using random numbers from MARS KISS 64) or round-to-nearest modes
3. Signed and unsigned arithmetic support
4. Configurable bit position to round (1 to 32 bits)
5. Support for single-precision floating-point to BFLOAT16 rounding
6. Unit works in 3 or 4 cycles (1 or 2 cycles for data input, 1 for rounding and 1 for output)

10.2 Description

Integer rounding and saturation is supported for 64-bit → 32-bit, 32-bit → 32-bit, 32 → 16-bit and
16-bit → 16-bit. Both signed and unsigned arithmetic is supported. Rounding is RTN (round-up on
tie) and stochastic rounding using random numbers from MARS KISS 64. Bit position for rounding
can be specified (1 to 32). Additionally, FLOAT → BFLOAT16 rounding and saturation is also
supported. Unit works in 3 or 4 cycles (1 or 2 cycles for data input, 1 for rounding and 1 for output).
For 64-bit inputs, little-endian sequence of word arrival is assumed. 4 threads are supported - both
for using a separate PRNG channels in stochastic rounding and for preserving data in case interrupt
happens before outputs are read. Input to the unit are written to AHB address 0xE0100600 plus an
offset depending on the arithmetic and rounding mode, as shown below. Results stored in the output
registers are read from the same AHB address.

10.3 Implementation

Figure 11 shows an architectural diagram of this accelerator. When the input number is ready,
accelerator reads the configuration register which contains the number of bits to round. Residual is
found and stochastic rounding is performed by adding a pseudo-random number from the appropriate
channel of the MARS KISS64 pseudo-random number generator, and then adding a carry-out to the
value that will be returned. If round-to-nearest is requested, the most significant bit of the residual
is added to the returned value. After rounding, saturation is performed by checking the top bits,
taking into account whether signed or unsigned arithmetic is used (which is encoded in the address).
Rounding mode is also encoded in the address.

10.4 Register summary

Base address: 0xE0100600. Tables 6, 7 and 8 contain registers available for using this accelerator.
Encoding of the register naming is as follows: rounding mode (RN/SR), signed/unsigned arithmetic,
bit width of the input (64/32/16), bit width of the output (32/16), top or bottom part of the 64-bit
input (not required for 32 and 16-bit inputs) and thread number (0-3).

10.5 Register details

r88: Configuration of bits to round

012345678910111213141516171819202122232425262728293031

bit pos.

reset: 00000

The functions of these fields are described in the table below:

Name bits R/W Function

bits to round 4:0 R/W Number of bits to round = value specified + 1

10.6 Fault-tolerance

43

version 0.03 August 19, 2021

Data in (64/32 bits) Config (5 bit)

000...

31 bit

32/64

signed
arithmetic

000...32/64{sign}

01

data inputsign extension

32/64

Pick 32/16
bits of

unrounded
result

Pick top
32 bits of
residual to

round

+ PRNG

127

Detect
overflow

in
the input

Pick the
top 32 bits
after result

32

32

c_out

bit_31

round mode
01

+

32

Saturation
32

4

32

Figure 11: Architecture of the rounding accelerator.

44

version 0.03 August 19, 2021

Table 6: First set of registers of the rounding accelerator. Stochastic rounding (SR) registers are
shown for all numerical formats.

Name Offset R/W Function

r0: SR U32 32 0 0x00 R/W Operand/Result
r1: SR U32 32 1 0x04 R/W Operand/Result
r2: SR U32 32 2 0x08 R/W Operand/Result
r3: SR U32 32 3 0x0C R/W Operand/Result
r4: SR U32 16 0 0x10 R/W Operand/Result
r5: SR U32 16 1 0x14 R/W Operand/Result
r6: SR U32 16 2 0x18 R/W Operand/Result
r7: SR U32 16 3 0x1C R/W Operand/Result
r8: SR U16 16 0 0x20 R/W Operand/Result
r9: SR U16 16 1 0x24 R/W Operand/Result
r10: SR U16 16 2 0x28 R/W Operand/Result
r11: SR U16 16 3 0x2C R/W Operand/Result
r12: SR S32 32 0 0x30 R/W Operand/Result
r13: SR S32 32 1 0x34 R/W Operand/Result
r14: SR S32 32 2 0x38 R/W Operand/Result
r15: SR S32 32 3 0x3C R/W Operand/Result
r16: SR S32 16 0 0x40 R/W Operand/Result
r17: SR S32 16 1 0x44 R/W Operand/Result
r18: SR S32 16 2 0x48 R/W Operand/Result
r19: SR S32 16 3 0x4C R/W Operand/Result
r20: SR S16 16 0 0x50 R/W Operand/Result
r21: SR S16 16 1 0x54 R/W Operand/Result
r22: SR S16 16 2 0x58 R/W Operand/Result
r23: SR S16 16 3 0x5C R/W Operand/Result
r24: SR FLOAT BFLOAT16 0 0x60 R/W Operand/Result
r25: SR FLOAT BFLOAT16 1 0x64 R/W Operand/Result
r26: SR FLOAT BFLOAT16 2 0x68 R/W Operand/Result
r27: SR FLOAT BFLOAT16 3 0x6C R/W Operand/Result

45

version 0.03 August 19, 2021

Table 7: Second set of registers of the rounding accelerator. Rounding to nearest (RN) registers are
shown for all numerical formats.

Name Offset R/W Function

r28: RN U32 32 0 0x70 R/W Operand/Result
r29: RN U32 32 1 0x74 R/W Operand/Result
r30: RN U32 32 2 0x78 R/W Operand/Result
r31: RN U32 32 3 0x7C R/W Operand/Result
r32: RN U32 16 0 0x80 R/W Operand/Result
r33: RN U32 16 1 0x84 R/W Operand/Result
r34: RN U32 16 2 0x88 R/W Operand/Result
r35: RN U32 16 3 0x8C R/W Operand/Result
r36: RN U16 16 0 0x90 R/W Operand/Result
r37: RN U16 16 1 0x94 R/W Operand/Result
r38: RN U16 16 2 0x98 R/W Operand/Result
r39: RN U16 16 3 0x9C R/W Operand/Result
r40: RN S32 32 0 0xA0 R/W Operand/Result
r41: RN S32 32 1 0xA4 R/W Operand/Result
r42: RN S32 32 2 0xA8 R/W Operand/Result
r43: RN S32 32 3 0xAC R/W Operand/Result
r44: RN S32 16 0 0xB0 R/W Operand/Result
r45: RN S32 16 1 0xB4 R/W Operand/Result
r46: RN S32 16 2 0xB8 R/W Operand/Result
r47: RN S32 16 3 0xBC R/W Operand/Result
r48: RN S16 16 0 0xC0 R/W Operand/Result
r49: RN S16 16 1 0xC4 R/W Operand/Result
r50: RN S16 16 2 0xC8 R/W Operand/Result
r51: RN S16 16 3 0xCC R/W Operand/Result
r52: RN FLOAT BFLOAT16 0 0xD0 R/W Operand/Result
r53: RN FLOAT BFLOAT16 1 0xD4 R/W Operand/Result
r54: RN FLOAT BFLOAT16 2 0xD8 R/W Operand/Result
r55: RN FLOAT BFLOAT16 3 0xDC R/W Operand/Result

46

version 0.03 August 19, 2021

Table 8: Third set of registers of the rounding accelerator. 64-bit SR and RN registers are shown for
all numerical formats as well as control register.

Name Offset R/W Function

r56: SR U64 32 bottom 0 0xE0 R/W Operand/Result
r57: SR U64 32 top 0 0xE4 R/W Operand/Result
r58: SR U64 32 bottom 1 0xE8 R/W Operand/Result
r59: SR U64 32 top 1 0xEC R/W Operand/Result
r60: SR U64 32 bottom 2 0xF0 R/W Operand/Result
r61: SR U64 32 top 2 0xF4 R/W Operand/Result
r62: SR U64 32 bottom 3 0xF8 R/W Operand/Result
r63: SR U64 32 top 3 0xFC R/W Operand/Result
r64: SR S64 32 bottom 0 0x100 R/W Operand/Result
r65: SR S64 32 top 0 0x104 R/W Operand/Result
r66: SR S64 32 bottom 1 0x108 R/W Operand/Result
r67: SR S64 32 top 1 0x10C R/W Operand/Result
r68: SR S64 32 bottom 2 0x110 R/W Operand/Result
r69: SR S64 32 top 2 0x114 R/W Operand/Result
r70: SR S64 32 bottom 3 0x118 R/W Operand/Result
r71: SR S64 32 top 3 0x11C R/W Operand/Result
r72: RN U64 32 bottom 0 0x120 R/W Operand/Result
r73: RN U64 32 top 0 0x124 R/W Operand/Result
r74: RN U64 32 bottom 1 0x128 R/W Operand/Result
r75: RN U64 32 top 1 0x12C R/W Operand/Result
r76: RN U64 32 bottom 2 0x130 R/W Operand/Result
r77: RN U64 32 top 2 0x134 R/W Operand/Result
r78: RN U64 32 bottom 3 0x138 R/W Operand/Result
r79: RN U64 32 top 3 0x13C R/W Operand/Result
r80: RN S64 32 bottom 0 0x140 R/W Operand/Result
r81: RN S64 32 top 0 0x144 R/W Operand/Result
r82: RN S64 32 bottom 1 0x148 R/W Operand/Result
r83: RN S64 32 top 1 0x14C R/W Operand/Result
r84: RN S64 32 bottom 2 0x150 R/W Operand/Result
r85: RN S64 32 top 2 0x154 R/W Operand/Result
r86: RN S64 32 bottom 3 0x158 R/W Operand/Result
r87: RN S64 32 top 3 0x15C R/W Operand/Result
r88: Bits to round 0x160 R/W Operand/Result

47

version 0.03 August 19, 2021

11 Machine Learning Accelerator (MLA)

11.1 Features

1. 16x4 Broadcast MAC array

2. 8bit unsigned integer multiplication

3. 29bit accumulation registers with saturation at maximum value

4. Get sources from and write target to AHB/NoC

5. Prefetch data from NoC to avoid waiting

6. Order of dimension loops for convolution adapted, so that addition of sub-elements not necessary

7. Maximum throughput:

(a) Matrix multiplication:

i. Operand A: 128bit/clk
ii. Operand B: 128bit/4*clk

(b) Convolution:

i. Operand A: 128bit/clk (within loop #0: 32bit/4*clk)
ii. Operand B: 128bit/4*clk

11.2 Overview

The accelerator lies within the communication control module (CommsCtrl) and provides a SIMD
execution of matrix-matrix multiplication (MM) and 2d convolution (CONV). For now the precision
of the input for both operations is 8bit but other resolutions are planned for future iterations. To
control the accelerator a AHB slave connection is provided as connection to the ARM core within
the PE. The accelerator accesses its input (MM: Matrix A, Matrix B, CONV: Filter/Weights Tensor
A, Input Feature Map Tensor B) either from the local SRAM as AHB master within the same
PE or from external sources over NoC. It then writes the result in the local SRAM. The complete
operation (convolution or matrix multiplication) is performed by the block autonomously and throws
an interrupt if the operation finished either successfully or with an positive error output signal.
Required configuration and status information are listed in the following subsections.

11.3 Configuration and Command Registers

Configuration
Word

Description

source a Source type (2 MSB) and address of operand A
source b Source type (2 MSB) and address of operand B
target Address of result
rows a MM: Number of rows for operand A
cols a rows b MM: Number of columns for operand A, and number of rows of operand B
cols b MM: Number of columns for operand B
trigger command Execute Accelerator: 1- MM / 2- CONV
data a* Data for operand A, written via AHB
conv params* CONV: convolution parameters

Convolution
Parameter

Description

in batch s number of examples in one minibatch
in pix row s input feature map x dimension (horizontal)
in pix col s input feature map y dimension (vertical)
fil pix row s filter x dimension (horizontal)
fil pix col s filter y dimension (vertical)
in channel s input channel (depth) size
out channel s output channel (depth) size
stride in pix row horizontal stride
stride in pix col vertical stride
padding mode 0- valid / 1- same / 2- manual

48

version 0.03 August 19, 2021

11.4 Mode of Operation

The accelerator assumes that the input data lies in correct layout within the addresses it is provided
with. This subsection describes the process of execution with the help of the accelerator for both
matrix multiplication and 2D convolution in detail. To control the accelerator over ARM core see
11.5.

11.4.1 Matrix Multiplication

AHB NOC

Row
SIMD

Column
SIMD

Output (C)

A

B
ctrl

AHB NOC

AHB

0bit 128bit

0bit

32bit
0bit 128bit

C

Input (B)

0

1

2

3

4

5

6

7

4w

...
0 1 ... 15 16 ...16s172 3

Input (A)

0

1

2

3

4

5

6

7

4h

...

4w0 1 ... 15 16 ...172 3 0 1 ... 15 16 ... 31 ...17 16s

0

1

2

3

4

5

6

7

...

4h

Figure 12: Matrix multiplication execution with the help of the accelerator.

The operation for matrix multiplication is fairly simple. The shape of operand A is defined as
(4h, 4w) while the shape of operand B is (4w, 16s). Those shapes are the result of the internal
structure of the MAC array and the memory alignment or data access of the spinnaker2 system. To
mitigate memory accesses the shared dimension is treated as the inner loop.

11.4.2 Convolution

For the functionality of the accelerator look at the tensorflow implementation quantized conv2d. For
a good explanation of the convolution process (or cross-correlation) visit the Stanford course CS231.
Input A are the weight/filters and Input B are the input feature maps. The feature maps must lie
within the same PE as the accelerator, because they are only fetchable with the SRAM AHB port.
The weights are prefetched by NoC. The order of execution is dictated by the convolution parameters
with the exception of stride and padding (see 11.3). They span a 7-dimensional loop structure in the
order described in table 9 with filter column as the innermost loop and minibatch size as the outer
loop.

In the beginning specific parameters get calculated out of the provided convolution parameters
(e.g. padding size for if VALID padding mode active). After the first data arrives at the accelerator
the array executes one 16x4 multiply-accumulate operation. During loop #0 operator B, one input
feature map row, is shifted for the next mac step and new weights are loaded as operator A. How

49

version 0.03 August 19, 2021

AHB NOC

Row
SIMD

Column
SIMD

0 1 ... 15 16 ... 31 ... f17 0
1

2
3

4
5

6
7

m...

Input (B) Kernels (A) Output (C)

0

1

2

3

4

5

6

7

e

...

0 1 ... 15 16 ... w172 3 18

A

B shift

ctrl

AHB NOC

AHB

0

1

2

3

4

5

6

7

h

...

0
1

c...

0 1 ... s

0

1

r

...

0 1 ... 15 16 ... w172 3
0

1
2

3

m...

0

1

2

3

...

c

C

0bit 128bit

0bit

32bit
0bit 128bit

2
3

Figure 13: 2D Convolution execution with the help of the accelerator. The order of dimension loops
are described in table 9.

often we fetch operator A depends on the element precision and the row count of the MAC array. If
8bit precision is used and the MAC array uses 4 rows one 128bit fetch can be used 4 times. The loop
structure then calculates where to read the next relevant data with address offsets loop inc. If the
counter of loop #3 (output depth) increments the array is written into the target memory block (4
values with 128 bit output). The SIMD aspect of the mac array is bound to the output depth (M) of
the array rows (4 simultaneous output channels) and to the filter row (S) of the array columns (16
simultaneous filter columns).

11.5 ARM C code & Execution

Since the accelerator is controlled by the ARM core we provide a C library, called ml-lib, as interface
to send the correct signals. It is furthermore worth noting, that any device, having access to the
shared NoC, may control any accelerator within the network. The functions listing 1 and listing 2
are of interest. See table 10 for the description of the parameters for matrix multiplication and table
11 for the function parameters of execute conv.

bool execute_mm(uint32_t dim_row_a , uint32_t dim_col_a , uint32_t dim_col_b ,

uint32_t op_a_addr , uint32_t op_b_addr , uint32_t target_addr , uint16_t

op_a_modid , bool op_a_use_noc);

Listing 1: ARM core function to exectute matrix multiplication with the accelerator

execute_conv(const struct conv_params cparams , uint32_t fmaps_addr , uint32_t

weights_addr , uint16_t weights_modid , uint32_t target_addr);

Listing 2: ARM core function to exectute 2D convolution with the accelerator

50

version 0.03 August 19, 2021

loop dimension symbol notes

#0 filter column S shift, SIMD x16 (array column)
#1 filter row R
#2 input depth C
#3 output depth M write back, SIMD x4 (array row)
#4 output column F
#5 output row E
#6 minibatch size N

Table 9: Loop order of the execution of the accelerator during 2d convolution.

parameter description

dim row a Number of row elements of matrix A
dim col a Number of column elements of matrix A and number of row elements of matrix B
dim col b Number of column elements of matrix B
op a addr Address of first element of matrix A within hardware
op b addr Address of first element of matrix B within hardware
target addr Address of first element of result matrix C within hardware
op a modid If matrix A is fetched from NoC, this id specifies the used SRAM/DRAM block
op a use noc Set true if matrix A should be fetched with NoC

Table 10: Function parameters of execute mm.

parameter description

cparams Struct of all necessary convolution parameters
fmaps addr Address of first element of the input feature map
weights addr Address of first element of the weight tensor
weights modid If the weight tensor is fetched from NoC, this id specifies the used SRAM/DRAM

block
weights addr Address of first element of the resulting output tensor

Table 11: Function parameters of execute conv.

uint8_t quad = 0x9; // quad = 001001 -> (1 ,1)

uint8_t pe = 1; // pe within quad

execute_mm (4, 5, 3, 0x120 , 0x10000 , 0x18000 , (0x0000 | quad << 5 | 1 << ((2-pe) %

4)), 1);

Listing 3: Example of one matrix multiplication executed by the internal ARM core

uint8_t quad = 0x9; // quad = 001001 -> (1 ,1)

uint8_t pe = 1; // pe within quad

struct conv_params cparams1 = CPARAMS_DEFAULT;

cparams1.in_batch_s = 1;

cparams1.in_pix_row_s = 4;

cparams1.in_pix_col_s = 18;

cparams1.fil_pix_row_s = 3;

cparams1.fil_pix_col_s = 3;

cparams1.in_channel_s = 1;

cparams1.out_channel_s = 4;

cparams1.stride_in_pix_row = 1;

cparams1.stride_in_pix_col = 1;

cparams1.padding_mode = PADDING_VALID;

execute_conv(cparams1 , 0x8040 , 0x8080 , (0x0000 | quad << 5 | 1 << ((2-pe) % 4)), 0

x80C0);

Listing 4: Example of one convolution executed by the internal ARM core

51

version 0.03 August 19, 2021

12 Counter/timer

Each processor element on a SpiNNaker chip has 4 counter/timers.
The counter/timers use two copied of the standard AMBA peripheral device described on page

4-24 of the AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003. The
peripheral has been modified only in that the APB interface of the original has been replaced by an
AHB interface for direct connection to the ARM968 AHB bus.

12.1 Features

1. the counter/timer unit provides two independent counters, for example for:

(a) millisecond interrupts for real-time dynamics.

2. free-running and periodic counting modes:

(a) automatic reload for precise periodic timing;
(b) one-shot and wrapping count modes.

3. the counter clock (which runs at the processor clock frequency) may be pre-scaled by dividing
by 1, 16 or 256.

12.2 Register summary

Base address: 0x21000000 (buffered write), 0x11000000 (unbuffered write).

User registers

The following registers allow normal user programming of the counter/timers:

Name Offset R/W Function

r0: Timer1load 0x00 R/W Load value for Timer 1

r1: Timer1value 0x04 R Current value of Timer 1

r2: Timer1Ctl 0x08 R/W Timer 1 control

r3: Timer1IntClr 0x0C W Timer 1 interrupt clear

r4: Timer1RIS 0x10 R Timer 1 raw interrupt status

r5: Timer1MIS 0x14 R Timer 1 masked interrupt status

r6: Timer1BGload 0x18 R/W Background load value for Timer 1

r8: Timer2load 0x20 R/W Load value for Timer 2

r9: Timer2value 0x24 R Current value of Timer 2

r10: Timer2Ctl 0x28 R/W Timer 2control

r11: Timer2IntClr 0x2C W Timer 2interrupt clear

r12: Timer2RIS 0x30 R Timer 2raw interrupt status

r13: Timer2MIS 0x34 R Timer 2masked interrupt status

r14: Timer2BGload 0x38 R/W Background load value for Timer 2

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the programmer:

Name Offset R/W Function

TimerITCR 0xF00 R/W Timer integration test control register

TimerITOP 0xF04 W Timer integration test output set register

TimerPeriphID0-3 0xFE0-C R Timer peripheral ID byte registers

TimerPCID0-3 0xFF0-C R Timer Prime Cell ID byte registers

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for further
details of the test and ID registers.

52

version 0.03 August 19, 2021

12.3 Register details

As both timers have the same register layout they can both be described as follows (X = 1 or 2):

r0/8: Timer X load value

012345678910111213141516171819202122232425262728293031

Load value for TimerX

0 0

When written, the 32-bit value is loaded immediately into the counter, which then counts down
from the loaded value. The background load value (r6/14) is an alternative view of this register which
is loaded into the counter only when the counter next reaches zero.

r1/9: Current value of Timer X

012345678910111213141516171819202122232425262728293031

TimerX current count

1 1

This read-only register yields the current count value for Timer X.

r2/10: Timer X control

012345678910111213141516171819202122232425262728293031

E M I Pre S O

reset: 0 0 1 0 0 0 0

The shaded fields should be written as zero and are undefined on read. The functions of the
remaining fields are described in the table below:

Name bits R/W Function

E: Enable 7 R/W enable counter/timer (1 = enabled)

M: Mode 6 R/W 0 = free-running; 1 = periodic

I: Int enable 5 R/W enable interrupt (1 = enabled)

Pre: TimerPre 3:2 R/W divide input clock by 1 (00), 16 (01), 256 (10)

S: Timer size 1 R/W 0 = 16 bit, 1 = 32 bit

O: One shot 0 R/W 0 = wrapping mode; 1 = one shot

r3/11: Timer X interrupt clear

012345678910111213141516171819202122232425262728293031

Any write to this address will clear the interrupt request.

r4/12: Timer X raw interrupt status

012345678910111213141516171819202122232425262728293031

R

reset: 0

Bit zero yields the raw (unmasked) interrupt request status of this counter/timer.

53

version 0.03 August 19, 2021

r5/13: Timer X masked interrupt status

012345678910111213141516171819202122232425262728293031

M

reset: 0

Bit zero yields the masked interrupt status of this counter/timer.

r6/14: Timer X background load value

012345678910111213141516171819202122232425262728293031

Background load value for TimerX

0 0

The 32-bit value written to this register will be loaded into the counter when it next counts down
to zero. Reading this register will yield the same value as reading register 0/8.

12.4 Fault-tolerance

Fault insertion

1. Disabling a counter (by clearing the E bit in its control register) will cause it to fail in its
function.

Fault detection

1. Use the second counter/timer with a longer period to check the calibration of the first?

Fault isolation

1. Disable the counter/timer with the E bit in the control register; disable its interrupt output;
disable the interrupt in the interrupt controller.

Reconfiguration

1. If one counter fails then a system that requires only one counter can use the other one.

54

version 0.03 August 19, 2021

13 Exchange - the PE communications switch

Each PE on SpiNNaker2 includes a communications Exchange which is responsible for transmitting
and receiving packets to and from the communications network. This block contains all the NoC-
connected units, which are outlined in this section and described in greater detail in their own
sections.

Incoming packets may be routed directly to local SRAM using a dedicated IO DMA controller,
in which case they do not appear in the ‘default’ receiver path below.

In addition, this unit handles some other packet functions – such as providing remote access to
the PE SRAM – which are not directly visible at the software interface.

13.1 Features

1. Transparent bus bridge onto global address space via the NoC.

(a) The PE processor’s address space can be expanded to encompass the whole chip plus its
accompanying SDRAM(s) with transparent load and store.

(b) Write accesses may be fire-and-forget for improved performance.

2. NoC packet transmitter and receiver with software interface.

(a) The transmitter allows any sort of NoC packet to be sent. The typical common purposes
are:

i. SpiNNaker {MC, C2C, NN} packet transmission to router.
ii. Message/protocol packet transmission to other PEs.

iii. Raising exceptions with other PEs.
iv. Software, non-blocking request to read/write data in a remote PE.

(b) The receiver includes DMA support for cyclic receive buffers in local SRAM; selectively
on type, all of or partial incoming packets can be written to a cyclic buffer in local address
space without software/interrupt intervention.

(c) Packets not filtered to DMA are queued for software intervention; a selection of identifying
interrupts (according to type) is available.

3. Memory-memory DMA controller for transfers to/from local RAM.

4. The Machine Learning Accelerator (MLA) can be fully controlled via NoC.

5. Exception receiver. Interrupts and resets on the PE can be asserted remotely via NoC packets
without software intervention.

6. Bridge from NoC into local SRAM. This makes the local SRAM available as a globally address-
able resource. This facility is independent from the local PE processor.

13.2 Overview

As shown in Fig. 14, the Exchange includes a number of sub-units.

Unit Function(s)

Bridge Allows System AHB to be extended as a master over the NoC.
Comms. Provides software to packet transmit and receive interfaces; also has DMA

interfaces into local bus.
DMA Main memory-memory DMA unit for moving data blocks into and out of local

RAM.
ML accelerator MAC array to accelerate matrix multiplication and 2d-convolution.
Response A bus bridge from the NoC onto the local PE RAM.

13.2.1 NoC interface

After the Tx FIFO, a multiplexer is employed to arbitrate sending requests from the Bridge (Peek/Poke),
Tx FIFO, DMAm, ML-Acc and RespPkt. The priorities of the 5 are listed below from highest to
lowest.

1. RespPkt

2. Bridge (Peek/Poke)

55

version 0.03 August 19, 2021

Demultiplexer/Multiplexer

ResponseBridge Comms. DMA ML
accelerator

Exceptions

M4
system
AHB
slave

interface

NoC

Interrupts

AHB master

Cfg

AHB

AHB

Figure 14: Exchange sub-units

3. Tx FIFO

4. DMAm

5. ML-Acc

The receiver is a demultiplexer to five NoC receiving submodules and a bus interface. The de-
multiplexer redirects input packets to these submodules according to their types.

1. Exception inputs.

2. Bridge (Peek/Poke) returned responses.

3. DMA returned responses.

4. ML-Accelerator DETAILS REQUIRED.

5. General, software packets including SpiNNaker packets and software messages.
Some of these packets may be filtered and DMA-ed directly into the local SRAM; others are
left to software.

6. Remote requests for local bus operations.

13.2.2 Bus master interface

To provide sufficient bandwidth to the local SRAM it is divided into two 64 KiB banks (using A[16])
which are each subdivided onto four word-interleaved buffers (using A[3:2]). There are four units
which can be SRAM masters. To simplify the subsequent switch these are decoded (using A[3:2])
into parallel word-lanes and distributed appropriately to subunits of the crossbar switch Q.V. – cross
reference. Each of the units which can be a bus master {comms, DMA, ML-accelerator, response} is
capable of outputting a bus request on (up to) all the 32-bit AHB word lanes in a single cycle. See
Fig. 15.

There is some additional alignment and sequencing needed when up to six, unaligned words are
being saved by the comms unit.

The address interleaving is supported by the data in three of the four sources being aligned
at source (???); only the input from the comms unit, where packet length may vary and not all
fields may, necessarily, be saved, causes some consternation; this is addressed within the comms unit
boundary. *** There’s still an issue of lane-swapping though. Note that a single word payload is
always in NoC lane 3 (UofM numbering) whilst its address is arbitrary. ***

56

version 0.03 August 19, 2021

To reduce the latency of the critical path, which is the arbiter before each memory

bank, a stage of pipeline registers are inserted between the 6-to-1 arbitration and

crossbar (designed by Delong) before each memory bank. Because the two SpiNNaker DMAs

only write data to local memory, do not read data, the pipeline stage doesn’t lead to

any performance decrease.

The DMAw_read registers are also implemented in the pipeline stage. DMAw_read stands for

the address that finished writing. There are two DMAw_read registers, one for DMAs0 and

the other for DMAs1. When a word is forwarded to the pipeline stage, a flag indicating

the word belonging to DMAs0 or DMAs1 is also passed on. When the word is finished

writing, the corresponding DMAw_read register increases by one. However, this increase

is only a temporary increase.

It is possible that words belonging to one SpiNNaker Packet DMA finish writing out of

order. Therefore, the increases at the 4 ports are stored temporarily, and DMAw_read

always checks the 4 ports sequentially. That is, if DMAw_read starts from port 1, it

checks port 1, then port 2, then port 3, then port 0, the port 1 ... When it checks the

port, if there are temporary increases, the temporary increase will be decreased by one.

If there is no temporary increase, it waits until an increase comes.

Attempt to summarise previous paragraphs: check for correctness.
The flow through the interface [for which units? All? Are there consequences for MLA?] is

pipelined. It is essential that memory modifications are seen deterministically by the processor. In
the comms unit (q.v. – cross reference) there are DMA registers {spDMAw0, spDMAw1} which indicate
the position reached in writing to the ring-buffer. These are not updated until it is known the write
is complete. Write operations may complete out of order across the different, interleaved ports; the
spDMAw* registers, as read, are only updatedwhen all the write operations up to that point are known
to be complete.

*** Don’t have confirmation of such implications for other subunits at this time. ***

13.3 Exception subunit

The exception subunit is responsible for handling incoming contro/exception packets from the NoC.
There are two classes of exception packets {reset, interrupt} which are dealt with in hardware and
software, respectively.

13.3.1 Interrupt exceptions

An arriving exception packet can set one or more local interrupt requests. These requests remain set
until actively cleared by software. Clear is effected by writing a ‘1’ to the appropriate bit; writing
a ‘0’ has no effect. The processor cannot set these bits directly (although it could send itself an
appropriate NoC packet).

IFF all the bits go directly to the VIC – which is not that unlikely – then this could be aliased
with the general interrupt status register. In this case only the bits set from the external NoC packets
need (and probably ‘should’) be clearable locally.

13.4 Register summary

Base address: 0x????????
Access permissions? Should these be privileged access only?

Name Offset R/W Function

r0: XXX 0x000 R/W Overall control register
r1: YYY 0x004 R Status register
r2: IEN 0x008 R/W Interrupt enable register
r?: IRQ 0x??? R/W* Global interrupt status register
r?: ZZZ 0x??? R/? Global source register(s)

*** 32-bits of status may be inadequate ***

57

version 0.03 August 19, 2021

13.5 Register details

r0: XXX - Control register

Enables, resets etc. Blah, blah.

r1: YYY - Status register

Consider ARM immediates when placing bits!
This is a suggested plan for the comms. interface interrupts. It does not take into account the

memDMA etc. Nor does it encompass the system-level exception inputs.
Potential comms interrupts (possibly out of date):

012345678910111213141516171819202122232425262728293031

? ?

0 0

May need to accommodate more memDMA interrupts.
Needs to accommodate more MLA interrupts.
Needs to accommodate more (or fewer!) NoC interrupts.

The functions of these fields are described in the table below:

Name bits R/W Function

? 31 R IRQ external #3
? 30 R IRQ external #2
? 29 R IRQ external #1
? 28 R IRQ external #0
? 21 R IRQ MLA #1
? 20 R IRQ MLA #0
? 17 R IRQ memDMA error
? 16 R IRQ memDMA complete
? 15 R IRQ spDMA 1 overrun
? 14 R IRQ spDMA 1 limit
? 13 R IRQ spDMA 1 full
? 12 R IRQ spDMA 1 not empty
? 11 R IRQ spDMA 0 overrun
? 10 R IRQ spDMA 0 limit
? 9 R IRQ spDMA 0 full
? 8 R IRQ spDMA 0 not empty
? 7 R IRQ Rx overrun
? 6 R IRQ Rx not empty info
? 5 R IRQ Rx not empty NN
? 4 R IRQ Rx not empty C2C
? 3 R IRQ Rx not empty MC
? 2 R IRQ Rx not empty
? 1 R IRQ Tx not full
? 0 R IRQ Tx empty

58

version 0.03 August 19, 2021

Interrupt Meaning

IRQ external * Reserved for NoC packet interrupt sources
IRQ MLA * Reserved for MLA interrupt sources
IRQ memDMA error Memory-memory DMA (memDMA) anomaly
IRQ memDMA complete Memory-memory DMA (memDMA) completed transfer successfully
IRQ spDMA 1 overrun At least one packet to spDMA dropped
IRQ spDMA 1 limit spDMA RAM FIFO exceeds programmed fullness
IRQ spDMA 1 full spDMA RAM FIFO is full
IRQ spDMA 1 not empty spDMA RAM FIFO has unprocessed entries
IRQ spDMA 0 overrun At least one packet to spDMA dropped
IRQ spDMA 0 limit spDMA RAM FIFO exceeds programmed fullness
IRQ spDMA 0 full spDMA RAM FIFO is full
IRQ spDMA 0 not empty spDMA RAM FIFO has unprocessed entries
IRQ Rx overrun At least one packet to Rx dropped
IRQ Rx not empty info Next receiver packet is type ‘message’
IRQ Rx not empty NN Next receiver packet is type SpiNNaker-NN
IRQ Rx not empty C2C Next receiver packet is type SpiNNaker-C2C
IRQ Rx not empty MC Next receiver packet is type SpiNNaker-MC
IRQ Rx not empty Receiver contains at least one packet
IRQ Tx not full Transmitter has free capacity
IRQ Tx empty Transmitter completely empty

More, specific ‘not empty’ indicators??

r2: IEN - Interrupt enable register

Mirror the bit positions of any potential interrupts.

012345678910111213141516171819202122232425262728293031

? ?

0 0

r?: IRQ - * Global interrupt status register

Consider ARM immediates when placing bits!
This register holds ‘sticky’ bits which are set by remote, events via ‘exception’ NoC packets. Such

packets set any corresponding bits only. Bits can be cleared by writing ‘1’s to the appropriate bits;
writing ‘0’s has no effect. [Note: this should be done before addressing any remote cause of the
interrupt in case another packet is in transit.]

There needs to be some way of identifying the source of an interrupt where more than one source
(such as a PE) is possible. This could be by software allocation — otherwise some means of associating
the packet source (available in the NoC packet) with each potential interrupt is needed. (THIS
COULD GET MESSY!) In principle, many PEs could make a request at the same time; thus a (big!)
2D bit array may be needed for status, with this register merely being the (in this case, read only)
summary of the OR of these sources.

Initially there are four different requests known from the SpiNNaker router. *** THIS LIST WILL
EXPAND! ***

012345678910111213141516171819202122232425262728293031

? ? ? ?

0 0 0 0

59

version 0.03 August 19, 2021

Comms DMA MLA Response

Word 3 Word 2 Word 1 Word 0

NoC packet

Crossbar

NoC payloadNoC payload NoC payload

Figure 15: Exchange wiring

60

version 0.03 August 19, 2021

14 Comms unit

14.1 Features

1. Support for three SpiNNaker packet types:

(a) multicast (MC) neural event packets routed by a key provided at the source;
(b) core-to-core (C2C) packets routed by destination address to any core;
(c) nearest-neighbour (NN) packets routed by arrival port;

i. in both normal and peek/poke forms.

2. Support for software message packets to any on-chip PE.

3. Support for requesting and receiving data from any globally-addressable memory.

(a) This provides non-blocking software support for remote read and write operations.

4. Output for sending exceptions to other processing units.

5. flexible packet features:

(a) support for 40-bit packets with optional 32-, 64- and 128-bit payloads;
(b) 2-bit time stamp (used by Routers to trap errant packets);

6. Two DMA engines to transfer selected incoming packet types into local SRAM.

14.2 Overview

This whole ‘chapter’ should, probably, be subdivided as shown in this (temporary?) subsection.
The comms unit structure is shown in figure 16. The transmitter is a fairly simple, UART-

like transmitter, packaging data words from the AHB into NoC packets. The receiver performs a
complementary function but there are programmable packet filters which allow particular classes of
incoming NoC packets to be filtered. To relieve pressure from processor interrupts all received data
is sent directly to the local RAM via DMA controllers which implements cyclic ring-buffers in the
RAM. There are three such independent buffers: incoming NoC packets are offered to each in turn,
the first two having filters which will trap out particular sorts of packet. The third buffer is the
‘default’ which handles packets which are not identified by the filters.

In addition to their filters, each buffer has the ability to discard parts of the packets. For example,
it is envisioned that in operation with spiking networks the first filter would be set to trap MultiCast
(MC) SpiNNaker packets with no payload (only) since these represent neuron firing and save (only) the
key field from the NoC packet. The outcome would be a queue with 32-bit entries, each representing
an incoming spike.

Figure 16: SpiNNaker2 NoC Topology

The processor may poll its input buffers periodically, be interrupted when a buffer is not empty
or be interrupted when the buffer fills beyond a programmable amount. All buffer locations and sizes
are software configurable.

A separate packet type can send ‘messages’, which are basically ‘events’. There are 32 possible
events which are asserted until cleared by the local software. Any of these can cause an interrupt or
be left to be polled.

61

version 0.03 August 19, 2021

14.2.1 Area map

Base address: 0xE200 0000

Area Offsets Function

r0-r31 0x000-0x07C Communications Transmitter
r32-r47 0x080-0x0BC Default packet receiver
r48-r49 0x0C0-0x0C4 Message/interrupt receiver
r61-r63 0x0F4-0x0FC General control
r64-r79 0x100-0x13C Receiver filter 0
r80-r95 0x140-0x17C Receiver filter 1
r96-r102 0x180-0x19C Memory-memory DMA controller

Processor access to the device is via an AHB interface from the M4 System Bus; this allows
configuration and data transfer from and to the M4. An additional set of master buses are used
by the DMA channels to write data through the crossbar to the local SRAM. These provide four
semi-independent, word-interleaved paths which can, in principle, operate in parallel.

14.2.2 Packet transmitter

The transmitter is responsible for assembling packets from input information and can derive some
fields automatically: for example the packet payload presence/size is (normally) deduced as the
payload words are input. Alternate transmitter addresses are offered so that data like the packet
type do not need to be reloaded for every packet; it is possible to choose the control information from
one of four preprogrammed registers. For example, it might be anticipated that one is reserved for
neural spike outputs so a spike can be sent by a single 32-bit write of its source ID.

The Tx module can generate any type of NoC packet although in normal use only a subset of types
would typically be initiated by this unit. (Care should be taken not to generate packets which may
cause problems elsewhere in the system.) The Tx packet forming submodule receives data from the
AHB slave interface, forms the packet and sends it into the Tx FIFO. The Tx FIFO is a conventional
FIFO whose function is to release the Tx packet forming submodule quickly if the NoC Tx channel
is blocked. The current FIFO is one entry (which may be uncomfortably short: JDG) long.

In the Tx packet forming submodule there are four sets of configuration registers, comprising
{TCR*, TDR**, TKR*}.

These are all address aliases except for the TCRs, which are discrete registers. All the registers
are of 32-bit width. The sets of registers are subscripted {a, b, c, d}. The intended operation is that
commonly sent packet types can be configured in chosen TCRs which then do not need rewriting; the
other values – which are expected to differ in every packet – are then written to the corresponding
alias, thus saving an operation in each transmission.

Packet transmission is caused by writing to the appropriate TKR; this must therefore be the
last word written. This then assembles the packet using the corresponding TCR for packet type,
destination etc. and appends the size as determined by the lowest numbered (i.e. lowest offset) TDR
written to since the last packet was sent. The anticipated software behaviour would therefore be
writing the appropriate number of words – less the control which is preset in TCR – in ascending
register order to the appropriate alias. This can be done using an ARM STM instruction.

When the TDR* registers are written, the payload size is deduced automatically from the lowest
numbered (‘lowest’ address) TDR register written to. When a TKR* is written, the packet is formed
and sent out automatically and the payload size counter is cleared. The payload size is selected from
the values {0, 1, 2, 4} words. Although this mechanism can be overridden, and the size set manually,
it is expected that payloads will generally differ in packet sequences.

Bits in the TCTL override the automatic counter for the different TCRs When TCTL[4] is set
(‘1’), and TCRa is selected (by writing TKRa), size comes from TCRa[31:29]; when TCTL[5] is set,
and TCRb is selected, it comes from TCRb[31:29]; when TCTL[6] is set, and TCRc is selected, it
comes from TCRc[31:29]; when TCTL[7] is set, and TCRd is selected, it comes from TCRd[31:29].

Such a mechanism is necessary to enable the explicit (as opposed to implicit – via the bridge)
sending of packets such as requests to write a single byte. It is suggested that this mechanism – used
in Jib1 – is subsequently reviewed and simplified. Unfortunately there is not space to dedicate a
control bit in a TCR solely to this function; one way could be to use a previously unused code in
TCT[31:29] (e.g. ‘111’) to designate ‘use the packet count’ although the question of what should be

62

version 0.03 August 19, 2021

read back in these bits is then raised. Another approach would be to overload some bit field(s) as
there are always some which have no purpose in some packets. *** TBC ***

When the packet is of type ‘111’ (i.e. a SpiNNaker packet) bits [161:160] of the packet are always
derived from payload size counter.

Request packets require a response which should be returned to the initiator. The initiator PE ID
is fixed by the hardware and integrated automatically when an appropriate packet type is sent. The
PE ID is not visible in the TCR (there is no room) but can be read in software from the Chip ID
register.

14.2.3 Packet receiver

Received packets are filtered and routed internally various ways. Packets with specific purposes,
such as messages/interrupt events, are routed to the appropriate unit internally. Those which are
not so recognised arrive in the packet receiver where they can be filtered for particular, programmed
characteristics. All such received packets are moved into local SRAM by DMA but specific, recognised
packets are routed to a their own areas. There are two programmable filters in series before remaining
packets are placed in the ‘default’ buffer.

The filters are designed to look for SpiNNaker packets only? messages? other?.
The filters look for packets of given type(s) and payload size(s). These criteria are bit-selectable so

several types or sizes may be included in one filter. Matching packets are diverted into the appropriate
DMA channel for writing into SRAM.

Saving of the fields within the packet can also be controlled individually; thus the control word
(akin to RCR) the ‘key’ word (RKR) and the set of payload words (as specified within the packet)
can be saved or discarded individually.

Example: a filter could be set to identify only multicast (MC) packets without a payload
– these typically corresponding to neural spikes. From these only the ‘key’ field could
then be selected for saving. The result would be a RAM buffer containing only the spike
key IDs in successive addresses.

Figure 17: Block Diagram of SpiNNaker Packet DMA

Fig.10-5 shows the structure of SpiNNaker Packet DMA. The input packets firstly are filtered
by a packet filter, which is configurable by the processor, then the packets go into a FIFO. There
are two SpiNNaker DMAs below the FIFO, each one maintains a set of registers, which control the
packet filter and the storing of wanted packets. The two DMAs commonly use a 192-bit AHB-like
bus to access local memory. The order incoming packets are stored is header, payload[3], payload[2],
payload[1], payload[0], address. If a field is configured not to be received the following fields move up
in addresses.

In each SpiNNaker Packet DMA, There are some registers controlling its function. DMAc decides
what kind of packets it receives. DMAs is the start address of the buffer in local memory. DMAe is the
end address of the buffer. DMAr is the read address. DMAw is the write address. DMAl is the buffer
count (in words) limit. RAM buff count is the RAM buffer count (in words too). RAM buff max
is the maximum RAM buff count that has ever reached. DDC records the number of packets that
are dropped (packets that are wanted but buffer is full). DCTL is the configuration register for this
module itself.

14.2.4 Rx Module

Fig.10-6 shows the diagram of default Rx submodule. Received Packets are first

63

version 0.03 August 19, 2021

Figure 18: Block Diagram of default Rx submodule

filtered, then go to a packet FIFO. At the output of the FIFO, Packets are stored into

registers and then interrupt the processor.

There are six 32-bit packet registers for storing the incoming packets. These are RCR,

RKR, RDR3, RDR2, RDR1, and RDR0. The six registers correspond to the [191:0] bits of

a packet sequentially. When the processor read out these registers, the RKR register

should be read as the last one. When RKR is read, all registers are cleared, and the

next packet can be stored into the registers.

There are two registers who are responsible for the configuration/status report of the

default submodule: RCTL and RDC. When the packet registers are full, and a packet

arrives. The default receiver can decide to wait until the previous packet is read out,

or just drop the incoming packet. The choice is configurable by bit RCTL[17]. When it

is configured to drop out the incoming packet, RDC counts the packets that are dropped.

The packet filter decides to accept what kind of packets coming into the FIFO and then

registers. It can also reject all kinds of packets. The function of the packet filter

is configurable by RCTL.

Displaced paragraph below:
There is a control register RCTL in the dRx module. With some bits of RCTL, we can control

whether dRx accept packet types that should be directed to previous modules. That is, when one
previous module is busy, for example, RespPkt, the incoming packet can be routed to dRx. However,
if the dRx is configured to reject the packet, the NoC interface will be blocked and waiting until
RespPkt receives it. *** EH?! NEEDS CLARIFICATION! ***

FIFO operation
The various receiver FIFOs are controlled through hardware-defined registers. They are confined

to working with 32-bit words. The first and last word address (inclusive) is programmed into hardware
registers and the received words are stored cyclically, between these, in ascending address order. The
reset value is the lowest (‘start’) address. In operation the hardware DMA will insert words into the
SRAM and then increment the software-visible write pointer; this pointer should not, normally, be
written to in software. When reading from a buffer the software should load the word(s) of interest
and, subsequently, write the new address to the read pointer. It is not necessary to write every word
address in software; if several words (such as a 128-bit payload) is read at once then only a single
write is needed and the hardware will know that all addresses up to that one are free. The DMA
will not overwrite ‘used’ space in the buffer, exerting some (limited) backpressure on the NoC but,
typically, discarding input if the buffer is full. An ‘overrun’ is indicated if discarding has occurred.

A FIFO is empty when its pointers are equal. For (software) simplicity the FIFO is ‘full’ when
only a single word remains free, so the pointers are only equal when the FIFO is empty.

Each buffer’s occupancy (in words used) is also calculated by hardware and made available to the
programmer. There is also a user-specifiable soft limit on the pending contents of the buffer which
can generate an interrupt if exceeded; this can act as a warning that the buffer needs urgent attention.

A monitor register retains the maximum capacity used in each buffer to assist with performance
analysis and allow FIFO sizes to be optimised for particular circumstances.

64

version 0.03 August 19, 2021

14.2.5 Messages

Specific ‘message’ packets can be sent between processing elements. These are separated from other
packets at reception and used to set appropriate bits in a hardware register. such bits remain set until
cleared by software. Any of these bits can be enabled to assert an interrupt request. This primary
intention of messages is to enable software-generated interrupts between PEs.

14.3 Register summary

Base address: 0x????????

Name Offset R/W Function

r0: TCRa (Tx configuration) 0x000 R/W Controls packet transmission
r1-4: TDRai (Tx data) 0x004-010 R/W Transmitter data payload [0:3]
r5: TKRa (Tx key) 0x014 R/W Send packet type ‘a’
r8-13: TCRb, TDRbi, TKRb 0x020-034 R/W Tx register variants/aliases - type ‘b’
r16-21: TCRc, TDRci, TKRc 0x040-054 R/W Tx register variants/aliases - type ‘c’
r24-29: TCRd, TDRdi, TKRd 0x060-074 R/W Tx register variants/aliases - type ‘d’
r31: TCTL (Tx control) 0x07C R/W Transmitter control register
r32: DMAc 0x080 R/W dummy register, no function
r33: DMAs (Rx buffer start) 0x084 R/W First buffer memory address
r34: DMAe (Rx buffer end) 0x088 R/W Last buffer memory address
r35: DMAr (Rx buffer read) 0x08C R/W Buffer read pointer
r36: DMAw (Rx buffer write) 0x090 R(/W) Buffer write pointer
r37: DMAl (Rx buffer limit) 0x094 R/W Buffer soft limit (in words)
r38: RDBO (Rx buffer occu-
pancy)

0x098 R Current buffer occupancy (words)

r39: RDMax (Rx tidemark) 0x09C R Buffer maximum occupancy
r40: RDDC (Rx Drop Count) 0x0A0 R No. of receiver packets discarded

(overrun)
r47: RCTL (Rx control) 0x0BC W Receiver Control?? Register
r48: Message 0x0C0 R/W* Message signals
r49: Message IE 0x0C4 R/W Message interrupt enables
r61: Receiver timeout 0x0F4 R/W Stall cycles before Rx packet discarded
r62: Chip ID 0x0F8 R Chip ID
r63: GCTL 0x0FC R/W Global control register
r64: spDMAc0 0x100 R/W spDMA channel 0 configuration
r65: spDMAs0 0x104 R/W spDMA channel 0 start address
r66: spDMAe0 0x108 R/W spDMA channel 0 end address
r67: spDMAr0 0x10C R/W spDMA channel 0 read address
r68: spDMAw0 0x110 R spDMA channel 0 write address
r69: spDMAl0 0x114 R/W spDMA buffer soft limit (words)
r70: DBO0 0x118 R spDMA buffer occupancy (words)
r71: DMax0 0x11C R Maximum spDMA buffer occupancy

reached (words) (‘Tidemark’)
r72: DDC0 (Drop Count) 0x120 R No. of spDMA packets discarded

(overrun) - channel #0
r79: DCTL0 (Control) 0x13C R/W spDMA channel 0 control
r80-95: spDMA{. . . })1 0x140-17C R/W spDMA channel 1: same as channel 0.
. . .

A packet will contain a data payload if any of r1-4 – or their aliases – is written before r5; this
can be performed using a single ARM STM instruction if desired. A 32-bit payload is written into r4,
a 64-bit payload into r3 & r4, and a 128-bit payload into r1-r4 (the cases with the aliased addresses
being similar). For compatibility with a receiver DMA unit (spDMA), if employed, it is recommended
that r4 is always used for the most significant word (etc.), regardless of the payload size.

Note: the Cortex M4 STM operations are interruptable so atomicity cannot simply be
assumed.

65

version 0.03 August 19, 2021

There are four alternative aliases for the transmit registers, with the exception of the TCRs, which
are unique: {a, b, c, d}. Thus, default control set-ups can be made in some TCRs and reused by
addressing the appropriate alias.

14.4 Register details

14.4.1 Transmitter

Offsets 0x000-0x01F

r0, r8, r16, r24: TCR - transmit configuration register

These four registers are used for setting control information for transmitted packets. Unlike the
accompanying TDR and TKR addresses, which are aliases for the same registers, the four TCRs are
distinct. This allows four packet set-ups to persist, avoiding rewriting the values each time. (The
TKR and any TDR contents are expected to be different, and therefore written, for every packet
sent.)

A potential application might dedicate one TCR for sending MC packets, another for C2C packets
carrying comms. traffic etc.

012345678910111213141516171819202122232425262728293031

Pkt Sz Dest X Dest Y Dest PE C Type 0 0 0 Froute STy SW TS B S

0 0

The functions of these fields are described in the table below:

Name bits R/W Function

Pkt Sz 31:29 R*/W Data size as will be sent in the packet
Dest X 28:26 R/W Destination NoC node address, X
Dest Y 25:23 R/W Destination NoC node address, Y
Dest PE 22:18 R/W Destination(s) within NoC node (details?)
C: Use CNOC 17 R/W 0 = use DNOC; 1 = use CNOC
Type 16:14 R/W NoC packet type

13:11 R Read as 000
Froute 10:8 R/W Set ‘fake’ route in SpiNNaker packet
STy: SpiNN Type 7:6 R/W SpiNNaker packet type {00 = MC, 01 = C2C, 10 = NN}
SW: SpiNN SW 5:4 R/W SW defined (if SpiNNaker packet)
TS: SpiNN TS 3:2 R/W Time stamp if SpiNNaker packet and relevant
B: Buffered write 1 R/W Only used in write requests
Rq Sz: 3:1 R/W Size in type 0 packets:
S: Supervisor 0 R/W Used in memory requests etc.

The Pkt Sz field reflects the bit code which will be sent in the packet. This may be explicit or
(more usually) is derived from the ‘counter’ associated with writes to the TDRs; it is ‘R*/W’ in that
the bits are writeable but will only read back here if the appropriate bit (7:4) (one bit per TCR) in
the control register is set; if the bit is clear the value will reflect the automatically calculated field
from the data writes. The value read is always the one which will be used in the transmited packet.

When automatically derived, the size will be the largest value since the previous packet transmis-
sion, as indicated in this table. Packet transmission (or reset) resets this to zero.

Written Size Meaning

None 000 No payload
TDRx0 011 One word
TDRx1 100 Two words
TDRx2 101 Four words
TDRx3 101 Four words

The “Dest” fields and “C” (bits 28:17) are used for routeing the packet across the NoC.
Type specifies the NoC packet type:

66

version 0.03 August 19, 2021

Code Type

000 Read request
001 Read response
010 Write request
011 Write response
100 Control/exceptions
101 Protocol (SW defined) message
110 (SDRAM DMA: do not use)
111 SpiNNaker packet

Request size is only used in read request packets and determines the size of the payload(s) returned
in the resulting response packets. Such packets are usually automatically generated by the bus-NoC
bridge but can be sent by hand to read remote memory locations, the data being returned to the
normal, software receiver.

The Froute (a.k.a. “link”) field allows a packet to be sent to the router which appears to have
come from one of the external links. Normally this field will be set to 7 (0b111) but can be set to a
link number in the range 0 to 5 to achieve this.

Bits 7-2 of the appropriate TCR are used in the control byte if a SpiNNaker packet is sent.
[cross-reference appropriate section]

STy is the SpiNNaker packet type:

Code Type

00 MC packet
01 C2C packet
10 NN packet
11 —

The time stamp (where applicable) will be inserted by the local Router in the normal case where
the Froute field is 111, otherwise the value here will be used. Only SW and, in the case of NN packets
*** and other, local NoC packets ***, T and the control byte route will normally be defined by TCR.

The size field for a SpiNNaker packet is notionally derived from the Dest Sz field of the TCR,
which is itself derived from which TDR registers have been written to since the previous NoC packet
was dispatched.

The ‘B’ bit is used to determine if an outgoing write request will generate (‘0’) a response packet
or not (‘1’).

If ‘S’ is set then packets are sent with the initiator’s priority (determined from the write to TKR).
If ‘S’ is clear then the packet is sent in user mode (i.e. S=0 in the packet.)

Some NoC packets include a source ID field; this is added automatically, if appropriate, as the
transmitting unit’s ID, which is determined in hardware by its physical position.

Any attempt to write to any transmitter register other than the transmitter control register
(TCTL) when the transmitter is full will cause a data abort. Thus, there are two means of providing
output flow control:

1. The transmit buffer ready status can be used, by polling or interrupt, to prevent buffer overrun.
2. A transmission can be attempted without first checking ‘fullness’; an abort indicates that there

was not room and the attempt failed.

Under most operating conditions it is expected that a transmitted packet will have reached the
local transmitter FIFO within a single clock cycle; as the NoC will typically provide more bandwidth
that is needed by several processors it is expected that aborts would be extremely rare in the second
case and this can provide a much more efficient transmission mechanism in most situations.

These are the normal, legitimate TCR settings:

FIX TABLE HERE - FIXED 24/3/20 @@ correct nunber of unused bits?

67

version 0.03 August 19, 2021

012345678910111213141516171819202122232425262728293031

unused Dest X Dest Y Dest PE C 0 0 0 Pkt Sz unused S

unused Dest X Dest Y Dest PE C 0 1 0 unused B S

unused Dest X Dest Y Dest PE C 1 0 0 unused B S

unused Dest X Dest Y Dest PE C 1 0 1 unused S

unused RouterXRouterY ??? C 1 1 1 unused Froute 0 0 SW TS —

unused RouterXRouterY ??? C 1 1 1 unused Froute 0 1 SW TS —

unused RouterXRouterY ??? C 1 1 1 unused Froute 1 0 T route —

r1-4, r9-12, r17-20, r25-28: TDR*i - transmit data payload

012345678910111213141516171819202122232425262728293031

32-, 64- or 128-bit data payload for sending with next packet

0 0

If data is written into TDR before a send key or dest ID is written into TKR, the packet initiated
by writing to TKR will include the contents of TDR as its data payload, which may be 32-, 64- or
128-bits long as determined by the lowest TDR index (0-3) written to. If no data is written into
TDR before a send key or dest ID is written into TKR the packet will carry no data payload. (The
payload length setting can be reset via TCTL.)

There are four, discrete 32-bit components to the TDR as indicated by the subscript index. The
highest subscript corresponds to the lowest register number, thus TDR*3 appears as {r1, r9, r17, r25},
etc. The disparate TDR addresses are simple aliases for the same set of registers; it does not matter
which alias is used in any operation. The aliases are provided so a packet, including its payload, can
be sent with a single ARM STM instruction. In many cases (a) TCR does not need to be updated for
a particular send operation so the STM can ‘begin’ at the highest desired TDR index (if any), work
downwards and finish with a TKR alias.

r5, r13, r21, r29: TKR - send MC key or C2C dest ID & sequence code

*** Cross-reference packet description section. ***
This register (and its counterparts) allow the miscellaneous packet bits to be set up. Not all of the

fields are used in a given packet. The bit fields can be divided into two groups: one of 15 bits which
are used in the NoC transmission itself and the 17 bits which make up the balance of the headers.
Any unused bits are sent as ‘0’s.

The packet size may be specified here or an automatically derived from the store operations setting
up the data field. However for certain packet types (notably read request (000) and write response
(011)) which never legitimately carry payloads the size is forced to ‘no payload’, regardless.

The destination, ‘C’ and type fields are copied directly from this register.
Within the body of the packet, the source fields are hard-wired to the values for the particular

PE. The source type is programmable.
Where appropriate, the ‘B’ bit is taken from bit 1 of the TCR.

Where appropriate, the ‘S’ bit is taken from bit 0 of the TCR.
Alternatively . . .
Where appropriate, the ‘BE’ bit is taken from bit 0 of the TCR.

– Specialist SpiNNaker packet stuff incomplete –
Resets to 0000 0001.
Writing to TKR causes a packet to be issued (with a data payload if TDR was written previously).

The packet type is determined by bits in the TCR corresponding to the TKR alias which causes the
packet to be sent. The appropriate TKR interpretation is the responsibility of the software.

68

version 0.03 August 19, 2021

TCR[16:14] TCR[7:6] Valid? Packet type TKR meaning

000 — SrcT = 2′b01 Read request Read address
001 — No Read response (Read address)
010 — SrcT = 2′b01 Write request Write address
011 — No Write response (Written address)
100 — Yes Control/Exception Command ???
101 — Yes Message Command
110 — No undefined undefined
111 00 Yes MC packet AER key
111 01 Yes C2C packet PE address
111 10 Yes NN packet Address/operation I forget :-}
111 11 No undefined undefined

Multicast key
The 32-bit routing key is used by the associative multicast Routers to deliver the packet to the

appropriate destination(s).

012345678910111213141516171819202122232425262728293031

32-bit multicast routing key

0 0

C2C destination address
The value written into TKR should include the 16-bit address of the destination chip in bits

[31:16], the destination core in bits [15:8], and the channel code (once established) in bits [7:0].

012345678910111213141516171819202122232425262728293031

16-bit destination ID 8-bit dest core ID 8-bit channel ID

0 0

*** Other packet types. ***

r31: TCTL - Transmitter control bits

This register controls the overall function of the packet transmitter and gives access to its status.
This is the only register in the packet transmitter which can be written to when the transmitter is
‘full’ (attempting to write to other registers will cause a data abort under that condition).

012345678910111213141516171819202122232425262728293031

E ? unused Tx tide - Tx occ S[3:0] L P R X

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The functions of these fields are described in the table below:

Name bits R/W Function

E!: ready 31 R Tx buffer ready (not full)
?: empty 30 R Tx buffer empty
Tx tide 14:12 R Maximum Tx FIFO occupancy

Review: currently reduced to 1 bit which is meaningless!
Tx count 10:8 R Current Tx FIFO occupancy

Review: currently reduced to 1 bit.
S[3:0]: size test 7:4 R/W Force packet size field [3:0]
L: low tide 3 W Flush maximum Tx occupancy

Review: see above!
P: ???? 2 W Flush payload size setting
R: reset 1 W Flush Tx FIFO buffer
X: stop 0 R/W Disable transmission (at FIFO output)

69

version 0.03 August 19, 2021

*** More bits/functions?? ***
The transmitter will only output packets if X (Stop) is clear; this does not prevent accumulating

packets in its internal buffer. The internal buffer can be flushed by writing a ‘1’ to the appropriate
control bit; setting X disables the output but does not, intrinsically, flush the buffer. Transmitter
‘empty’ indicates the internal FIFO has been cleared so all packets have left this unit; this is primarily
intended for management purposes and is not exported as an interrupt. The ‘Ready’ status bit, which
indicates that the transmitter is not full and will accept another packet is more useful in applications
programming and is available as an interrupt.

The transmitter packet FIFO holds 1 (TBC) packet(s) in addition to the holding register. The
instantaneous number of packets residing here is available for reading but this will typically change
(reduce) rapidly. A separate field indicates the maximum value this count has reached, which is more
useful in monitoring network congestion; this field can be cleared (to current occupancy) by writing
a ‘1’ to the ‘L’ bit in this register.

*** This feature made effectively redundant by the shrinking of the output FIFO. ***

If the transmitter becomes full, further write operations to any register other than TCTL will
cause a data abort.

Writing a ‘1’ to the P bit resets the payload length counter, as determined by which TDR registers
have been written to. It has no obvious function in normal operation.

The ‘S[3:0]’ bits cause the substitution of the size field from the corresponding TCR to replace
the (default) size as supplied by the payload size counter.

14.4.2 Default receiver

Offsets 0x020-0x2F
This unit acts as a packet receiver for all packets which are not trapped by the other filters. It

will store the packets – or a subset thereof – by DMA into a cyclic buffer in the local SRAM. The
buffer’s size and position are programmable.

r32: DMAc

This register exists, so all DMAs have a similiar register interface. Think about removing it later
Resets to 0xFFFFFFFF.

r33: Buffer start address

First address used for cyclic buffer. The address is constrained to a address and allows addresses up
to 0x1FFFC. The minimum size of the buffer is 6 words.

It is aligned as a byte address and will be the same as the addresses seen by the processor, directly.
It resets to 0x00010000.

012345678910111213141516171819202122232425262728293031

should be zero Lowest used address 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r34: Buffer end address

This is the last word address (inclusive) used in the cyclic buffer. It is subject to the same constraints
as the buffer start address.

Although all the locations between the start and end of the buffer will be used, to avoid confusion
with wrap around (at least) one word location will always be left free. Thus, setting start to 0x100
and end to 0x1FC would provide a useful maximum capacity of 0x3F words.

It resets to 0x0001FFFC.

012345678910111213141516171819202122232425262728293031

should be zero Highest used address 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

70

version 0.03 August 19, 2021

r35: Buffer read pointer

This is the head of the cyclic buffer – a.k.a. the ‘last’ used (word) address (i.e. it will be the
numerically lower pointer unless/until the write (‘tail’) pointer has wrapped around). It represents
the address from (and above) which packet data resides in SRAM.

This pointer is to be managed entirely in software. Writing to this pointer frees up space ‘behind’
it. The expected sequence of operations would be expected to be:

1. read read- and write pointers

2. load data from SRAM

(a) beginning at read pointer
(b) any number of words, but
(c) not exceeding write pointer

3. update and write back read pointer

It is a software responsibility to reset this pointer to the buffer start (r33) when it has exceeded
the buffer end (r34).

The buffer write pointer will never ‘lap’ this pointer.
The two pointers being equal indicates an empty buffer. The two pointers can be reset to the

start addresses by writing the appropriate command bit (in r47).
The minimum buffer size should never be less than 6 words, otherwise a single received packet

would overwrite itself partially.
The reset value is 0x00000000.

012345678910111213141516171819202122232425262728293031

should be zero Next word address 0 0

0 0

r36: Buffer write pointer

This is the tail of the cyclic buffer – a.k.a. the ‘next to be’ used (word) address (i.e. it will be the
the numerically higher pointer unless it has wrapped around (or be equal if the buffer is empty)). It
holds the next (word) address in SRAM which will be written to by incoming packets.

Although it can be written to, normally this pointer is to be managed in hardware. When it has
been updated any SRAM locations ‘behind’ it will be valid.

(FORMERLY . . . Software writes are only possible when enabled by setting the relevant
status bit in GCTL (r63).
This restriction seems to have disappeared?)

The buffer write pointer will not ‘lap’ the read pointer. If the size of the incoming packet is
sufficient to do this the write operation will be stalled or the packet dropped (depending on the
action programmed in r47).

The two pointers being equal indicates an empty buffer. The two pointers can be reset to the
start addresses by writing the appropriate command bit (in r47).

The reset value is 0x00000000.

012345678910111213141516171819202122232425262728293031

should be zero Oldest word address 0 0

0 0

71

version 0.03 August 19, 2021

r37: Buffer soft limit

This is a 15-bit register counting 32-bit words; it is RH aligned. If the number of occupied words in
the buffer equals or exceeds this value the status is reported (in r47) and an interrupt may be caused.

The intended purpose of this register is to allow attention to be attracted if the buffer is getting
full, before a problem can manifest.

The reset value is 0x4000.

012345678910111213141516171819202122232425262728293031

zero Word count alert

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r38: Buffer occupancy

This read-only, 15-bit register provides the number of words currently held in the SRAM buffer
(derived from the difference in the write- and read pointers).

Inevitably, it resets to 0x0000.

012345678910111213141516171819202122232425262728293031

zero Word count

0 0

r39: ‘Tidemark’ – the maximum fullness reached

This read-only, 15-bit register holds the maximum value of the buffer occupancy (r38) reached since
it was reset. It can be reset by writing to the relevant bit in the RCTL (r47). The reset value is
unknown, as they need valid start and end addresses, and read and write pointers setting up before
they can be evaluated. The DMax value should be explicitly ‘cleared’ before it is first used.

012345678910111213141516171819202122232425262728293031

zero Max. word count reached

X X

r40: Dropped packet count

This read-only, 15-bit, saturating counter holds the number of packets which have been discarded due
to an SRAM buffer overrun. It can be reset by writing to the relevant bit in the RCTL (r47).

The reset value is 0x0000.

012345678910111213141516171819202122232425262728293031

zero Dropped packet count

0 0

r47: RCTL – Control register

012345678910111213141516171819202122232425262728293031

NEF L O S unused R unused ? K H P un L C U

0 0 0 0 0 0 0 0 0 1

72

version 0.03 August 19, 2021

Name bits R/W Function

Not empty 31 R SRAM buffer not empty
Full 30 R SRAM buffer full : indicates that an incoming packet can-

not be accommodated. **
Limit 29 R SRAM buffer limit reached : the buffer occupancy has

reached or exceeded the soft limit.
Overflow 28 R Packet(s) dropped : one or more packets have been dis-

carded.
Stalled 27 R Packet(s) waiting : one or more packets are queued in the

NoC drop.
Reset 16 W Writing a ‘1’ to this bit resets the read and write pointers

to the buffer start value.
7 W? * ** Latched? but unused? Maybe read masked too **

Key 6 R/W Keep key: if ‘0’ the packet ‘key’ field (second 32-bit word)
will be discarded: if ‘1’ the bit will be stored.

Header 5 R/W Keep header: like ‘keep key’ but for the ‘header’ (first 32-
bit) word.

Privilege 4 R/W Privilege: the ‘HPROT’ value used for the memory trans-
fers. (Probably never checked on this AHB.)

Low tide 2 W Writing a ‘1’ to this bit resets the buffer ‘tidemark’ (to the
current ‘fullness’).

Clear drop 1 W Writing a ‘1’ to this bit clears the packet drop counter.
Unblock 0 R/W Drop packets which can’t be accepted **

Reset value is 0x00000001

14.4.3 Messages

Offsets 0x030-0x037
There are 32 possible ‘messages’ which can be sent, each as a single bit encoded in a word. Any

subset of these may be enabled to assert the message interrupt.
Arriving messages set the appropriate bit(s) in the message register. These bits are ‘sticky’,

remaining set until cleared by software. Clearing bits is achieved by writing to the message register
with a ‘1’ in the appropriate bit position(s); writing with a ‘0’ bit has no effect.

r48: Pending messages

Reading this register returns a 32-bit word containing set bits for all the pending messages.
Writing a 32-bit pattern will clear any bits where these is a ‘1’. It is not possible to set bits

directly in software.
The reset value is 0x00000000.

r49: Message interrupt enables

This read/write register specifies which messages can assert a message interrupt. A ‘1’ bit enables
the corresponding message bit to interrupt.

The reset value is 0x00000000.

14.4.4 Miscellaneous

Offsets 0x038-0x03F

r61: Receiver timeout

This is a 16-bit (right justified) read/write register. The upper 16-bits read as undefined.
The value acts as a receiver timeout. When an incoming NoC packet is stalled a counter is started,

incrementing every local clock cycle. If it reaches this value the packet is given to the default DMA.
The reset value is 0xFFFF.

73

version 0.03 August 19, 2021

012345678910111213141516171819202122232425262728293031

unused Timeout

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r62: Chip ID

This register holds the unique identifier of the particular PE. The upper 16 bits are programmed
elsewhere, on a chip-wide basis. The lowest 8 bits are hard-wired according to the PE’s physical
position on the chip.

012345678910111213141516171819202122232425262728293031

Chip ID zero QPE XQPE YPE#

Name bits R/W Function

Chip ID 31:16 R ID of this specific chip; writeable globally via an I/O reg-
ister (TBC)

QPE X 7:5 R Physical ‘X’ position of this QPE
QPE Y 4:2 R Physical ‘Y’ position of this QPE
PE# 1:0 R PE identity within QPE

r63: GCTL - Global/General Control register

012345678910111213141516171819202122232425262728293031

unused 2 1 unused S R unused R L X

0 0 0 0

Name bits R/W Function

2: Disable Timer 2 17 R/W Disable RX Timer 2
1: Disable Timer 1 16 R/W Disable RX Timer 1
B: Buffered Write 11 R/W Enable buffered write
S: global segment 10:9 R/W global segment
R: resp mode 8 R/W resp mode
T: test write 2 W Activate test write
L: loopback 1 R/W Connect transmitter to packet receiver

The loopback bit is for test purposes and should normally be left as ‘0’. Note that setting this bit
will also affect the packet receiver’s connections.

14.4.5 Receiver filters

Offset 0x100-0x17F
The Communications Controller has two additional receiver DMA channels; each can be pro-

grammed to transfer incoming packets meeting a particular specification directly into a cyclic buffer
in local SRAM. Each DMA channel has programmable start and end word addresses for its SRAM
buffer, read and write pointers and a control register which defines which sort(s) of packet it handles.

Each DMA buffer is circular and should typically be configured to be a multiple of the packet size
that it stores. Packets occupy up to 2 + N words, where N is the number of words in the payload.
Packets are logically subdivided into three fields: {control, payload and key/address/source}. There
are separate enables so that any field can be independently retained or discarded. Words are written
to ascending addresses, modulo the buffer size. The programmed DMA start address is the first used
address; the programmed DMA end address is the last used address, thus both are included and will
be written to.

The first (in order of ascending addresses) word from a received packet to be written will hold
the ‘control’ word if this is to be retained. The second field (if enabled) will hold the data payload of

74

version 0.03 August 19, 2021

{0, 1, 2, 4} words (i.e. RDR), with the size being determined by the incoming packet; the last word
(if enabled) will hold the ‘key’ or ‘address’ word. Initially the read and write pointers should be set
to the buffer start address. Writing to the buffer is a hardware process; reading from the buffer is
the responsibility of software, which should maintain the read pointer accordingly. Any requirement
to write to the buffer which would cause the write pointer to catch up with the read pointer will stall
and, potentially, cause back-pressure into the NoC or packet drop?. Like the default receiver there
is an option to alleviate back-pressure by allowing overruns; again overrunning packets are counted
but otherwise discarded.

r64, r80: spDMAc0-1 - DMA configuration registers

The DMA configuration registers define the sorts of packet(s) which each DMA channel handles. The
packets transferred can be specified by type (MC, C2C or NN) and by payload length, although any
or all payload lengths and any or all packet types can be handled by the same DMA channel.

012345678910111213141516171819202122232425262728293031

E F L V ? unused T Z X A X R unused K P S Q D W Z I N C M

0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

E!: empty 31 R spDMA buffer not empty
F!: full 30 R spDMA buffer full
L!: limit 29 R spDMA buffer soft limit reached/exceeded
V!: overrun 28 R spDMA overrun count non-zero
?: FIFO empty 27 R Internal FIFO empty (read pointer == write pointer)
T: clear max. 21 W spDMA ‘tidemark’ reset
Z: zero overrun 20 W spDMA overrun count reset
A: stall 18 R/W stall noc if buffer is full until buffer can accept again
R: reset 16 W reset spDMA buffer read + write pointer
K: key 10 R/W retain key field (RKR)
P: payload 9 R/W retain payload field (RDR)
S: status 8 R/W retain status field (RCR)
Q: 128-bit 7 R/W enable spDMA on 128-bit payload packet
D: 64-bit 6 R/W enable spDMA on 64-bit payload packet
W: 32-bit 5 R/W enable spDMA on 32-bit payload packet
Z: no payload 4 R/W enable spDMA on no payload packet
I: Info. 3 R/W enable spDMA on information (message) packet received
N: NN 2 R/W enable spDMA on NN packet received
C: C2C 1 R/W enable spDMA on C2C packet received
M: MC 0 R/W enable spDMA on MC packet received

The DMA channels are prioritised: if an incoming packet matches the specification of channel 0
it is handled by channel 0, else if it matches the specification of channel 1 it is handled by channel 1,
and so on. If it does not match any channel specification it is directed to the Comms. Controller
registers.

The same priorities apply to transfer to the SRAM. Channel 0 has the higher priority. This may
be important in that the transfer – using a 32-bit bus – may, necessarily, be slower than the packet
reception and a number of packets may be queued in the separate DMA unit hardware buffers.

An incoming packet which is transferred by DMA to SRAM will not generate interrupts via RCTL.
There are three possible interrupts which can be generated, depending on the fullness of the SRAM
buffer:

not Empty when the RAM buffer contains at least one word.

Full when the RAM buffer contains no more free space and the input is stalling.

Limit when the RAM buffer contains at least as many words as indicated in the programmable
‘limit’ register (spDMAl).

75

version 0.03 August 19, 2021

A DMA channel can be disabled by setting N, C and M to 0. This will prevent packets entering
the unit; any packets already present will proceed normally unless deliberately flushed. The presence
of packets in the DMA hardware buffer is indicated by the ?? bit, which will be 1 when there are no
words waiting for transfer to RAM. This status bit is not exported for interrupt purposes because
the software only needs informing about the words accessible in memory under most circumstances.

E, F, L and V reflect the levels on the DMA interrupt signals sent to the interrupt controller.
The {K, P, S} bits allow the selection of the packet fields which will be retained. A ‘1’ bit means

the appropriate field is stored.

Example: setting spDMAc to 0x00000411 will filter out only MC packets without a pay-
load and store the key word (only) in SRAM. This setting may be useful for incoming
neural spikes.

r65-68, r81-84: spDMAs, e, r, w0; spDMAs, e, r, w - DMA start, end, read pointer and
write pointer registers

These registers notionally hold 32-bit addresses defining the DMA channel start, end, read pointer
and write pointers.

012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SRAM address bits 0 0

The upper 17 and the lowest 2 bits of these registers are hard-wired to zero, meaning the pointers
are constrained to word addresses in the local SRAM. The justification allows easy software compar-
isons. Software cannot modify the write pointer, which is used by the DMA processor, except to reset
it. Resetting can be explicit, through the F/R???? bit(s) in the appropriate spDMAc or implicit in
that both pointers are reset to the spDMAs value when either spDMAs or spDMAe is written ???

The maximum used capacity of the SRAM buffer is one word less than the maximum space. Only
when the buffer is empty will the read and write pointers be equal. This is for ease of software
disambiguation.

Example: setting spDMAs to 0x00001000 and spDMAe to 0x0000101C will provide a
maximum capacity of 7 words, although all 8 words will be written to over time as the
buffer is cycled.

r69, r85: spDMAl - DMA buffer soft limit

These registers contain a number indicating how many unprocessed words are ‘expected’ in the
appropriate DMA SRAM buffer. If the number of words present equals or exceeds this limit a status
bit is set and an interrupt may be raised.

It is anticipated that this limit may be useful as a high-priority warning that the associated input
buffer is approaching fullness, with potential consequences for stalling or overrunning.

The reset value is the maximum value which means that this will not usually occur until the
register is programmed with practical limit.

012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Soft limit (in words)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r70-71, r86-87: DBO - DMA Buffer Occupancy, DMax (‘tidemark’)

These 15 bit, read-only registers monitor the current ‘fullness’ of the associated SRAM buffer. The
contents indicate a count, in words, of the distance between the write and read pointers. DBO
represents the instantaneous state of the buffer; DMax represents the highest value DBO has reached
since it was last reset: a buffer occupancy ‘tidemark’.

DMax is reset by writing a ‘1’ to the ‘T’ bit in the DCTL register.

76

version 0.03 August 19, 2021

012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Occupancy (in words)

X X X X X X X X X X X X X X X

The implemented bits of these ‘registers’ are unknown after reset as they need valid start and end
addresses, and read and write pointers setting up before they can be evaluated. The DMax value
should be explicitly ‘cleared’ before it is first used (which will set it to the current value in DBO).

r72, r88: DDC - DMA Dropped packet Count

If the DMA channel is set to be able to drop packets in the event of an overrun the tally of dropped
packets is kept here. This counter is reset by writing a ‘1’ to the Z bit in DCTL. It saturates at
0xFFFFFFFF.

012345678910111213141516171819202122232425262728293031

Dropped packet count

0 0

r79, r95: DCTL - DMA Control register

012345678910111213141516171819202122232425262728293031

E F L V ? C S T Z O

0 0 0 0 1 0 0 0 0 0

Name bits R/W Function

E!: empty 31 R spDMA buffer not empty
F!: full 30 R spDMA buffer full
L!: limit 29 R spDMA buffer soft limit reached/exceeded
V!: overrun 28 R spDMA overrun count non-zero
?: FIFO empty 27 R Internal hardware FIFO empty
C: flush 16 W flush spDMA hardware buffer
S: Supervisor 4 R/W Privilege of request (1 = supervisor)
T: clear max. 2 W spDMA ‘tidemark’ reset
Z: zero overrun 1 W spDMA overrun count reset
O: overrun enable 0 R/W spDMA permit overrun

14.5 Bus bridge

Any PE has access to any SRAM location and the peripheral memory-mapped IO on the chip although
there are perfomance penalties and some accesses will be slow. Logically, the addressable space can
be divided into the SRAM and similar memory mapped IO devices and the (much larger) SDRAM.
These are both reachable through (different) regions in the M4’s address space. The SRAM is reached
in the space between *** TBC ***; addresses in this area are separated into a physical NoC address
and an offset within the particular device.

QPE SRAM (only DNoC):
012345678910111213141516171819202122232425262728293031

b’1111000 QPE PE offset

Register Files (only CNoC):
012345678910111213141516171819202122232425262728293031

b’1111001 QPE X offset

77

version 0.03 August 19, 2021

SpiNNaker Router (only DNoC)

012345678910111213141516171819202122232425262728293031

b’1111010 sprPE X offset

sprPE Router PE
0 0 0
1 0 1
2 0 2
3 1 1
4 1 2
5 1 3

SDRAM (only DNoC):

012345678910111213141516171819202122232425262728293031

hb address

Register field global segment[1] (see GCTL register) selects the LPDDR4 interface. The address
on the SDRAM interface is calculated by:

((hb− 1 + 8 · global segment[0]) << 29) + address

hb is in the range of 1-6 and overflowing possible.
This address space is not ‘full’; some QPE addresses have no equivalent on the chip and this part

of the address fundamentally reflects the physical NoC layout. Some ‘QPE’ addresses are not QPEs
– notably the SpiNNaker router and the peripheral IO – and use the offsets in their own, specific
ways.

Accesses are translated from the instruction on the M4 AHB so can be 8-, 16- or 32-bit operations.
Usually the M4 will be stalled until the operation is complete; note that this stall can be for a
considerable time during which the M4 will be waiting and will not respond to interrupts.
To alleviate this, write operations can be buffered as ’fire and forget’ * need to say how *; if this is
done any bus errors wil be ignored.

As an alternative, such remote operations may be performed in software by sending an enquiry
packet and reading the corresponding response at some later time.

SDRAM accesses are available in a similar fashion. These appear in the M4 address space in the
address range 0x20000000-0xDFFFFFFF. Because the SDRAMs are larger than this available space
they are ‘paged’, see GCTL register, global segment.

14.6 Monitoring

The communications unit contains a number of features to assist run-time monitoring.

1. The occupancy of the DMA RAM buffers is calculated in hardware (which saves software effort).
More importantly, the maximum value this occupancy has reached (since it was last reset) is
retained to allow periodic checking to see if the allocated buffer size is appropriate.

A soft limit can be imposed on this count which will raise a status/interrupt signal if it is
reached or exceeded, facilitating remedial action before the buffer is completely filled.

2. If receiver/spDMA overrunning is enabled, a count of any packets dropped is maintained.

3. Other monitor features? Timer/rates?

14.7 Fault-tolerance

Fault insertion

1. Software can cause the Communications Controller to misbehave in several ways including
inserting dodgy routing keys, source IDs, destination IDs.

78

version 0.03 August 19, 2021

Fault detection

1. Attempts to overrun buffers or registers will cause data aborts.

Fault isolation

1. The Communications Controller is mission-critical to the local processing subsystem, so if it
fails the subsystem should be disabled and isolated.

2. The ability to allow the various packet receivers to overrun can prevent back-pressure from the
PE causing wider problems.and isolated.
*** Perhaps there should be a remote (exception packet?) way of setting these bits – a bit like
an interrupt – for remote alleviation of faults? ***

Reconfiguration

1. The local processing subsystem is shut down and its functions migrated to another subsystem
on this or another chip. It should be possible to recover all of the subsystem state and to
migrate it to a functional alternative.

79

version 0.03 August 19, 2021

15 NoC DMA Submodule (memDMA)

15.1 Features

1. write a block of data from PE’s local SRAM to global memory

2. read a block of data from global memory to local PE’s SRAM

15.2 Description

Fig. 19 shows the architecture of SDRAM DMA (memDMA). There is an AHB interface, an input
FIFO, two Finite-State-Machines (FSMs) and a 128-bit master interface. The input FIFO is of depth
of one packet. Between the two FSMs, one is responsible for reading – which moves remote data to
local memory – and the other is responsible for writing – which moves local data to remote memory
(SRAM or SDRAM).

FSM2FSM1

128-bit Bus

FIFO

AHB
Intf

NoC Rx NoC Tx

AHB-like

To local SRAM

AHB

Read_int
Write_int

Figure 19: SDRAM DMA organisation

Before initiating a transfer task, some registers must be configured. The ‘local address’ register
points to the local memory, whose range is 0x00000-0x1FFFF. The ‘remote address’ refers to remote
global address, which is of 32-bit width. ‘len’ iss the size of the block to be transferred in words. Only
word aligned operation is supported. The ‘config’ register controls the functions of SDRAM DMA:
for example, ‘dest location’ decides the Dest QPE and Dest PE position; ‘C’ decides the reading or
writing packets are routed via the CNoC or DNoC; ‘B’ decides to perform a buffered write or not;
‘S remote’ decides the remote counterpart performs a privileged access or not; ‘S local’ decides the
accessing to local memory with a privileged access or non-privileged access; ‘mode’ decides when to de-
assert the request signal. Register ‘done count’ shows the number of bytes that finished transferring.
Register ‘status’ reports the running status or running results to processor. Register ‘cmd’ starts a
transfer task or clears the status register.

15.3 Register summary

The bit maps of register ‘config’, ‘status’ and ‘cmd’ AND MORE are listed below.

80

version 0.03 August 19, 2021

Name Offset R/W Function

r96: local address 0x180 R/W Address within local SRAM
r97: remote address 0x184 R/W Address anywhere in chip
r98: len 0x188 R/W length of transfer
r99: config 0x18C R/W DMA Configuration
r100: dma done 0x190 R how many word transfers were done in this

DMA transfer
r101: status 0x194 R DMA status
r103: row mask 0x19C R/W row mask
r110: clear 0x1B8 W Clear registers
r111: cmd 0x1BC W DMA command

*** More channels? Double buffering? Occupancy status? ***

r96: local address
012345678910111213141516171819202122232425262728293031

local address (word aligned)

0

r97: remote address
012345678910111213141516171819202122232425262728293031

remote address (word aligned)

0

r98: len
012345678910111213141516171819202122232425262728293031

transfer length (verified to 17 bit)

0

r99: config
012345678910111213141516171819202122232425262728293031

L R B GS

0 0 0 0

Name bits R/W Function

L: S local 4 R/W use local priviliged access
R: S remote 3 R/W use remote priviliged access
B: Buffered write 2 R/W Use NoC with buffered write protocol
GS: global segment 1:0 R/W select global address segment. GS[1]: 0: MEM A, 1: MEM

B, GS[0]: upper / lower segment

r100: dma done
012345678910111213141516171819202122232425262728293031

done count

Name bits R/W Function

done count 31:0 R how many word transfers were done in this DMA transfer

81

version 0.03 August 19, 2021

r101: status
012345678910111213141516171819202122232425262728293031

SDP D OEWn S WIRIWEWrRER N W

Name bits R/W Function

SD: SRAM DMA 15 R SRAM DMA active
P: DMA 14 R DMA active
D: Done 13 R/W All DMA operation is done
OE: Output enable 12 R output is enabled, no pending interrupts
WN: Write enable 11 R DMA configuration is enabled
S: Running State 10:8 R DMA running state (interpretation depending on read or

write operation running). For states see table below.
WI: write interrupt 7 R write interrupt
RI: read interrupt 6 R read interrupt
WE: Write error 5 R write error
Wr: writing 4 R writing
RE: Read error 3 R read error
R: Reading 2 R reading
N: !Error 1 R no error
W: Working 0 R working

PE2PE
Running State Read FSM Write FSM
0 IDLE IDLE
1 WAITING GNT READ REQ
2 READ REQ WAITING RESP
3 WAITING RESP WAITING GNT
4 WRITING PKT TX REQ
5 WRITING DONE WRITE RESP
6 CHECK DONE CHECK DONE
7 WAITING OUTPUT WAITING OUTPUT

PE2SDRAM
Running State Read FSM Write FSM
0 IDLE IDLE
1 READ REQ CMD OUT
2 WAITING RESP WAITING BLK REQ
3 WRITING PKT READ REQ
4 WRITING DONE WAITING RESP
5 CHECK DONE TX REQ
6 REQ NXT BLK CHECK DONE
7 - FINISHED CONFIRM
8 ABORT ABORT
9 ABORT RESP ABORT RESP
10 WAITING OUTPUT WAITING OUTPUT

r103: row mask
012345678910111213141516171819202122232425262728293031

row mask

0

82

version 0.03 August 19, 2021

r110: clear
012345678910111213141516171819202122232425262728293031

C O

0 0

Name bits R/W Function

C: Command 1 W clear command
O: Output 0 W clear output

r111: cmd
012345678910111213141516171819202122232425262728293031

A SWSRW R

0 0 0 0 0

Name bits R/W Function

A: Abort Command 4 W abort current command (Only SDRAM DMA)
SW: SDRAM write 3 W start SDRAM write
SR: SDRAM read 2 W start SDRAM read
W: write 1 W start DMA write
R: read 0 W start DMA read

15.3.1 Flow control

To regulate the pressure of requests on the SDRAM controller(s) each QPE is restricted to a single
outstanding DMA transaction. The four SDRAM DMAs in one QPE are therefore not allowed to
send simultaneously. An arbiter is employed and every SDRAM DMA needs to request permission
before sending each request or set of requests.

Request is asserted before sending. The 3-bit mode register decides when to de-assert the request
signal. If mode[0] is set, the request signal is de-asserted as soon as this DMA is granted; if mode[1]
is set, the request signal de-asserts only after all the response packets corresponding to the request
packet just sent out are back; if mode[2] is set, request de-asserts only after the whole transfer task
is finished.

The control of this module is implemented as four FSMs, one for reading and one for writing for
SDRAM and DMA each. The FSMs are independent. However, they cannot run simultaneously.

A special command is the abort command. An initiated SDRAM read/write will be aborted. This
command can be send, even if a read/write is running. The abortion takes time to happen, therefore
the user must wait for the done signal.

15.3.2 Local bus masters

The local memory has a datawidth of 32bit, while a NoC packet has a size of 128bit. To still allow
one cycle read/write accesses from NoC to the memory the virtual 128bit interface is physically split
into 4 local masters, which have a datawidth of 32 each. Between two consecutive local masters the
address offset is constant with a value of 4. For accesses where single datawords are not needed the
corresponding local master will not initiate a transaction.

83

version 0.03 August 19, 2021

16 Bus bridge to NoC

16.1 Features

1. Supporting feature.

2. Interval and choc-ice.

3. Main feature.

16.2 Description

The bridge (Peek/Poke submodule) provides a method for the M4 to access remote registers/SRAM.
A large part of the M4 system bus address space is bridged onto the NoC. The mechanism is im-
plemented by suspending the M4 bus operation whilst a request packet is transmitted and a response
packet is returned. Operation is therefore transparent to software except for the speed of the opera-
tion. There is a corresponding, hardware response unit in each PE which translates request packets
into local SRAM cycles and thence to response packets.

To extend the address space . . . mapping table for SDRAM . . . is this present? It needs its REG-
ISTERS DEFINING AND DOCUMENTING!

System bus address decode:

From To Meaning

2000 0000 DFFF FFFF SDRAM(s) via NoC
E000 0000 E00F FFFF local APB I/O
E010 0000 EFFF FFFF local AHB I/O
F000 0000 FFFF FFFF NoC-level bus

The **SUGGESTED** address translation for the PEs is as follows:
Bits [16:0] address the location within a PE SRAM.
Bits [18:17] address the PE within a QPE.
Bits [24:19] address the (notional) QPE. *** VERIFY ***

012345678910111213141516171819202122232425262728293031

1 1 1 1 C B QPE X QPE Y PE SRAM byte address

Where is the write buffer bit set up – if it is. Is this another address bit? A[25] suggested above.
It would need to be in the SDRAM page tables too.
Similarly, suggesting A[26] for use CNoC, rather than DNoC.
What about ‘S’? Below it says GCTL, but this seems the wrong approach; certainly breaks privilege
limitation. Surely just bridge incoming request?

16.2.1 SDRAM mapping

It is anticipated that the SDRAM sizes available will exceed the 4 GiB address space by the time
the final device is complete. To anticipate this, there is a simple mapping scheme in the SDRAM
area (0x2000 0000-0xDFFF FFFF). This area is divided into six 512 MiB pages and the physical
addresses for these is looked up in a small, programmable table. The output form is a 34-bit byte
address (plus a write-buffer bit??). The extra address bits are carried as part of the NoC unit address
as it is anticipated that the SDRAM interface required will comprise four separate units.

The page table entries are accessible directly in I/O space at addresses 0xE??? ????-0xE??? ????.

A[31:29] Entry address Purpose

0 0 0 0xE??? ??00 Unavailable – mapped to local buses
0 0 1 0xE??? ??04 SDRAM extended page address (or NoC port?)
0 1 0 0xE??? ??08 SDRAM extended page address (or NoC port?)
0 1 1 0xE??? ??0C SDRAM extended page address (or NoC port?)
1 0 0 0xE??? ??10 SDRAM extended page address (or NoC port?)
1 0 1 0xE??? ??14 SDRAM extended page address (or NoC port?)
1 1 0 0xE??? ??18 SDRAM extended page address (or NoC port?)
1 1 1 0xE??? ??1C Unused – I/O and SRAM space

84

version 0.03 August 19, 2021

This mapping is not required for SRAM (and other) addresses as there is adequate address space
available in the standard 4 GiB map.

DMA addressing uses unmapped, 34-bit ‘physical’ addresses. DMA accesses are always privi-
leged(??) and always use DNoC(??).

16.2.2 Operation

When the processor reads from an address within this range, the Peek/Poke submodule de-asserts
’HREADY’ signal, suspending the processor, and sends out a read request packet. Then it waits
until the response packet arrives, translates the payload of the response packet into ’HRDATA’, and
asserts ’HREADY’.

The write process is similar although writes can be buffered, in which case no response packet
is expected or returned and the processor is allowed to continue once the request packet has been
formed.

The data bus of AHB is of 32-bit width, therefore, the read/write size of the NoC packet can only
be 1 byte, 2 bytes or 1 word.

M4 System
AHB

To NoC
Multiplexer

From NoC
Demux.

Set up data

NoC address
mapping

AHB/NoC bridge

SDRAM page
map

Figure 20: Block diagram of the of Peek/Poke response unit

The address the processor issues is a local address. However, The address in NoC packet

is a global address. Peek/Poke submodule instantiates the NoC_addr_map module for the

translation from local address to global address.

The bridge unit is using the B field of the GCTL register.

85

version 0.03 August 19, 2021

17 Response unit

This unit is not really part of the PE’s communication system, being a bus bridge from the NoC into
the PE’s SRAM. It has no direct connection with the software on the appropriate PE.

Request packets arriving from the NoC are routed to this unit where they cause local bus activity
– either read(s) or write(s). The appropriate response packet(s) are generated and routed back to
the source interface, as specified in the request. Zero (in the case of a write, marked as ‘buffered’) to
eight (128 byte read) response packets may be generated for each incoming request.

17.1 Response packet generator submodule

The response packet generator answers read request packets or write request packets,

no matter the request packets come from Tx module, Peek/Poke submodule or SDRAM DMA

submodule of another PE. In addition, response packet generator answers read request

packets generated by ML-Acc, but doesn’t answer write request packets generated by

the ML-Acc.

There is one FIFO at the incoming direction as well as outgoing direction for NoC

packets. Both FIFOs are of 1 packet depth.

When answering read request packets, there may be 1, 2, 4, or 8 response packets

corresponding to 1 read request packet. When answering multiple packets, for example

8 packets, and bus error occurs during one of mid-packets, there are two options for the

response packet generator:

(1) When bus error occurs, the reply stops; (2) The response packet generator answers

all the requested packets. If one of the packets encounters bus error, then the

corresponding response packet shows bus error (setting bit [160]).

Currently both the above options are implemented, and is selectable by a bit ’mode’.

’Mode’ is the 8th bit of GCTL register, say, GCTL[8].

This doesn’t work! If this is programmable then it cannot be done on a PE-by-PE basis because
both correspondents need to agree on the behaviour. Either the behaviour needs to be set at source
and conveyed in the request packet (Yuk!) or should be predetermined.

If the incoming write request packet requests a buffered write, that is, bit [161] is

set, no response packet will be generated.

If the incoming read or write request packet is routed by CNoC, say, bit [177] is set,

the response packet will also be routed by CNoC. And vice versa, if the incoming request

packet is routed by DNoC, the response packet will also be routed by DNoC.

Okay – but how is this indicated? Is this another address bit?

Except bit ’mode’ being configurable, the running of response packet generator is not

visible and perceivable by the processor. It runs independently with the processor.

When answering the request packets, the response packet generator needs to access to

local memory(SRAM). In order to access to memory efficiently, the interface is designed

to be an AHB-like bus of 128-bit data width, which is transformed into 4 32-bit buses in

the bus interface module.

86

version 0.03 August 19, 2021

From NoC
Demux.

To NoC
Multiplexer

To/from local
AHB crossbar

FIFOFIFO

Control

AHB master

Figure 21: Block diagram of the response packet generator

87

version 0.03 August 19, 2021

18 SpiNNaker Packet Router

The Router is responsible for routing all packets that arrive at its inputs to one or more of its outputs.
It is responsible for routing multicast neural event packets, which it does through an associative
multicast router subsystem, core-to-core packets (for which it uses a look-up table), nearest-neighbour
packets (using a simple algorithmic process), global read/write packets (using the C2C look-up table)
and default routing (when a multicast packet does not match any entry in the multicast router).

Various error conditions are identified and handled by the Router, for example packet time-out
and unroutable packets.

18.1 Features

1. Support for 4 packet types:

(a) multicast (MC) neural event packets routed by a key provided at the source;
(b) core-to-core (C2C) packets routed by destination address to any core on any chip;
(c) nearest-neighbour (NN) packets routed by arrival port;

i. in both normal and peek/poke forms.
(d) global read/write (GRW) packets routed by destination address to any core on any chip

and the reponse is routed by a default source address (configurable in each chip);

2. flexible packet features:

(a) support for 40-bit packets with optional 32-, 64- and 128-bit payloads;
(b) 2-bit time phase (used by Routers to trap errant packets);

3. 16,384 programmable associative multicast (MC) routing entries.

(a) associative routing based on packet;
(b) with flexible ‘don’t care’ masking.

4. default routing of unmatched multicast packets.

5. look-up table routing of core-to-core (C2C) packets and global read/write (GRW) packets.

6. routing of nearest-neighbour (NN) packets.

7. independent programmable wait times for MC and C2C/NN/GRW packets.

8. hardware dropped packet handling

(a) hardware dropped packet buffer;
(b) hardware support for automatic dropped packet re-insertion;
(c) software recovery for dropped packets.

9. pipelined implementation to route 1 packet per cycle (peak).

(a) back-pressure flow control;
(b) power-saving pipeline control.

10. out-of-order issue.

11. performance counters.

12. fault detection and handling:

(a) expired time phase;
(b) unroutable packet;
(c) illegal packet;

88

version 0.03 August 19, 2021

18.2 Description

SpiNNaker packets arrive from other nodes via the link receiver interfaces and NoC packets from
internal processor nodes and are presented to the router through its 6 NoC ports. These packets are
decoded, arbitrated and transmitted by a front-end crossbar to different internal engines in parallel.

Each multicast packet contains an identifier which is used by the Router to determine which of
the outputs the packet is sent to. These outputs may include any subset of the output links, where
the packet may be sent via the respective link transmitter interface, and/or any subset of the internal
processor nodes, where the packet is sent to the respective Communications Controller.

For a neural network application the identifier can be simply a number that uniquely identifies
the source of the packet — the neuron that generated the packet by firing. This is ‘source address
routing’. In this case the packet need contain only this identifier, as a neural spike is an ‘event’ where
the only information is that the neuron has fired. The Router then functions simply as a look-up
table where, for each identifier, it looks up a routing word, where each routing word contains 1 bit for
each destination (each link interface and each local processor) to indicate whether or not the packet
should be passed to that destination.

18.3 Packet formats

Neural event multicast (MC) packets (type 0)

Neural event packets include a control byte and a 32-bit routing key inserted by the source. In
addition they may include an optional 32-, 64- or 128-bit payload:

8 bits 32 bits 32, 64 or 128 bits

control routing key optional payload

The 8-bit control field includes packet type (bits[7:6] = 00 for multicast packets), two software
controlled bits, time phase and payload information:

7 6 5 4 3 2 1 0

0 0 SW time phase payload

Core-to-core (C2C) packets (type 1)

Core-to-core packets include a 16-bit destination chip ID and an 8-bit destination core ID, an 8-bit
channel ID (which is for software use), plus a control byte and an optional 32-, 64- or 128-bit payload:

8 bits 16 bits 8 bits 8 bits 32, 64 or 128 bits

control destination chip core channel optional payload

The C2C packets are directed to a specific core, rather than just the Monitor core, on a specific
chip. It is assumed that a protocol will associate a particular channel number with a sender/receiver
pair, and this will be initiated by the sender first sending a communication request that includes the
sender (source) chip and core IDs as payload, to which the receiver will respond by allocating and
sending back a channel ID, though of course protocol details are the responsibility of the software.

Here the 8-bit control field includes packet type (bits[7:6] = 01 for C2C packets), two software
controlled bits that may be used for packet sequence information, time phase and payload information:

7 6 5 4 3 2 1 0

0 1 SW time phase payload

89

version 0.03 August 19, 2021

Nearest-neighbour (NN) packets (type 2)

Nearest-neighbour packets include a 32-bit address or operation field, plus a control byte and an
optional 32-, 64- or 128-bit payload:

8 bits 32 bits 32, 64 or 128 bits

control address/operation optional payload

Here the 8-bit control field includes packet type (bits[7:6] = 10 for NN packets), a ‘peek/poke’ or
‘normal’ type indicator (T), routing and payload information:

7 6 5 4 3 2 1 0

1 0 T route payload

Global read/write (GRW) packets (type 3)

Global read/write packets include a 16-bit destination chip ID and an 8-bit source host ID, a 2-bit
time phase, a 6-bit software controlled bits, plus a control byte and a 32-bit operation address in the
payload:

8 bits 16 bits 8 bits 2 6 bits 32, 64 or 128 bits

control destination chip host ID T SW payload

The GRW packets allow an on-chip initiator to read/write data from/to a specific address on any
chip of the whole system. The 16-bit destination chip ID and the 32-bit target address are carried
in the packet. The 8-bit host ID of the initialiator is also carried in the packet and will be used
to return the read/write response. The 16-bit source chip ID is fixed but configurable in each chip.
Compared with the C2C packets, GRW packets provide a hardware solution for transmitting data
without software intervention. In contrast, the C2C packets provide a flexible software solution that
can be used for data transmission and system messaging.

Here the 8-bit control field includes packet type (bits[7:6] = 11 and bits[5] = 0 for GRW packets),
a ‘router-to-router’ flow control indicator (F), 3-bit operation code (OP) and payload information:

7 6 5 4 3 2 1 0

1 1 F operation code payload

18.4 Control byte summary

The various fields in the control bytes of the different packet types are summarised below:

Field Name bits Function

payload 1:0 no (00) or 32-bit (01), 64-bit (10) or 128-bit (11) payload

time phase 3:2 phase marker indicating time packet was launched

route 4:2 NN only: information for the Router

SW 5:4 for software use - e.g. sequence numbers in C2C packets

T 5 NN only: packet type - normal (0) or peek/poke (1)

F 5 = 0 for router-to-router flow control; = 1 for GRW

operation code 4:2 global read/write packet operation code

packet type 7:6 = 00 for MC; = 01 for P2P; = 10 for NN; = 11 for GRW

90

version 0.03 August 19, 2021

payload

Indicates whether the packet has no data payload (= 00), or has a 32-bit (= 01), 64-bit (= 10)
or 128-bit (= 11) payload. Peek/poke NN packets only support no data payload (= 0) or a 32-bit
payload (= 1).

time phase

The system has a global time phase that cycles through 00 → 01 → 11 → 10 → 00. Global
synchronisation must be accurate to within one time phase (the duration of which is programmable
and may be dynamically variable). A packet is launched with a time phase equal to the current time
phase, and if a Router finds a packet that is two time phases old (time now XOR time launched =
11) it will drop it to the local Monitor Processor. The time phase is normally inserted by the local
Router at the packet source unless a packet is being inserted under unusual circumstances, such as
the re-insertion of a dropped packet, when the sending core can specify the time phase to be used.

route

These bits are set at packet launch to the values defined in the control register. They enable a packet
to be directed to a particular neighbour (0 - 6), broadcast to all or a subset (as defined in the Router
r1 ‘NN broadcast’ bits on page 93) of neighbours (7).

SW

This bit is used by software for packet sequence control and similar purposes.

T (NN packet type)

This bit specifies whether an NN packet is ‘normal’, so that it is delivered to the Monitor Processor on
the neighbouring chip(s), or ‘peek/poke’, so that it performs a read or write access to the neighbouring
chip’s addressable resources.

F (router-to-router flow control)

This bit defines whether the packet is used for router-to-router flow control or GRW packets. F = 1
is reserved for hardware use and F = 0 is for GRW packets

operation code

These bits indicate whether the GRW packet is a 32-bit read (000), 64-bit read (001), 128-bit read
(010), unbuffered write (011), buffered write(100), read response (101), write response (110) or error
response (111).

packet type

These bits indicate whether the packet is a multicast (00), core-to-core (01) or nearest-neighbour (10)
packet or global read/write (11).

18.5 Debug access to neighbouring devices

The ‘peek’ and ‘poke’ mechanism gives access to the NoC address space on any neighbouring de-
vice without processor intervention on that chip. To read a word (peek), include its address in a
‘peek/poke’ nearest neighbour packet output (i.e. with T = 1, no payload). Only word addresses are
permitted. A write (poke) carries a 32-bit payload. Peeks and pokes would normally be done by a
Monitor Processor although, in principle, any processor can output these packets.

In the case of a peek, the target device performs the appropriate access and returns a response on
the corresponding link input. This is delivered to the processor designated as Monitor Processor in
the local router. The response is a ‘normal’ NN packet which carries the requested word as a 32-bit
payload. The address field is also returned for identification purposes with the lower two bits = 10;
= 11 indicates that the access caused a bus error; = 01 indicates that the destination bus master is
full and the request should be retransmitted later.

91

version 0.03 August 19, 2021

Writing (‘poke’) is similar; including a 32-bit payload in the outgoing packet causes that word to
be written. A no payload normal response packet is returned which indicates the error status in the
address field.

Only no or 32-bit payloads are supported by peek and poke NN packets.

18.6 Internal organization

The internal organization of the Router is illustrated in Fig. 22.

MC
+

OoOBuffer
C2C NN

General
Registers

Dropped packet
buffer

Spill

Drop

Reinject

Link inputsNoC inputs

NoC outputs Link outputs

Software
offload

R/W

R/W

Figure 22: Router organisation

Packets are passed as complete 40- to 168-bit units from the inter-chip links and 64- to 192-bits
from the NoC ports, together with the identity of the Rx interface that the packet arrived through
(for nearest-neighbour, default routing and packet reinsertion). The input stage of processing is to
identify errors and pass packets to appropriate units. The routing stage contains different routing
engines – the multicast (MC) router is activated when the packet is of multicast type, the core-to-
core (C2C) router handles core-to-core and gobal read/write packets while the NN router handles
nearest-neighbour packets and contains a bus master. The output of the router stage is a vector of
destinations to which the packet should be relayed.

92

version 0.03 August 19, 2021

18.7 Multicast (MC) router

The MC router uses the routing key in the MC packet to determine how to route the packet. The
router has 16,384 look-up entries, each of which has a mask, a key value, and an output vector. The
packet’s routing key is compared with each entry in the MC router. For each entry it is first ANDed
with the mask, then compared with the entry’s key. If it matches, the entry’s output vector is used to
determine where the packet is sent; it can be sent to any subset (including all) of the local processors
and the output links.

Thus, to programme an MC entry three writes are required: to the key, its mask and the corre-
sponding vector. A mask of FFFFFFFF ensures all the key bits are used; if any mask bits are ‘0’ the
corresponding key bits should also be ‘0’, otherwise the entry will not match. This can be exploited
to ensure that unused entries are invalid. The effect of the various combinations of bit values in the
mask[] and key[] regions is summarized in the table below:

key[] mask[] Function

0 0 don’t care - bit matches
1 0 bit misses - entry invalidated
0 1 match 0
1 1 match 1

Thus a particular entry [i] will match only if:

1. wherever a bit in the mask[i] word is 1, the corresponding bit in the MC packet routing word
is the same as the corresponding bit in the key[i] word, AND

2. wherever a bit in the mask[i] word is 0, the corresponding bit in the key[i] word is also 0.

Note that the MC Router CAM is not initialised at reset. Before the Router is enabled all CAM
entries must be initialised by software. Unused mask[] entries should be initialised to 00000000,
and unused key[] entries should be initialised to FFFFFFFF. This invalidates every bit in the word,
ensuring that the word will miss even in the presence of minor component failures.

The matching is perfomed in a parallel ternary associative memory, with a two-stage RAM used
to store the output vectors. The first stage of the RAM stores the output vectors for inter-chip links
plus one bit to indicate whether there are any internal destinations. The second stage stores the
output vectors for the 152internal PEs.

The associative memory can be set up so that more than one entry matches an incoming routing
key; in this case the matching entry at the lowest address determines the output vector to be used.
Multiple simultaneous matches can also be used to improve test efficiency.

If no entry matches an MC packet’s routing key then default routing is employed - the packet is
sent to the output link opposite the input link through which it arrived. Packets from local processors
or external link cannot be default-routed; the router table must have a valid entry for every locally-
sourced packet and the packet from external link, otherwise the packet will be unroutable.

The first stage MC output vector assignment is detailed in the table below:

MC vector entry Output port Direction

bit[0] Tx0 East
bit[1] Tx1 North-East
bit[2] Tx2 North
bit[3] Tx3 West
bit[4] Tx4 South-West
bit[5] Tx5 South
bit[6] Tx6 external
bit[7] internal Local

12

3

4 5

0

The second stage MC output vector assignment similary extends the internal outputs to any or
all of Processors 0 to 151 .

If any of the multicast packet’s output links are blocked or unavailable the packet is stalled for
a programmable ‘wait’ time (see ‘r0: Router control register’ on page 93). When the multicast out-
of-order (OoO) issue function is enabled, the subsequent packets in the OoO buffer may be issued
ahead of it if their output ports are all clear.

93

version 0.03 August 19, 2021

The out-of-order (OoO) routing mechanism is for issuing packets whose output routes are clear,
which it detects using ‘full’ signals fed back from the individual destination output buffers. The
packet which is at the front of the OoO buffer is issued if its outputs are clear; if it cannot be issued,
the second packet in the queue is issued if possible; if not, the third, and so on, up to the capacity of
the buffer.

If a packet remains unissued at the front of the the OoO buffer for a time defined by a pro-
grammable ‘wait’ counter it is ‘dropped’ to remove the risk of deadlock. Dropped packets are stored
in a buffer, and are re-inserted when the Router pipeline has capacity to accept them. The Monitor
Processor is informed of dropped packets, and they can also be counted using Router diagnostic
facilities.

18.8 The core-to-core (C2C) router

The C2C router uses the 16-bit destination chip ID in a core-to-core packet to determine which output
the packet should be routed to. There is a 3-bit entry for each of the 64K destination chip IDs. Each
3-bit entry is decoded to determine whether the packet is delivered to a local core (as identified by
the core ID field) or one of the seven output links, as detailed in the table below:

C2C table entry Output port Direction

000 Tx0 East
001 Tx1 North-East
010 Tx2 North
011 Tx3 West
100 Tx4 South-West
101 Tx5 South
110 Tx6 external
111 core Local

The 3-bit entries are packed into an 8K entry x 24-bit SRAM lookup table. The 24-bit words
hold entries 0, 8, 16, ... in bits [2:0], 1, 9, 17, . . . in bits [5:3], etc.

18.9 The nearest-neighbour (NN) router

Nearest-neighbour packets are used to initialise the system and to perform run-time flood-fill and
debug functions. The routing function here is to send ‘normal’ NN packets that arrive from outside
the node (i.e. via an Rx link) to the Monitor Processor and to send NN packets that are generated
internally to the appropriate output (Tx) link(s). This is to support a flood-fill load process.

In addition, the ‘peek/poke’ form of NN packet can be used by neighbouring systems to access NoC
resources. Here an NN poke ‘write’ packet (which is a peek/poke type with a 32-bit payload) is used
to write the 32-bit data defined in the payload to a 32-bit address defined in the address/operation
field. An NN peek ‘read’ packet (which is a peek/poke type without a 32-bit payload) uses the 32-bit
address defined in the address/operation field to read from the NoC and returns the result (as a
‘normal’ NN packet) to the neighbour that issued the original packet using the Rx link ID to identify
that source. This ‘peek/poke’ access to a neighbouring chip’s principal resources can be used to
investigate a non-functional chip, to re-assign the Monitor Processor from outside, and generally to
get good visibility into a chip for test and debug purposes.

As the peek/poke NN packets convey only 32-bit data payloads the bottom 2 bits of the address
should always be zero. All peek/poke NN packets return a response to the sender, with the lower
two bits = 10. The lower 2 bits will be set to 11 if there was a bus error at the target. The lower 2
bits will be set to 01 if the destination bus master is full. Peeks return a 32-bit data payload; pokes
return no payload.

18.10 Time phase handling

The Router maintains a 2-bit time phase signal that is used to drop packets that are out-of date.
The time phase logic operates as follows:

1. locally-generated packets will have the current time phase inserted (where appropriate);

2. a packet arriving from off-chip will have its time phase checked, and if it is two phases old it
will be dropped (dropped, and copied to the Error registers).

94

version 0.03 August 19, 2021

18.11 Packet error handler

The packet error handler is a routing engine that simply flags the packet for dropping to the Error
registers if it detects the following:

1. a packet that is two time phases old;

2. an unroutable MC packet from a local source and the external link;

A Monitor Processor can be interrupted to deal with packets dropped with errors.

18.12 Register summary

Base addresses: 0xF4600000 port0, 0xF4800000 port1, 0xF4A00000 port2,
0xF4000000 port3, 0xF4200000 port4, 0xF4400000 port5

Name Offset R/W Function

r0: control 0x00 R/W Router control register
r1: route & throttle 0x04 R/W NN route and output throttling control
r2: reinsert control 0x08 R/W packet reinsertion control
r3: router status 0x0C R Router interrupt status
r4: error header 0x10 R error packet control byte and flags
r5-8: error payload 0x14-0x20 R error packet data payload
r9: error routing 0x24 R error packet routing word
r10: error status 0x28 R error packet status
r11: diag enables 0x2C R/W diagnostic counter enables
r12: profiling ctr ctl 0x30 R/W profiling counters control
r13: cycle ctr 0x34 R/W counts Router clock cycles
r14: busy cyc ctr 0x38 R/W counts Router busy cycles
r15: no wt pkt ctr 0x3C R/W counts packets that do not wait to be issued
r16: drp iteration ctr 0x40 R/W counts packets which drop more than once
r17: oooi ctr ctl 0x44 R/W out-of-order issue counter control
r24: grw id 0x60 R/W GRW default response chip ID
r25: oooi ctr 0x64 R/W counts MC packets that issued out-of-order
r32: drop header 0x80 R dropped packet register control byte and flags
r33-36: drop payload 0x84-0x90 R dropped packet register data payload
r37: drop routing 0x94 R dropped packet register routing word
r38: drop reg status 0x98 R dropped packet register status
r39: ofl header 0x9C R offload packet control byte and flags
r40-43: ofl payload 0xA0-0xAC R offload packet control data payload
r44: ofl routing 0xB0 R offload packet routing word
r45: drop buf status 0xB4 R dropped packet buffer status
r46: total rein ctr 0xB8 R total reinserted packet counter
r47: spkt wl-ctr 0xBC R maximum packets in drop buffer
r48: wd wl-ctr 0xC0 R maximum words in drop buffer
r49: illegal pkt hdr 0xC4 R illegal packet header
r50: ack intrpt 0xC8 R acknowledge interrupt
r51: tcam blk en 0xCC R/W TCAM blocks control
r54: link control 0xD8 R/W link control
rF[N]: diag filter 0x200-23C R/W diagnostic count filters (N = 0-15)
rC[N]: diag count 0x300-33C R/W diagnostic counters (N = 0-15)
rT0: tbist ctrl 0xF00 R/W TCAM BIST control register
rT1: tbist data 0xF04 R/W TCAM BIST data register
DP[1023:0] 0x8000 R/W dropped packet buffer
C2C[8191:0] 0x10000 R/W C2C Router routing entries (8 3-bit entries/word)
key[16,383:0] 0x20000 W MC Router key values
mask[16,383:0] 0x40000 W MC Router mask values
route0[16,383:0] 0x60000 R/W MC Router routing word values
route1[16,383:0] 0x80000 R/W MC Router routing word values

95

version 0.03 August 19, 2021

18.13 Register details

r0: Router control register

012345678910111213141516171819202122232425262728293031

wait[7:0] sys wait[7:0] MP[7:0] TP W S E R F V

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

wait[7:0] 31:24 R/W wait time before dropping MC packet
sys wait[7:0] 23:16 R/W wait time before dropping C2C/NN/GRW packet
SLtx[6:0] 23:17 R/W SpiNNaker output links mask
MP[7:0] 15:8 R/W Monitor Processor ID number
TP 7:6 R/W time phase (c.f. packet time stamps)
W 5 W re-initialise wait counter
S 4 W re-initialise sys wait counter
E 3 R/W enable error packet interrupt
R 2 R/W enable dropped packet register interrupt
F 1 R/W enable dropped packet buffer full interrupt
V 0 R/W enable dropped packet buffer not empty interrupt

The wait time (defined by wait[]) is stored in a floating point format to give a wide range of values
with high accuracy at low values combined with simple implementation using a binary pre-scaler and
a loadable counter. The 8-bit field is divided into a 4-bit mantissa M[3:0] = wait[3:0] and a 4-bit
exponent E[3:0] = wait[7:4]. The wait time in clock cycles is then given by:

wait = (M + 16− 24−E).2E for E ≤ 4;
wait = (M + 16).2E for E > 4;

Note that wait[7:0] = 0x00 gives a wait time of zero (meaning that the packet waits for one cycle, and
if it is not issued in that cycle it is immediately dropped), and the wait time increases monotonically
with wait[7:0]; wait[7:0] = 0xFF is a special case and gives an infinite wait time - wait forever.

If the wait counter is in an infiite wait status, writing a 1 to W (bit[5]) or S (bit[4]) will cause
the active counter to restart from the new value written to it. This enables the Monitor Processor to
clear a deadlocked ‘wait forever’ condition. If 0 is written to W the counter will not restart but will
use the new wait time value the next time it is invoked.

Note that the Router is enabled after reset. This is so that a neighbouring chip can peek and
poke a chip that fails after reset using NN packets, to diagnose and possibly fix the cause of failure.

In addition, the SLtx field define which links are masked out. A 1 indicates the link is disabled,
packets sent to disabled links are dropped and disappeared.

r1: route & output throttle control

This register defines the directions that a broadcast NN packet is sent through, enables the out-of-
order issue buffer, stores the 2-bit SDRAM segment address and the 8-bit throttling cycles to control
the output rate of the Router ports.

012345678910111213141516171819202122232425262728293031

NN broadcast E SD Throttling cycles

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

The 8-bit throttling value defines minimum number of the router clock cycles between NoC packets
sent to the same QPE. A packet may be delayed to restrict traffic entering the NoC. ‘0’ indicates that
packets may be issued on consecutive cycles, ‘1’ that there is a single ‘idle’ cycle etc. In addition, the
‘NN broadcast’ bits[31:25] define which links an NN broadcast packet is sent through. A 1 indicates
an active link, and bit[25] is for link 0, bit[26] link 1, etc.

96

version 0.03 August 19, 2021

r2: packet reinsertion control

012345678910111213141516171819202122232425262728293031

E I full R C V T W S request counter

0 0

The function of these fields are described in the table below:

Name bits R/W Function

E 31 R/W enable packet drop to buffer mechanism
I 30 R/W enable dropped packet re-insertion mechanism
full 27:24 R/W sets dropped packet buffer full level
R 23 W reset reinsert packets diagnostic counter
C 22 W reset words water-level diagnostic counter
V 21 W reset SpiNNaker packets water-level diagnostic counter
T 18 R/W enable reinsert packets diagnostic counter
W 17 R/W enable words water-level diagnostic counter
S 16 R/W enable SpiNNaker packets water-level diagnostic counter
request counter 15:0 R/W reinsertion request spacing

The ‘full’ point indicates that the buffer is regarded as becoming full; it is set in multiples of
128 words.

r3: router interrupt status

All Router interrupt request sources are visible in this register.

012345678910111213141516171819202122232425262728293031

E R B D R G U I ctr[15:0]

The functions of these fields are described in the table below:

Name bits R/W Function

E: error int 27 R error interrupt sent
R: drop register int 26 R drop register interrupt sent
B: drop buffer int 25 R drop buffer interrupt sent
D: diagnostic int 24 R diagnostic interrupt sent
R: error int 19 R error interrupt active
G: drop register int 18 R drop register interrupt active
U: drop buffer int 17 R drop buffer interrupt active
I: diagnostic int 16 R diagnostic interrupt active
ctr[15:0] 15:0 R diagnostic counter interrupt active

The Router can generate four types of interrupt request packet that are sent to the monitor
processor (as specified in r0) through the on-chip network: error interrupt, drop packet register
interrupt, drop packet buffer interrupt and diagnostic counter event interrupt. These correspond
to E, R, B, D respectively. The drop packet buffer interrupt is generated from the sub-interrupt
events ‘full’ and ‘not empty’. These sub interrupts can be enabled in r0. The diagnostic interrupt is
generated from the sub-interrupt events (ctr[15:0]).

The next interrupt packet will not be sent before the interrupt status register (r50) is written.
The interrupt active status are cleared by reading their respective router interrupt status registers:
r10, r38, r45 and reseting the diagnostic counters.

r4: error packet header

A packet which contains an error is moved to r4-10. Once a packet has been moved (indicated by
bit[31] of r10 being set) any further error packet is ignored, except that it can update the sticky bits
in r10 (and errors of the types specified in r0 are counted in r10).

97

version 0.03 August 19, 2021

012345678910111213141516171819202122232425262728293031

T U source control byte TP

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

T: TP error 28 R packet time phase error
U: unroutable 27 R unroutable packet error
source 26:24 R Rx source field of error packet
control byte 23:16 R control byte of error packet
TP: time phase 7:6 R time phase when packet received

r5 - 8: error packet data payload

If the packet has a 32-bit payload this will be moved into r5 at 0x14:

012345678910111213141516171819202122232425262728293031

32-bit data payload

A 64-bit payload will be moved into 0x14 and 0x18 {r5, r6}; a 128-bit into 0x14-0x20 {r5, r6, r7,
r8}.

r9: error packet routing word

012345678910111213141516171819202122232425262728293031

32-bit routing word

r10: error interrupt status

There is a single interrupt (packet) generated from this register. Reading this register acknowledges
the interrupt and cause all fields of this register to reset, and then the interrupt can be generated
again and sent. This regsiter is used for interrupt mechanism. Interrupt information polling can be
done by reading r3.

This register counts error packets, including time phase and unroutable packet errors as enabled
by r0[5:4]. The Monitor Processor resets r10[31:28] and the error count by reading its contents.

012345678910111213141516171819202122232425262728293031

E V T U error count

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

E: error 31 R error packet detected
V: overflow 30 R more than one error packet detected
T: TP error 29 R packet time phase error (sticky)
U: unroutable error 28 R unroutable packet error (sticky)
S: TP enable 17 R/W enable count of packet time phase errors
N: UN enable 16 R/W enable count of unroutable packet errors
error count 15:0 R 16-bit saturating error count

98

version 0.03 August 19, 2021

r11: diagnostic counter enable/reset

This register provides a single control point for the 16 diagnostic counters, enabling them to count
events over a precisely controlled time period.

012345678910111213141516171819202122232425262728293031

reset[15:0] enable[15:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

reset[31:16] 31:16 W write a 1 to reset diagnostic counter15. . . 0
enable[15:0] 15:0 R/W enable diagnostic counter 15. . . 0

Writing a 0 to reset[15:0] has no effect. Writing a 1 clears the respective counter.

r12: profiling counters control

This register contains the control bits of the profilling counters, the router cycle counter (r13), busy
cycle counter (r14), the zero-wait packet counter (r15) and the iterating dropped packet counter (r16).

012345678910111213141516171819202122232425262728293031

BP R W Z T N V M B S P I C

0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

BP 28:24 R/W monitor the backpressure at the 6 input ports
R 19 R/W reset the iterating dropped packet counter (r16)
W 18 R/W reset the zero-wait packet counter (r15)
Z 17 R/W reset the busy cycle counter (r14)
T 16 R/W reset router cycle counter (r13)
N 10 R/W monitor the zero-wait status at NN output
V 9 R/W monitor the zero-wait status at C2C output
M 8 R/W monitor the zero-wait status at MC output
B 6 R/W monitor the backpressure at the NN input
S 5 R/W monitor the backpressure at the C2C input
P 4 R/W monitor the backpressure at the MC input
I 3 R/W enable the iterating dropped packet counter
C 0 R/W enable the router cycle counter

Writing a 0 to R, W Z or T has no effect. Writing a 1 clears the respective counter.

r13: cycle count

012345678910111213141516171819202122232425262728293031

32-bit non-saturating cycle counter

0 0

r13, when enabled by r12, simply counts the number of Router clock cycles.

99

version 0.03 August 19, 2021

r14: busy cycle count

012345678910111213141516171819202122232425262728293031

32-bit non-saturating busy cycle counter

0 0

r14, controlled by r12, counts the number of Router wait cycles – cycles when backpressure occurs
at the 6 Router input ports, the MC, C2C, NN routing engine inputs.

r15: zero-wait packet counter

012345678910111213141516171819202122232425262728293031

32-bit non-saturating unblocked packet counter

0 0

r15 can be configured by r12 to count the number of packets which pass through undelayed at
one of the MC, C2C, NN routing engine outputs.

r16: iterating dropped packet counter

012345678910111213141516171819202122232425262728293031

32-bit non-saturating packet counter

0 0

r16, when enabled by r12, counts the number of packets that are dropped more than one time.

r24: default source ID for the GRW packets

This register stores the 16-bit default source ID that is used to return GRW responses.

012345678910111213141516171819202122232425262728293031

GRW source ID

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r32: drop register header

If the dropped packet buffer is not enabled, a dropped packet will be copied to r32-38. Once a packet
has been dropped (indicated by bit[31] of r38 being set) any further packet that is dropped is ignored,
except that it can update the sticky bits in r38 (and can be counted by a diagnostic counter).

012345678910111213141516171819202122232425262728293031

TP source control byte CP[12:7] CL[6:0]

The function of these fields are described in the table below:

Name bits R/W Function

TP 28:27 R Router time phase when packet is dropped
source 26:24 R Rx source field of dropped packet
control byte 23:16 R control byte of dopped packet
CP[12:7] 12:7 R congested ports
CL[6:0] 6:0 R congested links

100

version 0.03 August 19, 2021

r33-36: drop register payload

If the packet has a 32-bit payload this will be copied into r33 at 0x84:

012345678910111213141516171819202122232425262728293031

32-bit data payload

A 64-bit payload will be copied into 0x84 and 0x88; a 128-bit into 0x84-90.

r37: drop register routing word

012345678910111213141516171819202122232425262728293031

32-bit routing word

r38: drop register interrupt status

There is a single interrupt (packet) generated from this register. Reading this register acknowledges
the interrupt and cause the V field to reset, and then the interrupt can be generated again and sent.
This regsiter is used for interrupt mechanism. Interrupt information polling can be done by reading
r3.

012345678910111213141516171819202122232425262728293031

D V CP[12:7] CL[6:0]

The functions of these fields are described in the table below:

Name bits R/W Function

D:dropped 31 R packet dropped
V:overflow 30 R more than one packet dropped
CP[12:7] 12:7 R congested ports(sticky)
CL[6:0] 6:0 R congested links(sticky)

r39: software offload header

Reading this register causes the oldest packet in the H/W dropped packet buffer to be offloaded into
r39-r44. If the dropped packet buffer is empty, a bus error will be returned.

012345678910111213141516171819202122232425262728293031

TP source control byte CP[12:7] CL[6:0]

The function of these fields are described in the table below:

Name bits R/W Function

TP 28:27 R Router time phase when packet is dropped
source 26:24 R Rx source field of dropped packet
control byte 23:16 R control byte of dopped packet
CP[12:7] 12:7 R congested ports
CL[6:0] 6:0 R congested links

r40-43: software offload payload

If the offloaded packet has a 32-bit payload this will be copied into r40 at 0xA0:

012345678910111213141516171819202122232425262728293031

32-bit data payload

A 64-bit offloaded payload will be copied into 0xA0 and 0xA4; a 128-bit into 0xA0-AC.

101

version 0.03 August 19, 2021

r44: software offload routing word

This field will be updated when the a valid dropped packet is offloaded by reading r39.

012345678910111213141516171819202122232425262728293031

32-bit routing word

r45 (rDP): router dropped packet buffer interrupt status

There is a single interrupt (packet) generated from this register. Reading this register acknowledges
the interrupt and cause the V field to reset, and then the interrupt can be generated again and sent.
This register is used for interrupt mechanism. Interrupt information polling can be done by reading
r3.

When dropping to buffer is enabled, dropped packets are automatically stored in a 2048 x 32-
bit word RAM (DP[2047:0]) that operates as a circular buffer, from which they are subsequently
automatically re-inserted into the Router by enabling the request counter in r2 when the Router is
lightly loaded. rDP holds the read and write pointers for the circular buffer, and sundry status bits.

012345678910111213141516171819202122232425262728293031

M V F Rptr Wptr

1 0

The functions of these fields are described in the table below:

Name bits R/W Function

M 31 R dropped packet buffer empty
V 30 R dropped packet buffer overflow (sticky)
F 29 R dropped packet buffer (approaching) full
Rptr 22:12 R dropped packet buffer read pointer
D 11 R/W enable packet drop to buffer mechanism
Wptr 10:0 R dropped packet buffer write pointer

When the buffer is not able to accept the full dropped packet, the overflow bit V will be set.
In general the dropped packet buffer will operate autonomously, though if there is any danger of

it overflowing software should be invoked to off-load some of the contents to memory elsewhere. This
can be done by reading r39 to cause a packet offloaded from the drop buffer. The read-out packets
should then be re-inserted at an appropriate time by software.

r46: total reinsert packets counter

012345678910111213141516171819202122232425262728293031

32-bit saturating packet counter

0 0

r46, when enabled by r2, simply counts the number of packets reinserted by hardware.

r47: wd water-level counter

012345678910111213141516171819202122232425262728293031

word counter word wl counter

The word counter counts the number of words in the dropped packet buffer. The corresponding
water-level counter records the maximum number of words ever dropped in the buffer. When it is
enabled in r2, if wd ctr is bigger than wd wlctr, wd wlctr will be updated.

102

version 0.03 August 19, 2021

r48: spkt water-level counter

012345678910111213141516171819202122232425262728293031

packet counter packet wl counter

The SpiNNaker packet counter counts the number of SpiNNaker packets in the dropped packet
buffer. The corresponding water-level counter records the maximum number of packets ever dropped
in the buffer. When it is enabled in r2, if spkt ctr is bigger than spkt wlctr, spkt wlctr will be updated.

r49: unrecognised packets logging

This register logs the packet header information of the unrecognised packet received at the SpiNNaker
ports for diagnostic purpose. For example, control and exception packet, protocol message and
undefined SpiNNaker packet will be discarded and logged in this register. Once the first unrecognised
packet header is recorded, the further packet is ignored, except that the overflow bit is updated.
Reading this register causes it resets.

012345678910111213141516171819202122232425262728293031

E V destQPE destrPE c type srcQPE control byte

The functions of these fields are described in the table below:

Name bits R/W Function

E:error 31 R unrecognised packet detected
V:overflow 30 R more than one unrecognised packet detected
destQPE 28:23 R destination QPE field in the packet header
destrPE 22:18 R destination PE in the packet header
c 17 R C/D NoC selection bit in the packet header
type 16:14 R NoC packet type in the packet header
srcQPE 13:8 R source QPE filed in the packet header
control byte 7:0 R lower 8-bit control field in the packet header

r50: interrupt acknowledge

There are four interrupts (packets) generated from the error packet, dropped packet register, dropped
packet buffer and diagnostic counters. Writing 1 to E, R, B, or D acknowledges the error packet,
dropped packet register, dropped packet buffer and diagnostic counters interrupts respectively. After
the interrupt is acknolwedged, the interrupt (packet) can be generated again and sent. This register
is used for the interrupt messaging mechanism. Interrupt information polling can be done by reading
r3.

012345678910111213141516171819202122232425262728293031

E R B D

The functions of these fields are described in the table below:

Name bits R/W Function

E 3 W acknowledge the error packet interrupt
R 2 W acknowledge the dropped packet register interrupt
B 1 W acknowledge the dropped packet buffer interrupt
D 0 W acknowledge the diagnostic counters interrupt

r51: TCAM blocks control

The TCAM consists of 16 sub blocks. Each block has 1K entries and can be enabled in this register.

103

version 0.03 August 19, 2021

012345678910111213141516171819202122232425262728293031

TCAM blocks enable

0 0

r54: link control

This registers contains 7-bit link transmitter flow control control enable, 7-bit link receiver flow control
enable, 7-bit link receiver drop, and 7-bit link transmitter drop.

012345678910111213141516171819202122232425262728293031

SLtx FC en SLrx FC en SLrx drop SLtx drop

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rF[N]: diagnostic filter control

The Router has 16 diagnostic counters (N = 0..F) each of which counts packets passing through the
Router filtered on packet characteristics defined here. A packet is counted if it has characteristics
that match with a ‘1’ in each of the 6 fields. Setting all bits [24:10, 7:0] to ‘1’ will count all packets.

A diagnostic counter may (optionally) generate an interrupt on each count. The C bit[29] is a
sticky bit set when a counter event occurs and is cleared whenever this register is read.

012345678910111213141516171819202122232425262728293031

I E C Dest Loc PL Def Type

0 0

The functions of these fields are described in the table below:

Name bits R/W Function

I 31 R counter interrupt active: I = E AND C
E 30 R/W enable interrupt on counter event
C 29 R counter event has occurred (sticky)
Dest 25:16 R/W packet dest (Tx link[6:0], MP, local ¬MP, dump)
Loc 15:14 R/W local [x1]/non-local[1x] packet source
PL 13:10 R/W packets without [1xxx] payload, or with 32-bit [x1xx], 64-bit [xx1x] or

128-bit [xxx1] payload
Def 9:8 R/W default [x1]/non-default [1x] routed packets
Type 3:0 R/W packet type: NN[1xx], C2C[x1x], MC[xx1]

rC[N]: diagnostic counters

012345678910111213141516171819202122232425262728293031

32-bit saturating packet counter

0 0

Each of these counters can be used to count selected types of packets under the control of the
corresponding rFN. The counter can have any value written to it, and will increment from that value
when respective events occur. If an event occurs as the counter is being written it will not be counted.
To avoid missing an event it is better to avoid writing to the counter; instead, read it at the start of
a time period and subtract this value from the value read at the end of the period to get a count of
the number of events during the period.

104

version 0.03 August 19, 2021

DP[2047:0]: dropped packet buffer

When dropping to buffer and hardware packet reinsertion are enabled (r2), dropped packets will
automatically be stored in this RAM buffer, and re-inserted into the Router. The dropped packet
buffer is writeable. When dropping to buffer and hardware packet reinsertion are disabled, it can be
used for general purpose. However, writing the buffer is not recommended when it is used for hard
packet dropping and automatic reinsertion.

Each dropped packet is written as 2 + N words, where N is the number of words in the payload.
The first word is the header word:

012345678910111213141516171819202122232425262728293031

TP source control byte CP[12:7] CL[6:0]

The functions of these fields are described in the table below:

Name bits Function

TP 30:29 time phase when packet dropped
source 26:24 Rx source field of dropped packet
control byte 23:16 dropped packet control byte
CP[12:7] 12:7 on-chip network port error caused packet drop
CL[6:0] 6:0 Tx link transmit error caused packet drop

If the packet had a payload, this is written into ascending address(es). The last word written to
the buffer is the packet routing word. This order is designed to facilitate the read/write multiple
ARM instructions

Sufficient information is stored to allow the packet to be re-inserted into the front of the Router
pipeline and routed exactly as before.

18.14 Fault-tolerance

The Communications Router has some internal fault-tolerance capacity, in particular it is possible to
map out a failed multicast router entry. This is a useful mechanism as the multicast router dominates
the silicon area of the Communications Router.

There is also capacity to cope with external failures. In order to tolerate a chip failure several
expedients can be employed on a local basis:

1. C2C packets can be routed around the obstruction;

2. MC packets with a router entry can be redirected appropriately.

In most cases, default MC packets cannot sensibly be trapped by adding table entries due to their
(almost) infinite variety. To allow rerouting, these packets can be dropped to the Monitor Processor
on a link-by-link basis using the diversion register. In principle they can then be routed around the
obstruction as C2C payloads before being resurrected at the opposite side.

Should the Monitor Processor become overwhelmed, it is also possible to use the diversion register
to eliminate these packets in the Router; this prevents them blocking the Router pipeline whilst
waiting for a timeout and thus delaying viable traffic.

Fault insertion

1. TO BE DONE

Fault detection

1. packet time-phase errors.

2. packet unroutable errors (e.g. a locally-sourced multicast packet which doesn’t match any entry
in the multicast router).

Fault isolation

1. a multicast router entry can be disabled if it fails - see initialisation guidance above.

105

version 0.03 August 19, 2021

Reconfiguration

1. since all multicast router entries are identical the function of any entry can be relocated to a
spare entry.

2. if a router becomes full a global reallocation of resources can move functionality to a different
router.

106

version 0.03 August 19, 2021

19 SDRAM interface

The SDRAM interface connects the NoC to an off-chip LPDDR3 SDRAM device.

19.1 Features

1. TO BE DONE

19.2 DMA

The SDRAM interface contains a DMA controller for DMA data transfers from and to core’s local
SRAM.

19.2.1 DMA Overview

NoC / Intfrastructure DMA Controller Uniquify Controller

Status
Command Buffer

Push Interface

Config

Regfile

NoC IF <high>

NoC IF <low>

Command Buffer arbitration

NoC TX/RX

N
oC

 A
rb

itr
at

io
n

NOC TX/RX

N
oC

 A
rb

itr
at

io
n

DMA Ctrl 0

DMA Ctrl n/2-1

Direct LPDDR
Access

DMA Ctrl n/2

DMA Ctrl n-1

Uniquify Port 0

Uniquify Port n/2-1

Uniquify Port n

Uniquify Port n/2

Uniquify Port n-1

Status Config/
Status

Figure 23: SDRAM DMA module overview

The DMA controller is configured via register-file (TO BE DONE). DMA requests are pushed
into a command buffer via register-file (TO BE DONE: more details). A request consits of

1. request type (SDRAM read or write)

2. SDRAM start address (NoC memory-mapped)

3. PE SRAM start address (NoC memory-mapped)

4. transfer size in bytes (must be a multiple of 64).

TO BE DONE: register format, comms controller support for simplifying requests.
Commands of the buffer are distributed to n (TO BE DONE: actual number) DMA controllers

that preferably handle the DMA requests on a close NoC Y coordinate. Additionally it is possible to
directly access SDRAM via a NoC read or write request.

Packets from the NoC are visible to all DMA controllers on the same NoC port at the same time.
The DMA controller must be able to recognize whether it is the destination of the packet based on its
currently served request (PE, expected address). Only that controller is allowed to read the packet
from the NoC.

NoC packets from the DMA controller need to be arbitrated round robin towards the NoC.
Commands from the command buffer need to be distributed to the individual DMA controllers.

If only one controller is ready to serve a command that controller is selected. If multiptle controllers
are ready on different NoC interfaces the one with the closer NoC y coordinate is selected. If multiple
controllers with same NoC y coordinate are available the one with lowest ID is selected.

107

version 0.03 August 19, 2021

19.2.2 DMA SDRAM read

DMA SDRAM read sequence (see figure 24):

1. DMA read command data is pushed to command buffer via a register-file write.

2. Once the command is available at the output of the command buffer and a DMA controller is
ready to serve it, it is popped from the buffer and served by that DMA controller.

3. The DMA controller issues one (or if necessary multiple) LPDDR read commands to its assigned
interface at the SDRAM controller.

4. Read data from the SDRAM controller is worwarded as NoC writes to the PEs memory. The
write requests are buffered writes but every n-th (configurable n) write and the last write
are unbuffered to prevent NoC flooding. A certain (configurable) number of buffered writes
following an intermediate unbuffered writes is allowed before the write response packet arrives
to allow finetuning of data flow.

5. After the last write to the PEs memory, which must be an unbuffered write, and its write
response’s arrival at the DMA controller, an interrupt at the PE having issued the DMA request
is triggered via a NoC write to the corresponding QPE’s register file.

LPDDR DMA
Ctrl <n>

Uniquify
Interface <n>PE

PE/Comms
Controller

Multiple
Instances

One target
per Controller

dma read command
(NoC-write to Regfile)

Command Buffer

LPDDR DMA
Regfile IF

Mapped to
LPDDR Regfile

pushback

pop
LPDDR read command

pe address,
lpddr address,
size, r/w

LPDDR read data

LPDDR read data
LPDDR read data

LPDDR read data

LPDDR read data

LPDDR read data

LPDDR read data

LPDDR read data

NoC write (buffered) to PE memory

NoC write (buffered) to PE memory

NoC write (buffered) to PE memory

NoC write (unbuffered) to PE memory

NoC write response

DMA finished IRQ (NoC write to QPE IRQ regs)

Figure 24: DMA SDRAM read transfer

19.2.3 DMA SDRAM write

DMA SDRAM write sequence (see figure 25):

1. DMA write command data is pushed to command buffer via a register-file write.

2. Once the command is available at the output of the command buffer and a DMA controller is
ready to serve it, it is popped from the buffer and served by that DMA controller.

3. The DMA controller issues one (or if necessary multiple) LPDDR write commands to its assigned
interface at the SDRAM controller.

4. The DMA controller issues one or multiple NoC read requests to the PE’s SRAM. only a
configurable number of outstanding read requests is allowed before arrival of read data from a
previous request to prevent NoC flooding.

108

version 0.03 August 19, 2021

5. Arriving read response data from the PE is forwarded as SDRAM write data to the SDRAM
controller.

6. When the SDRAM controller signals successful processing of the last write data sequence,
an interrupt at the PE having issued the DMA request is triggered via a NoC write to the
corresponding QPE’s register file.

LPDDR DMA
Ctrl <n>

Uniquify
Interface <n>PE

PE/Comms
Controller

Multiple
Instances

One target
per Controller

dma write command
(NoC-write to Regfile)

Command Buffer

LPDDR DMA
Regfile IF

Mapped to
LPDDR Regfile

pushback

pop

LPDDR write command

pe address,
lpddr address,
size, r/w

LPDDR write data

NoC read from PE memory

NoC read response

DMA finished IRQ (NoC write to QPE IRQ regs)

NoC read from PE memory

NoC read response

NoC read response

NoC read response

NoC read response

LPDDR write data

LPDDR write data

LPDDR write data

LPDDR write data

LPDDR write data

LPDDR write data

LPDDR write data

LPDDR write data

LPDDR write data

controller write done

...
...

Figure 25: DMA SDRAM write transfer

19.2.4 DMA SDRAM configuration

1. number of outstanding read requests to PE memory for DMA SDRAM write transfer

2. number of buffered write requests before an unbuffered write request is issued for DMA SDRAM
read transfer

3. number of buffered write requests before an outstanding write response packet is received

4. TO BE DONE

19.3 Register summary

TO BE DONE

19.4 Fault-tolerance

Fault insertion

1. TO BE DONE

Fault detection

1. TO BE DONE

Fault isolation

1. TO BE DONE

109

version 0.03 August 19, 2021

Reconfiguration

1. TO BE DONE

110

version 0.03 August 19, 2021

20 Inter-chip transmit and receive interfaces

Inter-chip communication is implemented with high-speed serial communications that has been opti-
mized for power with sparse traffic. The interfaces powered down in the absence of traffic, but have
rapid recovery when traffic is presented.

20.1 Features

There are two modes for inter-chip communication available:

1. Chip-to-Chip (C2C) Link and

2. LVDS AURORA Link.

The C2C link is build for a near distance chip to chip communication and the LVDS AURORA link
is build for longer distance board to board communication.

20.1.1 Key features for the Chip-to-Chip Link

1. gross data rate: 12.0 GBit/s

2. net data rate: 7.0 GBit/s

3. six data transmission lanes in both directions

(a) 2 GBit/s per lane
(b) double data rate
(c) transmission line fundamental wave at 1GHz

4. power down when idle

20.1.2 Key features for the LVDS AURORA link

1. gross data rate: 2.00 GBit/s

2. net data rate: 933.33 MBit/s

3. one transmission lane in both directions

(a) 2 GBit/s per lane
(b) double data rate
(c) transmission line works at 1GHz
(d) aurora protocol with 8b10b line code

20.2 Configuration

20.2.1 register selection

There are five individual registers for the link configuration inside:

1. NoC registers

2. SpikeSedes registers

3. C2C registers

4. AURORA registers

5. LVDS register

An APB multiplexer is available to access the registers. The selection signal is generated as follows
from the three MSBs of the signal apb addr[11:0]:

1. 3’b000: NoC registers

2. 3’b001: SpikeSerdes registers

3. 3’b010: C2C LINK registers

4. 3’b011: AURORA LINK registers

5. 3’b100: LVDS SERDES register

111

version 0.03 August 19, 2021

20.3 Chip-to-Chip Link (C2C Link)

The Chip-to-Chip Link enables the inter-chip communication between nearest neighbor chips from
the architectural point of view. Each chip includes six C2C links, each capable of transmitting data
at a rate of 2Gbps per lane in one direction, resulting in a total data rate of 12Gbps in each direction.
Figure 26 shows the basic data flow structure of two C2C link interfaces, which are located on two
different chips.

TX Data Slice 4

TX Data Slice 2

TX Data Slice 0

TX Data Slice 1

TX Data Slice 3

TX Data Slice 5

RX Data Slice 4

RX Data Slice 2

RX Data Slice 0

RX Clock Slice

RX Data Slice 1

RX Data Slice 3

RX Data Slice 5

RX Data Slice 4

RX Data Slice 2

RX Data Slice 0

RX Clock Slice

RX Data Slice 1

RX Data Slice 3

RX Data Slice 5

TX Data Slice 4

TX Data Slice 2

TX Data Slice 0

TX Data Slice 1

TX Data Slice 3

TX Data Slice 5

TX
 D

AT
A

M
U

X

FI
FO

FI
FO

R
X

D
AT

A
M

U
X

TX
 D

AT
A

M
U

X

FI
FO

R
X

D
AT

A
M

U
X

FI
FO

spike_serdes spike_serdes

AD
PL

L

AD
PL

LTX Clock Slice

TX Clock Slice

Figure 26: C2C Link: data flow between two interfaces

20.3.1 C2C Link Transceiver

Figure 27 depicts a simplified block level schematic of the C2C Link transceiver (orange colored boxes
in figure 26). The C2C Link acts as a source synchronous link, which means that in addition to the
data, the clock is also being sent from the TX to the RX. This allows a fast on and off switching,
because, once recovered, the sampling phase does not shift, since there is no frequency offset between
TX and RX. The data is being transmitted single-ended, whereas the clock is being transmitted
differential. This results in a reduced sensitivity of the transmitted clock signal to interferences from
other signals, which is necessary to sample the data signal correctly at the receiver. Due to the short
transmission channel distances on the PCB, the data can be transmitted single-ended. This further
decreases the power consumption of the transceivers.

112

version 0.03 August 19, 2021

D
R

V

8-
1

Se
r

Din
8

8

div by 4

C
M

U
X

D
R

V
D

R
V

8-
1

Se
r

Din
88

AD
PL

L

TX
 D

AT
A

IN
TE

R
FA

C
E

Vref
Gen

SA
FF

dataD
LY

+9
0° SA

FF

D
LY

2-8
Des

2-8
Des

D
LY div by 4

Dout

Dout
2

2

8

8 8

8

SA
FF

data

monitor

D
LY

+9
0° SA

FF

D
LY

2-8
Des

2-8
Des Dout

Dout
2

2

8

8 8

8

R
X

D
AT

A
IN

TE
R

FA
C

E

c2c_phy c2c_phy

CLKTX_H/V

TX_H/V Slice1

TX_H/V Slice0

RX_H/V Slice1

CLKRX_H/V

RX_H/V Slice0

monitor

Figure 27: C2C Link Transceiver: Clock lane plus two data lanes

113

version 0.03 August 19, 2021

21 Periphery

The periphery module contains various IO interfaces for low-speed communication. It further contains
a periphery processor for general purpose control tasks for chip boot up and operation. The periphery
module is not body biased and clocked solely with the reference clock signal. It is operational directly
after power up and reset de-assertion. The chip bootup is orchestrated by the periphery module.

CNoC
router

UART
1

NoC
gateway

UART
0

NoC
gateway

CNoC
router

SPI
slaveCUART

DFT I²C
slave

CNoC
router

JTAGARM
M4

register
IF

NoC
SPI

startup
control periphery register file

PWM
0

I²C
master

PWM
1 ADPLL

NoC
gateway

NoC
gateway

GPIO MUX

22 GPIOs, 1.8VConfiguration NoC 32bit
Data NoC 192bit

APB
Configuration signal

Figure 28: Periphery components

21.1 Start-up Control

SpiNNaker2 chip can be started in four different modes:

1. JTAG-only

2. I2C slave

3. SPI flash boot + JTAG

4. SPI slave + JTAG

The start-up mode is by bootstrap pins GPIO0 and GPIO1 after the reset release. After reset the
start-up controller configures GPIO pads and enables periphery components. A list of used GPIO
pads can be found in section 22.4. The remaining GPIO pads are inputs by default, but can be
reconfigured later on.

21.2 Register File Interface

The CNoC register file interface converts NoC packets e.g. write requests to the APB bus. All
attached APB registers are accessible by the global memory address offset 0xf10000000. Only local
register addresses (without offset) are denoted in the following.

debug register

Addresses 0x00000000 to 0x0000000c are debugging registers. These can be used to test access
via external interfaces e.g. JTAG, I2C or SPI.

114

version 0.03 August 19, 2021

Register 21.1: debug 0 (0x00000000)

de
bu

g
0

0

31 0

Reset

debug 0 (RW) debug register #0

register file control

The NoC-APB bridge and NoC gateway can be configured via register 0x00000010 .

Register 21.2: regfile ctrl (0x00000010)

un
us

ed

—

31 4

se
le
ct

iv
e

fif
o

w
e

en

0

3

pr
ot

en

0

2

cl
oc

kg
at

e
en

0

1

ti
m

eo
ut

en

1

0

Reset

selective fifo we en (RW�) enable selective write enable for NoC gateway
prot en (RW�) enable protected mode
clockgate en (RW�) enable clock gating for register file
timeout en (RW�) enable timeout for the case regfile is not reacting

115

version 0.03 August 19, 2021

21.3 GPIO MUX

The GPIO multiplexer allows to map internal interfaces e.g. UART to a GPIO pad. Figure 29 shows
the basic structure. Each individual pad has up to 5 different functions.

PAD

G
PIO

 M
U

X

func

function 0

function 1

function 2

function n

Figure 29: GPIO function multiplexer

pad func0 func1 func2 func3 func4 note

0 RF I2CS IRQ SPIM INTR ARM IRQ0 DBG0 bootstrap
1 RF SPIS0 IRQ SPIS1 INTR ARM IRQ1 DBG1 bootstrap
2 RF SPIM NSS SPIS1 NSS SDIO CMD UART1 TX
3 RF SPIM SCLK SPIS1 SCLK SDIO CLK UART1 RX
4 RF SPIM IO0 SPIS1 IO0 SDIO D0 UART1 RTR
5 RF SPIM IO1 SPIS1 IO1 SDIO D1 UART1 CTS
6 RF SPIM IO2 SPIS1 IO2 SDIO D2 I2CM SCL
7 RF SPIM IO3 SPIS1 IO3 SDIO D3 I2CM SDA
8 RF I2CS SCL[1] CUART TX PWM0
9 RF I2CS SDA[1] CUART RX PWM1
10 RF SPIF NSS[2] SPIS0 NSS[3] PWM2 0
11 RF SPIF SCLK[2] SPIS0 SCLK[3] PWM2 1
12 RF SPIF IO0[2] SPIS0 IO0[3] PWM2 2
13 RF SPIF IO1[2] SPIS0 IO1[3] PWM2 3
14 RF SPIF IO2 SPIS0 IO2 PWM2 4
15 RF SPIF IO3 SPIS0 IO3 JARM RST
16 RF JTAG TMS[0,2,3] UART0 CTS JARM TMS
17 RF JTAG TCK[0,2,3] UART0 RTR JARM TCK
18 RF JTAG TDO[0,2,3] UART0 TX JARM TDO
19 RF JTAG TDI[0,2,3] UART0 RX JARM TDI

0 GPIO[1:0] = 0; pad active in JTAG mode
1 GPIO[1:0] = 1; pad active in I2C slave mode
2 GPIO[1:0] = 2; pad active in SPI flash boot mode
3 GPIO[1:0] = 3; pad active in SPI slave mode

GPIO pad configuration

The periphery core contains 20 GPIO pins with selectable functionality. Starting from address
0x000000c0 to 0x0000010c the GPIO function can be selected by changing the func register field.

Register 21.3: gpio 0 cfg (0x000000c0)

un
us

ed

—

31 28

pd

0

27

pu

0

26

st
e

1

25 24

od
n

0

23

od
p

0

22

co

0

21

sr

1

20

ds

3

19 18

bi
as

0

17 16

un
us

ed

—

15 3

fu
nc

0

2 0

Reset

116

version 0.03 August 19, 2021

pd (RW) pull up
pu (RW) pull down
ste (RW) Schmitt trigger threshold
odn (RW) open drain for nMOS
odp (RW) open drain for pMOS
co (RW) current output
sr (RW) slew rate control
ds (RW) drive strength: 0=4mA, 1=8mA, 2=12mA, 3=16mA
bias (RW) bias source select
func (RW) gpio mux function

GPIO register file control

By selecting GPIO function 0, each GPIO can be controlled via register file. To read from GPIO
pins the input enable must be set via register 0x00000114 . The GPIO read value can be obtained
from register 0x0000011c . The GPIO output value can be set by enabling the desired output pin
at register 0x00000110 and setting up the value of register 0x0000011c .

Register 21.4: gpio ie (0x00000114)

un
us

ed

—

31 20

gp
io

19

1

19

gp
io

18

1

18

gp
io

17

1

17

gp
io

16

1

16

gp
io

15

1

15

gp
io

14

1

14

gp
io

13

1

13

gp
io

12

1

12

gp
io

11

1

11

gp
io

10

1

10

gp
io

9

1

9

gp
io

8

1

8

gp
io

7

1

7

gp
io

6

1

6

gp
io

5

1

5

gp
io

4

1

4

gp
io

3

1

3

gp
io

2

1

2

gp
io

1

1

1

gp
io

0

1

0

Reset

Register 21.5: gpio di (0x0000011c)

un
us

ed

—

31 20

gp
io

19

—

19

gp
io

18

—

18

gp
io

17

—

17

gp
io

16

—

16

gp
io

15

—

15

gp
io

14

—

14

gp
io

13

—

13

gp
io

12

—

12

gp
io

11

—

11

gp
io

10

—

10

gp
io

9

—

9

gp
io

8

—

8

gp
io

7

—

7

gp
io

6

—

6

gp
io

5

—

5

gp
io

4

—

4

gp
io

3

—

3

gp
io

2

—

2

gp
io

1

—

1

gp
io

0

—

0

Reset

Register 21.6: gpio oe (0x00000110)

un
us

ed

—

31 20

gp
io

19

0

19

gp
io

18

0

18

gp
io

17

0

17

gp
io

16

0

16

gp
io

15

0

15

gp
io

14

0

14

gp
io

13

0

13

gp
io

12

0

12

gp
io

11

0

11

gp
io

10

0

10

gp
io

9

0

9

gp
io

8

0

8

gp
io

7

0

7

gp
io

6

0

6

gp
io

5

0

5

gp
io

4

0

4

gp
io

3

0

3

gp
io

2

0

2

gp
io

1

0

1

gp
io

0

0

0

Reset

Register 21.7: gpio do (0x00000118)

un
us

ed

—

31 20

gp
io

19

0

19

gp
io

18

0

18

gp
io

17

0

17

gp
io

16

0

16

gp
io

15

0

15

gp
io

14

0

14

gp
io

13

0

13

gp
io

12

0

12

gp
io

11

0

11

gp
io

10

0

10

gp
io

9

0

9

gp
io

8

0

8

gp
io

7

0

7

gp
io

6

0

6

gp
io

5

0

5

gp
io

4

0

4

gp
io

3

0

3

gp
io

2

0

2

gp
io

1

0

1

gp
io

0

0

0

Reset

117

version 0.03 August 19, 2021

GPIO reset value

During reset state all GPIO pins are configured as inputs. After the reset is released the GPIO state
is captured and stored in register 0x00000304 .

Register 21.8: startup reset rd (0x00000304)

un
us

ed

—

31 20

va
l

—

19 0

Reset

val (R) reset GPIO read value

118

version 0.03 August 19, 2021

21.4 Clock Configuration

CLK pad configuration

Register 21.9: clkrst pads (0x000000a0)

un
us

ed

—

31 10

re
se

tn
st
e

1

9 8

un
us

ed

—

7 2

cl
k

st
e

1

1 0

Reset

resetn ste (RW�) schmitt trigger control of reset n pad
clk ste (RW�) schmitt trigger control of clk ref pad

Register 21.10: clk conf (0x00000200)

un
us

ed

—

31 12

pe
ri
ph

er
y

di
vi

de
r

1

11 9

sy
st
ic
k

di
vi

de
r

50

8 2

co
re

sy
st
ic
k

en

0

1

co
re

re
f
cl
k

en

0

0

Reset

periphery divider (RW�) periphery core clock divider value
systick divider (RW�) systick clock divider value n (div by 2n)
core systick en (RW�) enable systick clock for core area
core ref clk en (RW�) enable reference clock for core area

Register 21.11: clk conf spi (0x00000204)

un
us

ed

—

31 5

sp
is

pl
l di

v
n

2x

1

4 3

sp
is

pl
l di

v
by

pa
ss

1

2

sp
is

cl
k

en

1

1

sp
is

se
l

0

0

Reset

spis pll div n 2x (RW) SPI slave pll clock divider n value (div by 2n)
spis pll div bypass (RW) SPI slave pll clock divider bypass
spis clk en (RW) enable SPI slave clock
spis sel (RW) SPI slave clock sel, 0: reg clk 1: pll core clk

119

version 0.03 August 19, 2021

21.5 Periphery Arm Cortex-M4

The periphery ARM Cortex M4 core is an PE (see section 5) with reduced functionality. For area
(and power) reduction the accelerator cores and floating point unit were removed.

1. ARM Cortex M4 core

2. 128kByte ECC SRAM

3. comms unit

4. max. 100MHz clock frequency

5. internal and external interrupt sources

CLK and reset configuration

Register 21.12: arm clk conf (0x000001bc)

un
us

ed

—

31 4

cl
k

di
v

va
l

1

3 1

cl
k

en
ab

le

0

0

Reset

clk div val (RW�) core clock divider value
clk enable (RW�) periphery ARM M4 core

Register 21.13: arm sreset (0x000001c0)

un
us

ed

—

31 1

va
l

1

0

Reset

val (RW�) periphery ARM M4 secondary reset

Register 21.14: arm conf (0x000001c4)

un
us

ed

—

31 4

lo
ck

up

—

3

sy
sr
es

et
re

q

—

2

bi
ge

nd

0

1

fo
rc

e
cn

oc

1

0

Reset

lockup (R�) debug lockup
sysreset req (R�) debug sysreset req
bigend (RW�) debug bigend
force cnoc (RW�) force CNoC routing

120

version 0.03 August 19, 2021

memory configuration

Register 21.15: arm sram (0x000001c8)

un
us

ed

—

31 19

ec
c

er
r
cn

t

—

18 11

ec
c

er
r
ev

en
t

—

10

ec
c

cn
t
rs
t

0

9

ec
c

en
ab

le

1

8

re
te

nt
io
n

0b11

7 6

de
la
y

0b1000

5 0

Reset

ecc err cnt (R�) ECC error counter value
ecc err event (R�) SRAM ECC error occured
ecc cnt rst (RW�) reset counter value
ecc enable (RW�) enable SRAM ECC
retention (RW�) SRAM retention setting
delay (RW�) SRAM delay setting

Register 21.16: mbist cmd seq0 (0x000001cc)

va
l

0

31 0

Reset

val (RW�) bist command sequence lower 32bit

Register 21.17: mbist cmd seq1 (0x000001d0)

un
us

ed

—

31 16

va
l

0

15 0

Reset

val (RW�) bist command sequence upper 16bit

Register 21.18: mbist ctrl (0x000001d4)

un
us

ed

—

31 3

m
em

se
l

0

2

en
ab

le

0

1

st
ar

t

0

0

Reset

mem sel (RW�) memory wrap selection
enable (RW�) enable mbist
start (RW�) start mbist

121

version 0.03 August 19, 2021

Register 21.19: mbist status (0x000001d8)

un
us

ed

—

31 5

pc

—

4 2

re
s

—

1

bu
sy

—

0

Reset

pc (R�) captured program counter
res (R�) bist test result 0: PASS ; 1: FAIL
busy (R�) mbist test running

Register 21.20: mbist addr (0x000001dc)

un
us

ed

—

31 12

va
l

—

11 0

Reset

val (R�) failed addr

GPIO pads

The periphery ARM Cortex M4 core has 4 dedicated ARM JTAG pads and 2 interrupt input pads.
To map the desired function to GPIO pad please see section 22.4.

name direction function

AJTAG TMS input ARM JTAG select
AJTAG TCK input ARM JTAG clock input
AJTAG TDO output ARM JTAG serial data out
AJTAG TDI input ARM JTAG serial data in
ARM IRQ0 input external ARM interrupt 0
ARM IRQ1 input external ARM interrupt 1

external interrupt configuration

Register 21.21: arm gpi irq (0x000001e0)

un
us

ed

—

31 13

ri
si
ng

ed
ge

0

12 11

ch
1

fil
te

r
ta

ps

0

10 7

ch
0

fil
te

r
ta

ps

0

6 3

ch
ac

ti
ve

0

2 1

en

0

0

Reset

rising edge (RW�) trigger IRQ on rising edge, falling edge otherwise
ch1 filter taps (RW�) channel 1: number of active filter taps
ch0 filter taps (RW�) channel 0: number of active filter taps
ch active (RW�) enable channel
en (RW�) enable GPIO IRQ core

122

version 0.03 August 19, 2021

Register 21.22: arm periphery irq (0x000001e4)

un
us

ed

—

31 19

no
c

sp
i

0

18 13

ua
rt
1

0

12 8

ua
rt
0

0

7 3

rf

0

2 0

Reset

noc spi (RW�) NoC SPI IRQ mask
uart1 (RW�) UART1 IRQ mask
uart0 (RW�) UART0 IRQ mask
rf (RW�) register triggered interrupt

Register 21.23: arm ft irq mask 01 (0x000001e8)

un
us

ed

—

31 20

ir
q

m
as

k1

0

19 10

ir
q

m
as

k0

0

9 0

Reset

irq mask1 (RW�) feed through IRQ mask bit 1
irq mask0 (RW�) feed through IRQ mask bit 0

Register 21.24: arm ft irq mask 23 (0x000001ec)

un
us

ed

—

31 20

ir
q

m
as

k3

0

19 10

ir
q

m
as

k2

0

9 0

Reset

irq mask3 (RW�) feed through IRQ mask bit 3
irq mask2 (RW�) feed through IRQ mask bit 2

21.6 JTAG

The JTAG IEEE 1149.1 system on the SpiNNaker chip provides access to the ARM Cortex M4F
processors for software debug purposes and scan access to the SpiNNaker pins for PCB testing
purposes.

GPIO pads

The JTAG interface uses 4 GPIO pads. To map the desired function to GPIO pad please see section
22.4.

name direction function

JTAG TMS input JTAG select
JTAG TCK input JTAG clock input
JTAG TDO output JTAG serial data out
JTAG TDI input JTAG serial data in

123

version 0.03 August 19, 2021

TO BE DONE

124

version 0.03 August 19, 2021

21.7 SPI

The Serial Peripheral Interface (SPI) is a common serial off-chip bus to interface e.g. sensors or
memory ICs. In general the SPI bus is set up in a single master - (multi)slave configuration where
the master always initiates the communication. SPI uses four signal wires in minimal configuration:

1. SCLK - serial clock, driven by master
2. NSS - low active slave select (also refereed as S# or CS#), driven by master
3. MOSI - master out - slave in data signal, driven by master
4. MISO - master in - slave out data signal, driven by slave

The picture (30) shows parts of a SPI communication:

0

7

ZMISO

MOSI

NSS

SCLK

6 5 4 3 2 1 0

0 0 0 0 0 1 1

7 6 5 4 3 2 1 0

Z0 1 0 0 1 01 1

Figure 30: single SPI communication

To start a communication sequence, the SPI pulls down NSS. After this the SPI clock is toggling
and the bus master transfers data on MOSI line. In the given example the clock line is default zero
and data lines are assigned on a falling clock edge while the receiving bus node is sampling on rising
clock edge (SPI mode 0). Typically SPI communication is byte oriented and the MSB is transferred
first. When commutation is done, the master stops clocking and assigns slave select high. The
example shows a classical SPI communication: the master drives MOSI and the slave drives MISO.
This configuration allows a full-duplex communication, however data transfer usually just takes place
on one signal line. In applications a higher data transfer rate is required (e.g. memories) the SPI
protocol was slightly modified: in dual SPI operation MISO and MOSI lines can be bidirectional
and are driven by the same bus instance. This allows a nearly doubled data transfer rate while
maintaining four signal wires. For even higher data rates the quad SPI (4 data lines) is supported by
many modern SPI memory devices.

21.7.1 NoC SPI

The SpiNNaker2 chip includes one QSPI slave, master and a dedicated SPI flash master controller
(see figure 31).

NoC SPI enable

Register 21.25: noc spi en (0x00000120)

un
us

ed

—

31 7

sp
i m

ux
en

ab
le

0

6

sp
is

en
ab

le

0

5

sp
im

en
ab

le

0

4

su
ct

rl
en

0

3

no
c

sp
i ov

r

0

2

m
as

te
r
m

od
e

0

1

en

0

0

Reset

spi mux enable (RW�) enable SPI mux
spis enable (RW�) spi slave enable
spim enable (RW�) spi master enable
su ctrl en (RW�) startup core enable
noc spi ovr (RW�) override master and enable signal -> use rf val
master mode (RW�) core in master mode (flash startup)
en (RW�) start startup routine

125

version 0.03 August 19, 2021

SPI
slave

CNoC IFSPI packet
router

SPI startup
control

SPI
master

SPI flash

SPI
slave

CNoC IFSPI packet
router

SPI startup
control

SPI
master

Chip 0 as master

Chip 1 as slave

Figure 31: SPI multi chip setup

chip ID selection

Register 21.26: spi chip id (0x00000158)

un
us

ed

—

31 7

ch
ip

id
se

t

0

6

ct
rl

sr
c

id

0

5 0

Reset

chip id set (RW�) chip ID is set set, if not packets will go to NoCIF
ctrl src id (RW�) source chip ID of packet

multiplexer configuration

Register 21.27: spi mux conf (0x00000168)

un
us

ed

—

31 5

lin
k

qp
e

de
st

m
c

0

4 1

m
ux

m
as

te
r
m

od
e

0

0

Reset

126

version 0.03 August 19, 2021

link qpe dest mc (RW�) multicast enable
mux master mode (RW�) 0-slave mode, 1-master mode

Register 21.28: spi noc conf (0x00000174)

un
us

ed

—

31 6

tx
m

c
m

as
k

0

5 2

tx
gl
ob

al
se

gm
en

t

0

1 0

Reset

tx mc mask (RW�) multicast enable
tx global segment (RW�) mem segment

clock configuration

Register 21.29: spi clk div (0x0000013c)

un
us

ed

—

31 15

m
st

10

14 10

su
b

1

9 5

su
a

10

4 0

Reset

mst (RW�) spi master, clk div value
su b (RW�) spi flash setup b, clk div value
su a (RW�) spi flash setup a, clk div value

21.7.2 SPI slave

SpiNNaker2 includes a SPI slave interface with following features:

1. single SPI command; single, dual and quad SPI data operation
2. dual/quad SPI operation for command + data
3. supported frequency: up to 20 MHz
4. SPI mode 1: clock default low, data assigned at rising edge, sampled at falling edge
5. external interrupt, signalling available data
6. continuous write operation with auto address increment

GPIO pads

The SPI slave can use up-to 7 GPIO pads. To map the desired function to GPIO pad please see
section 22.4. IO2 and IO3 are only necessary for quad SPI mode. These pads can be used for other
purposes if not needed. The INTR pad is signalling that a NoC packet is available at RX buffer side.
It is not mandatory to use this pad. The status command can be used instead.

name direction function

SPIS0 SCLK input SPI slave clock input
SPIS0 NSS input SPI slave low-active slave select
SPIS0 IO0 inout SPI slave data 0 (MOSI)
SPIS0 IO1 inout SPI slave data 1 (MISO)
SPIS0 IO2 inout SPI slave data 2
SPIS0 IO3 inout SPI slave data 3
SPIS0 INTR output SPI slave interrupt(packet available), low active, open drain

127

version 0.03 August 19, 2021

SPI slave commands

The SPI slave supports various commands which are described below. In general a slave sequence
consists of a command byte, address and data bytes. To describe the used number of signal lines for
the sequence a CAD style notation is used. E.g. a 1-4-4 sequence means single SPI for command,
quad SPI for address and data. To receive a status from SPI slave a dedicated command can be used
consisting of SPI command byte and one status byte. The status byte contains following information:
status[7:4]=0x5, status[3]=0x0, status[2]=rx rising egde, status[1]=tx falling egde;

Command Code Sequence Function

CMD S STATUS 0xC0 1-0-1 get 8bit slave status; SSPI
CMD D STATUS 0xC1 1-0-2 get 8bit slave status; DSPI
CMD D STATUS 0xC2 1-0-4 get 8bit slave status; QSPI
CMD S READ REQ 0xA4 1-1-0 read request to address; SSPI
CMD D READ REQ 0xA5 1-2-0 read request to address; DSPI
CMD Q READ REQ 0xA6 1-0-4 read request to address; QSPI
CMD S READ 0x04 1-0-1 read 32bit data from buffer; SSPI
CMD D READ 0x05 1-0-2 read 32bit data from buffer; DSPI
CMD Q READ 0x06 1-0-4 read 32bit data from buffer; QSPI
CMD S WRITE 0xA8 1-1-1 write 32bit data to address; SSPI
CMD D WRITE 0xA9 1-2-2 write 32bit data to address; DSPI
CMD Q WRITE 0xAA 1-4-4 write 32bit data to address; DSPI

The following commands are used for packet based multi chip communication. To support a chain
of SpiNNaker2 chips two packet specific bytes were added consisting of the 8bit SPI command, 4bit
packet type (P type), 6bit target, 6bit source chipID, 32bit address and 32bit data.

SPI CMD P type trgtID srcID addr data

Command Code Sequence Function

CMD P READ REQ S 0xB8 1-1-1 read request to address; SSPI
CMD P READ REQ D 0xB9 1-2-2 read request to address; DSPI
CMD P READ REQ Q 0xBA 1-4-4 read request to address; QSPI
CMD P READ S 0xC4 1-1-1 read 10 bytes from buffer; SSPI
CMD P READ D 0xC5 1-2-2 read 10 bytes from buffer; DSPI
CMD P READ Q 0xC6 1-4-4 read 10 bytes from buffer; QSPI
CMD P WRITE S 0xC8 1-1-1 write 10 bytes to buffer; SSPI
CMD P WRITE D 0xC9 1-2-2 write 10 bytes to buffer; DSPI
CMD P WRITE Q 0xCA 1-1-4 write 10 bytes to buffer; QSPI

Register 21.30: spi slv conf (0x0000016c)

un
us

ed

—

31 19

cr
c

re
st
ar

t

0

18

cr
c

en
ab

le

1

17

du
m

m
y

en

0

16

tx
ou

t
re

g
st
ag

es

0

15 14

tx
ed

ge
dl

y

0

13 12

cl
k

fa
lli

ng
in

v

0

11

cl
k

ri
si
ng

in
v

0

10

io
sm

pl
de

la
y

0

9 8

cl
k

fa
lli

ng
dl

y

0

7 6

cl
k

ri
si
ng

dl
y

0

5 4

rx
ed

ge
ri
si
ng

0

3

tx
ed

ge
fa

lli
ng

0

2

m
od

e

0

1 0

Reset

128

version 0.03 August 19, 2021

crc restart (RW�) restart CRC
crc enable (RW�) enable CRC byte checking
dummy en (RW�) enable dummy byte between RX-TX transition
tx out reg stages (RW�) registered TX data
tx edge dly (RW�) delay tx clock edge
clk falling inv (RW�) use rising edge
clk rising inv (RW�) use falling edge
io smpl delay (RW�) use delayed io samples
clk falling dly (RW�) >0: use delayed rising edge
clk rising dly (RW�) >0: use delayed falling edge
rx edge rising (RW�) read data on rising edge
tx edge falling (RW�) write data on falling edge
mode (RW�) SPI mode 0:SSPI; 1:DSPI; 2:QPSI

21.7.3 SPI master

The SPI master interface uses ut to 6 GPIO pads. To map the desired function to GPIO pad please
see section 22.4.

name direction function

SPIM SCLK output SPI master clock
SPIM NSS output SPI master low-active slave select
SPIM IO0 inout SPI master data 0 (MOSI)
SPIM IO1 inout SPI master data 1 (MISO)
SPIM IO2 inout SPI master data 2, add pullup resistor
SPIM IO3 inout SPI master data 3, add pullup resistor
SPIM INTR input SPI master interrupt

configuration

Register 21.31: spi mst conf (0x0000015c)

un
us

ed

—

31 11

rf
sp

im
tx

fif
o

fu
ll

—

10

rf
fe

rx
fif

o
em

pt
y

—

9

rf
fe

cy
cl
e

st
op

—

8

rf
fe

re
ad

y

—

7

rf
fe

en

0

6

rf
by

pa
ss

0

5

co
nt

in
ou

s
m

od
e

0

4

cm
d

m
od

e

0

3 2

st
d

cm
d

0

1 0

Reset

rf spim tx fifo full (R�) frontend tx buffer full
rf fe rx fifo empty (R�) frontend rx buffer empty
rf fe cycle stop (R�) processing done
rf fe ready (R�) ready to process
rf fe en (RW�) enable frontend : processing FIFO entries
rf bypass (RW�) control frontend via regfile
continous mode (RW�) enable continous mode
cmd mode (RW�) 0-SSPI, 1-DSPI, 2-QSPI
std cmd (RW�) 0-SSPI, 1-DSPI, 2-QSPI

129

version 0.03 August 19, 2021

Register 21.32: mspi fe config (0x00000138)

un
us

ed

—

31 21

tx
fif

o
flu

sh

0

20

o
va

l de
fa

ul
t

0

19 12

oe
de

fa
ul

t

0

11 4

lo
op

ba
ck

0

3

cp
ol

0

2

tx
ri
si
ng

1

1

ls
b

fir
st

0

0

Reset

tx fifo flush (RW�) clear TX fifo
o val default (RW�) default output value
oe default (RW�) default output enable
loopback (RW�) loopback enable for test
cpol (RW�) clock polarity
tx rising (RW�) rising edge is transmitting edge
lsb first (RW�) send LSB first

receive buffer

Register 21.33: spi mst rx buffer (0x00000160)

un
us

ed

—

31 8

da
ta

—

7 0

Reset

data (R�) frontend rx buffer data

transmit buffer

Register 21.34: spi mst tx buffer (0x00000164)

un
us

ed

—

31 18

da
ta

0

17 0

Reset

data (RW�) frontend tx buffer data

21.7.4 SPI flash start-up controller

For autonomous low-level boot-up SpiNNaker2 contains a QSPI flash controller. The SPI start-up
controller fetches commands e.g. NoC writes from the flash device in order to start chip components
such as PLL. To start SpiNNaker2 from SPI flash the bootstrap GPIO configuration must be set
properly during reset. When SPI start-up controller starts it first performs a wait operation to give
the flash device time to start-up properly. A typical start-up time for flash devices is 300us until
its ready for read operation. After the wait sequence is done, the controller will start reading the
SPI flash from address 0x0000. It will use the 0x03 flash read command which is supported by most
modern SPI flash devices. To allow a robust start-up the SPI clock frequency is set to 5MHz and
standard SPI mode is used. Depending on the PCB design and used flash device the bus frequency
can be increased to 50MHz and quad SPI mode can be enabled.

130

version 0.03 August 19, 2021

GPIO pads

The SPI flash controller can use up-to 6 GPIO pads. To map the desired function to GPIO pad
please see section 22.4.

name direction function

SPIF SCLK output SPI flash controller clock
SPIF NSS output SPI flash controller low-active slave select, push/pull, add external

pullup resistor
SPIF IO0 inout SPI flash controller data 0 (MOSI)
SPIF IO1 inout SPI flash controller data 1 (MISO)
SPIF IO2 inout SPI flash controller data 2, add pullup resistor
SPIF IO3 inout SPI flash controller data 3, add pullup resistor

SPI flash controller commands

The SPI start-up controller expects a data sequence organized in 9byte parts. A single command
consists of 1byte command, 4byte address and 4byte data:

CMD addr data

The following commands are supported:

Command Code address data function

CMD W NOC 0xAA 32bit addr 32bit wdata memory mapped
NoC write

CMD W NOC WAIT SHORT 0x50 32bit addr 32bit wdata write with short
delay

CMD W NOC WAIT LONG 0x5F 32bit addr 32bit wdata write with long
delay

CMD MEM CPY 0xEE 32bit addr number of bytes copy n following
bytes to address

CMD REG WR 0x11 32bit addr 32bit wdata write internal
register

CMD R NOC WAIT SHORT 0xB0 32bit addr 32bit expected
data

read request,
wait short until
expected value
is read

CMD R NOC WAIT LONG 0xBF 32bit addr 32bit expected
data

read request,
wait long until
expected value
is read

CMD RF BYPASS 0x99 unused 24bit wait count start FIFO
stored sequence

CMD RF BYPASS SETUP 0x98 unused 24bit wait count start FIFO
stored sequence,
toggle setop
A¡-¿B

CMD FLASH ADDR 0x22 unused 32bit address change SPI flash
address

CMD FLASH SECTOR 0x33 offset 19bit address change SPI flash
address

CMD WAIT 0xDD unused 24bit wait count wait
CMD CRC 0xCC unused 32bit CRC

checksum
CRC checksum
packet

CMD STOP 0xFF unused unused stop controller

131

version 0.03 August 19, 2021

configuration

Register 21.35: startup conf (0x00000124)

un
us

ed

—

31 14

su
fe

tx
fif

o
fu

ll

—

13

su
fe

rx
fif

o
em

pt
y

—

12

su
fe

co
re

st
op

—

11

su
ct

rl
su

w
ai
t
do

ne

—

10

su
ct

rl
cr

c
er

ro
r

—

9

su
ct

rl
cm

d
er

ro
r

—

8

su
ct

rl
bu

sy

—

7

su
ct

rl
do

ne

—

6

su
ct

rl
by

pa
ss

fe
en

0

5

su
ct

rl
by

pa
ss

m
od

e

0

4

su
ct

rl
cr

c
en

1

3

su
ct

rl
se

tu
p

se
l

0

2

su
ct

rl
dm

a
w
r

0

1

su
ct

rl
m

od
e

1

0

Reset

su fe tx fifo full (R�) frontend tx buffer full
su fe rx fifo empty (R�) frontend rx buffer empty
su fe core stop (R�) frontend cycle done
su ctrl su wait done (R�) done waiting for powering up of SPI flash
su ctrl crc error (R�) crc error detected
su ctrl cmd error (R�) command error detected
su ctrl busy (R�) cycle ongoing
su ctrl done (R�) cycle done
su ctrl bypass fe en (RW�) enable FE
su ctrl bypass mode (RW�) bypass RF FIFO to FE
su ctrl crc en (RW�) enable crc checking during runtime
su ctrl setup sel (RW�) use setup A(0), or B(1)
su ctrl dma wr (RW�) DMA copy mode: write to flash
su ctrl mode (RW�) startup mode(1), copy mode (0)

Register 21.36: startup flash addr (0x00000128)

va
l

—

31 0

Reset

val (R�) startup control flash address

Register 21.37: flash fe config (0x00000134)

un
us

ed

—

31 21

tx
fif

o
flu

sh

0

20

o
va

l de
fa

ul
t

0

19 12

oe
de

fa
ul

t

0

11 4

lo
op

ba
ck

0

3

cp
ol

0

2

tx
ri
si
ng

0

1

ls
b

fir
st

0

0

Reset

132

version 0.03 August 19, 2021

tx fifo flush (RW�) clear TX fifo
o val default (RW�) default output value
oe default (RW�) default output enable
loopback (RW�) loopback enable for test
cpol (RW�) clock polarity
tx rising (RW�) rising edge is transmitting edge
lsb first (RW�) send LSB first

setting A

Register 21.38: startup spim a (0x0000012c)

un
us

ed

—

31 28

da
ta

m
as

te
r
cm

d

0

27 25

du
m

m
y

nu
m

by
te

s

0

24 21

du
m

m
y

m
as

te
r
cm

d

0

20 18

du
m

m
y

en

0

17

ad
dr

nu
m

by
te

s

3

16 15

ad
dr

m
as

te
r
cm

d

0

14 12

cm
d

by
te

0x3

11 4

cm
d

m
as

te
r
cm

d

0

3 1

cm
d

en

1

0

Reset

data master cmd (RW�) setup a, front-end command for data cylce, 0x0-SPI, 0x1
DSPI, 0x2-QSPI

dummy num bytes (RW�) setup a, number of dummy cycle bytes
dummy master cmd (RW�) setup a, frontend dummy cycle cmd
dummy en (RW�) setup a, enable dummy cylce
addr num bytes (RW�) setup a, number of address cylce bytes
addr master cmd (RW�) setup a, front-end command for address cylce, 0x0-SPI, 0x1

DSPI, 0x2-QSPI
cmd byte (RW�) setup a, cmd cycle byte for slave, 0x03-SPI, 0x3B DSPI, 0x6B-

QSPI
cmd master cmd (RW�) setup a, front-end command for cmd cylce, 0x0-SPI, 0x1 DSPI,

0x2-QSPI
cmd en (RW�) setup a, cmd cycle enable

setting B

Register 21.39: startup spim b (0x00000130)

un
us

ed

—

31 28

da
ta

m
as

te
r
cm

d

0

27 25

du
m

m
y

nu
m

by
te

s

0

24 21

du
m

m
y

m
as

te
r
cm

d

0

20 18

du
m

m
y

en

0

17

ad
dr

nu
m

by
te

s

3

16 15

ad
dr

m
as

te
r
cm

d

0

14 12

cm
d

by
te

0x3

11 4

cm
d

m
as

te
r
cm

d

0

3 1

cm
d

en

1

0

Reset

133

version 0.03 August 19, 2021

data master cmd (RW�) setup b, front-end command for data cylce, 0x0-SPI, 0x1
DSPI, 0x2-QSPI

dummy num bytes (RW�) setup b, number of dummy cycle bytes
dummy master cmd (RW�) setup b, frontend dummy cycle cmd
dummy en (RW�) setup b, enable dummy cylce
addr num bytes (RW�) setup b, number of address cylce bytes
addr master cmd (RW�) setup b, front-end command for address cylce, 0x0-SPI, 0x1

DSPI, 0x2-QSPI
cmd byte (RW�) setup b, cmd cycle byte for slave, 0x03-SPI, 0x3B DSPI, 0x6B-

QSPI
cmd master cmd (RW�) setup b, front-end command for cmd cylce, 0x0-SPI, 0x1

DSPI, 0x2-QSPI
cmd en (RW�) setup b, cmd cycle enable

register read mask

Register 21.40: startup noc mask (0x0000014c)

va
l

0

31 0

Reset

Register 21.41: startup noc mask (0x0000014c)

va
l

0

31 0

Reset

memory copy configuration

Register 21.42: startup mc noc addr (0x00000140)

va
l

0

31 0

Reset

val (RW�) mem copy mmap start addr

Register 21.43: startup mc spi addr (0x00000144)

va
l

0

31 0

Reset

134

version 0.03 August 19, 2021

val (RW�) mem copy spi start addr

Register 21.44: startup mc bytes (0x00000148)

va
l

0

31 0

Reset

val (RW�) mem copy number of bytes to be transfered

SPI master access

Register 21.45: spi su rx buffer (0x00000150)

un
us

ed

—

31 10

rx
av

—

9

rx
em

pt
y

—

8

rx
by

te

—

7 0

Reset

rx av (R�) SPI RX buffer available
rx empty (R�) SPI RX buffer empty
rx byte (R�) SPI master RX buffer

Register 21.46: spi su tx buffer (0x00000154)

un
us

ed

—

31 19

tx
fu

ll

—

18

tx
co

m
m

an
d

0

17 0

Reset

tx full (R�) SPI TX buffer full
tx command (RW�) SPI master TX buffer

21.7.5 Spike SPI slave

GPIO pads

The SPI spike slave can use up-to 7 GPIO pads. To map the desired function to GPIO pad please
see section 22.4.

name direction function

SPIS1 SCLK input SPI spike slave clock input
SPIS1 NSS input SPI spike slave low-active slave select
SPIS1 IO0 inout SPI spike slave data 0 (MOSI)
SPIS1 IO1 inout SPI spike slave data 1 (MISO)
SPIS1 IO2 inout SPI spike slave data 2
SPIS1 IO3 inout SPI spike slave data 3
SPIS1 INTR output SPI spike slave interrupt(packet available), low active, open drain

135

version 0.03 August 19, 2021

configuration

Register 21.47: spis config (0x00000194)

un
us

ed

—

31 27

er
r
m

m
ap

—

26

er
r
rx

pk
t

—

25

er
r
cm

d

—

24

er
r
ns

s

—

23

pa
ck

et
rx

re
ad

y

—

22

in
te

rf
ac

e
te

st

0

21

cm
d

st
at

us
en

0

20

du
m

m
y

en

0

19

tx
ou

t
re

g
st
ag

es

0

18 17

tx
ed

ge
dl

y

0

16 15

cl
k

fa
lli

ng
in

v

0

14

cl
k

ri
si
ng

in
v

0

13

io
sm

pl
de

la
y

0

12 11

cl
k

fa
lli

ng
dl

y

0

10 9

cl
k

ri
si
ng

dl
y

0

8 7

rx
ed

ge
ri
si
ng

0

6

tx
ed

ge
fa

lli
ng

0

5

m
od

e

0

4 3

pa
ck

et
m

m
ap

se
gm

en
t

0

2 1

en
ab

le

0

0

Reset

err mmap (R) mmap access error
err rx pkt (R) no RX packet error
err cmd (R) unknown command error
err nss (R) NSS release error
packet rx ready (R) NoC packet received, ready to send out via SPI
interface test (RW) test SPI bus by sending CMD x WR SPK 0 /

CMD x RD BUF D32, prevents NoC packet sending
cmd status en (RW) enable status output in CMD cycle, only in SSPI
dummy en (RW) enable dummy byte between RX-TX transition
tx out reg stages (RW) registered TX data
tx edge dly (RW) delay tx clock edge
clk falling inv (RW) use rising edge
clk rising inv (RW) use falling edge
io smpl delay (RW) use delayed io samples
clk falling dly (RW) >0: use delayed rising edge
clk rising dly (RW) >0: use delayed falling edge
rx edge rising (RW) read data on rising edge
tx edge falling (RW) write data on falling edge
mode (RW) SPI mode 0:SSPI; 1:DSPI; 2:QPSI
packet mmap segment (RW) memory mapped segment
enable (RW) enable SPI slave

Register 21.48: spis spike config (0x00000198)

un
us

ed

—

31 27

sp
ik
e

pt
r

4

26 23

co
nt

ro
l by

te

0

22 15

lin
k

0b111

14 12

no
c

c

0

11

no
c

pe

8

10 6

no
c

y

2

5 3

no
c

x

2

2 0

Reset

spike ptr (RW) packet byte pointer, to skip transfer
control byte (RW) SpiNNaker packet control byte
link (RW) link number
noc c (RW) use CNoC
noc pe (RW) NoC PE address of SpiNNaker router
noc y (RW) NoC Y coordinate of SpiNNaker router
noc x (RW) NoC X coordinate of SpiNNaker router

136

version 0.03 August 19, 2021

Register 21.49: spis spike addr (0x0000019c)

va
l

0

31 0

Reset

val (RW) address field default value, for reduced SpiNNaker packet transfer length

137

version 0.03 August 19, 2021

21.8 I2C

21.8.1 I2C slave

1. I2C bus frequency (up to 3MHz)

2. full memory access

3. selectable 7bit slave address (default is 0x1A)

4. broadcast address 0x00

5. selectable sampling frequency

6. configurable SDA and SCL digital input glitch filter

CNoC
interface

SCL
glitch filter

I2C
slave
control

I2C bit
control

I2C byte
control

RX

TX

SCL

SDA

clock
 divider

clk_ref

clk_iics

SDA
glitch filterto

 N
oC

 ro
ut

er

Figure 32: I2C slave structure

GPIO pads

The I2C slave can use up-to 3 GPIO pads. To map the desired function to GPIO pad please see
section 22.4.

name direction function

IICS SCL inout I2C slave clock, open drain
IICS SDA inout I2C slave data, open drain
IICS INTR output I2C slave interrupt(packet available), low active, open drain

I2C slave configuration

The I2C slave core can be enabled by setting bit 0 of register 0x00000190 . By default the I2C
slave address is 0x1A. The bus address can be changed by setting the slv addr rf field and enabling
slv addr rf en. To change the I2C sampling clock from 100MHz to lower values the clk div can be
used. Note that the SCL and SDA glitch filter length has to be changed accordingly.

Register 21.50: iics config (0x00000190)

un
us

ed

—

31 24

sd
a

fil
te

r
ta

ps

7

23 21

sc
l fil

te
r
ta

ps

7

20 18

sd
a

fil
te

r
by

pa
ss

0

17

sc
l fil

te
r
by

pa
ss

0

16

cl
k

di
v

1

15 12

sl
v

ad
dr

rf
en

1

11

sl
v

ad
dr

rf

0x1A

10 4

m
m

ap
se

g

0

3 2

pr
iv

ac
c

1

1

en

0

0

Reset

138

version 0.03 August 19, 2021

I2C slave command set

Command Code function

CMD STATUS 0x00 read slave status
CMD RD REQ 0x1E read request to 32bit mmap address
CMD RD BUF D 0x2D read 32bit data from buffer
CMD RD BUF AD 0x33 read 32bit address + 32bit data from buffer
CMD RD BUF HAD 0x48 read 32bit header + 32bit address + 32bit data from buffer
CMD WR NOC 0x55 write 32bit mmap address + 32bit data
CMD WR NOC 192 0x66 write raw packet 32bit header + 32bit addr + 128bit data
CMD RD BUF 192 0x78 read raw packet 32bit header + 32bit address + 128bit data from

buffer

Note that the transfer byte order is from low to high: eg. command CMD RD REQ (read request
to 32bit mmap address), command byte is followed by address byte 0, 1 and so on.

read commands

To execute a read command the I2C byte sequence is as followed:

1. start condition, slave address, write condition

2. read command (CMD STATUS, CMD RD X)

3. repeated start, slave address, read condition

4. read n-1 bytes

5. read byte n with stop condition

S ADDR[7] RA CMD[8] A S ADDR[7] RA R BYTE[8] NAP

write commands

To execute a write command the byte I2C sequence is as followed:

1. start condition, slave address, write condition

2. write command (CMD WR NOC X)

3. write n-1 bytes

4. write byte n with stop condition

S ADDR[7] RA CMD[8] A W BYTE[8] NAP

slave status

Slave information can be read out with CMD STATUS command:

Read request

er
ro

r
cn

t

x x x

7 5

co
rr
ec

ta
bl

e
er

ro
r
cn

t

x x x

4 2

T
X

st
al
l

x

1

R
X

re
ad

y

x

0

value

139

version 0.03 August 19, 2021

21.8.2 I2C master

1. 16byte TX and RX FIFO buffer

2. selectable bus frequency (up to 1MHz)

3. interrupt generation

4. multi-master operation

5. option to share pads with I2C slave

clock divider

I2C
byte control

I2C
bit control

interrupt
control

SDA

SCL

clk_iicmclk_ref

control

TX FIFO
async
16byte

RX FIFO
async
16byte

TX
buffer

RX
buffer

pe
rip

he
ry

 re
gi

st
er

 fi
le

Figure 33: I2C master structure

GPIO pads

The I2C master can uses 2 GPIO pads. To map the desired function to GPIO pad please see section
22.4.

name direction function

IICM SCL inout I2C slave clock, open drain
IICM SDA inout I2C master data, open drain

I2C master enable

To enable the I2C master core bit 0 of register 0x00000080 is set to 1. In this state the TX buffer
is accepting bytes by writing to address 0x00000090 . The transfer starts if bit 1 (iicm start) is
set additionally. The I2C master signals can be mapped onto the I2C slave pads by enabling bit 2
(iicm on iics pad). In this mode the I2C master and slave can be operated at the same time.

Register 21.51: iicm enable (0x00000080)

un
us

ed

—

31 3

iic
m

on
iic

s
pa

d

0

2

iic
m

st
ar

t

0

1

iic
m

en
ab

le

0

0

Reset

iicm on iics pad (RW) combine iic master and slave on slave pads
iicm start (RW) start iic master core operation
iicm enable (RW) enable iic master core

140

version 0.03 August 19, 2021

clock configuration

Clock configuration is done via register 0x00000084 and must be set before the I2C master is enabled.
The master core logic is clocked by a clock derived from iicm clkdiv value. SCL frequency is derived
from iicm prescaler (and iicm clkdiv):

bus frequency prescaler clkdiv

100kHz 3 39
400kHz 3 9
1MHz 3 3

Register 21.52: iicm clk conf (0x00000084)

un
us

ed

—

31 24

iic
m

pr
es

ca
le
r

3

23 8

iic
m

cl
kd

iv

10

7 0

Reset

iicm prescaler (RW) iic master SCL prescaler
iicm clkdiv (RW) iic master core clock divider

interrupt configuration

The I2C master is capable of generating an interrupt signal which is connected to periphery ARM
core and to the interrupt bus. There are 6 types of interrupts which can be enabled by setting the
interrupt mask value. The interrupt signal is the result of an or operation of all active interrupts.

Register 21.53: iicm itr conf (0x00000088)

un
us

ed

—

31 21

iic
m

in
tr

rx
em

pt
y

—

20

iic
m

in
tr

tx
fu

ll

—

19

iic
m

in
tr

ai
er

r

—

18

iic
m

in
tr

rx
cn

t
tr

—

17

iic
m

in
tr

tx
cn

t
tr

—

16

iic
m

in
tr

tx
em

pt
y

—

15

iic
m

in
tr

m
as

k

0

14 9

iic
m

in
tr

rs
t

0

8

iic
m

in
tr

tx
cn

t

0

7 4

iic
m

in
tr

rx
cn

t

0

3 0

Reset

iicm intr rx empty (R) triggered interrupt: RX buffer empty
iicm intr tx full (R) triggered interrupt: TX buffer full
iicm intr ai err (R) triggered interrupt: frontend error
iicm intr rx cnt tr (R) triggered interrupt: RX count
iicm intr tx cnt tr (R) triggered interrupt: TX count
iicm intr tx empty (R) triggered interrupt: TX buffer empty
iicm intr mask (RW) enable mask of interrupts
iicm intr rst (RW) reset interrupt
iicm intr tx cnt (RW) expected tx count to trigger interrupt
iicm intr rx cnt (RW) expected rx count to trigger interrupt

141

version 0.03 August 19, 2021

byte counter

During operation the TX and RX buffer status can be tracked via register 0x0000008c . The buffers
are cleared if the I2C core is disabled by register 0x00000080 .

Register 21.54: iicm byte cnt (0x0000008c)

un
us

ed

—

31 8

tx

—

7 4

rx

—

3 0

Reset

tx (R) number of bytes in TX buffer
rx (R) number of bytes in RX buffer

TX buffer

To define a I2C bus transfer a byte sequence is pushed to TX buffer via register 0x00000090 .

Register 21.55: iicm tx buffer (0x00000090)

un
us

ed

—

31 13

ac
k

0

12

w
ri
te

0

11

re
ad

0

10

st
op

0

9

st
ar

t

0

8

by
te

0

7 0

Reset

ack (RW) iic ack setting
write (RW) iic write byte
read (RW) iic read byte
stop (RW) iic stop condition
start (RW) iic start condition
byte (RW) iic data byte

A write to TX buffer register will push the data to the TX buffer FIFO, hence it should be written
at once. The I2C byte control module is reading out the TX buffer and is executing the defined
byte sequence. start: To start a I2C sequence the following fields should be set: start=1, to set
the I2C start condition; write=1, master is writing a byte to bus; byte=0xXX: write byte e.g. slave
address; read=1 (optional), write RX buffer to get ACK bit of slave, can be read out from RX buffer;
other fields zero write: To write bytes to I2C slave the settings are: write=1; byte=0xXX; read=1
(optional): to get ACK information of slave; other fields zero. read: To read bytes from I2C slave
the register settings are: read=1; ack=1; others zero. stop: To finish a I2C transfer, settings are:
stop=1; other settings as write or read transfer.

RX buffer

The I2C master is storing receive data in the RX buffer which can be read via register address
0x00000094 . The number of stored byte can be read from byte counter register 0x00000080 . Note:
data will be only stored in RX buffer if this was defined in register IICM TX BUFFER by setting read
to one.

142

version 0.03 August 19, 2021

Register 21.56: iicm rx buffer (0x00000094)

un
us

ed

—

31 9

ac
k

—

8

by
te

—

7 0

Reset

ack (R) iic ack
byte (R) iic data byte

143

version 0.03 August 19, 2021

21.9 PWM

GPIO pads

The PWM cores can use up-to 7 GPIO pads. To map the desired function to GPIO pad please see
section 22.4.

name direction function

PWM0 output PWM 0 output
PWM1 output PWM 1 output
PWM2 0-4 output PWM 2 outputs 0 to 4

PWM enable

Register 21.57: pwm enable (0x00000050)

un
us

ed

—

31 3

pw
m

2

0

2

pw
m

1

0

1

pw
m

0

0

0

Reset

pwm2 (RW) enable PWM n channel core / PWM 2
pwm1 (RW) enable PWM core 1
pwm0 (RW) enable PWM core 0

PWM clock divider

Register 21.58: pwm clk div (0x00000054)

un
us

ed

—

31 24

pw
m

2

1

23 16

pw
m

1

1

15 8

pw
m

0

1

7 0

Reset

pwm2 (RW) clock divider PWM n channel core
pwm1 (RW) clock divider of PWM core 1
pwm0 (RW) clock divider of PWM core 0

21.9.1 PWM0 and PWM1

PWM mode configuration

Register 21.59: pwm mode (0x00000058)

un
us

ed

—

31 2

pw
m

1

0

1

pw
m

0

0

0

Reset

144

version 0.03 August 19, 2021

pwm1 (RW) increment mode PWM core 1
pwm0 (RW) increment mode PWM core 0

Register 21.60: pwm step val (0x0000005c)

pw
m

1

0

31 16

pw
m

0

0

15 0

Reset

pwm1 (RW) step size of PWM core 1
pwm0 (RW) step size of PWM core 0

Register 21.61: pwm0 cnt (0x00000060)

th
re

sh
ol
d

0

31 16

m
ax

0

15 0

Reset

threshold (RW) max cnt val of PWM core 0
max (RW) max cnt val of PWM core 0

Register 21.62: pwm1 cnt (0x00000064)

th
re

sh
ol
d

0

31 16

m
ax

0

15 0

Reset

threshold (RW) max cnt val of PWM core 1
max (RW) max cnt val of PWM core 1

145

version 0.03 August 19, 2021

21.9.2 PWM2

The PWM2 core uses one 16bit counter with configurable clock frequency. Five comparator channels
use the counter value and compare against the threshold register value (figure 34). If the threshold
value was reached, the output will be switched to one. The output will be reset after the counter
reaches zero (see figure 35). The mask value can be used to mask away the upper 8bit of the counter
value. This allows to reduce the PWM resolution from 16 down to 8bit and therefore increasing
PWM frequency. Additional each output channel can be inverted individually. Channel configuration
registers are located at 0x00000068 to 0x00000078 .

accumulator

clock divider

comparator
channel 0

comparator
channel 1

comparator
channel n

16

channel configuration

clk_ref

pwm2_0

pwm2_1

pwm2_n

Figure 34: PWM 2 core structure

cnt=0
reset

cnt=threshold
set

cnt=0
reset

cnt=threshold
set

cnt=0
reset

threshold

Figure 35: PWM 2 signal generation

Register 21.63: pwm2 channel 0 (0x00000068)

un
us

ed

—

31 25

in
ve

rt

0

24

m
as

k

0

23 16

tr
es

ho
ld

128

15 0

Reset

invert (RW) invert output of channel 0
mask (RW) cnt mask value to change frequency of channel 0
treshold (RW) threshold value to switch output of channel 0

146

version 0.03 August 19, 2021

21.9.3 GPIO debug output

147

version 0.03 August 19, 2021

21.10 UART

21.10.1 CUART

GPIO pads

The configuration UART core use 2 GPIO pads. To map the desired function to GPIO pad please
see section 22.4.

name direction function

CUART TX output configuration UART transmit pad
CUART RX input configuration UART receive pad

configuration

Register 21.64: cuart config (0x00000178)

un
us

ed

—

31 26

tr
ig
ge

r

0

25

va
l

868

24 1

en

0

0

Reset

trigger (RW) trigger to update config.
val (RW) cuart clk divider default is 115.200kBaud
en (RW) enable cuart

status

Register 21.65: cuart status (0x0000017c)

un
us

ed

—

31 25

cl
kd

iv

—

24 1

ac
ti
ve

—

0

Reset

clkdiv (R) cuart clk divider read-out
active (R) enable is running

21.10.2 Printf UART

The printf UART core use up to 4 GPIO pads. To map the desired function to GPIO pad please see
section 22.4.

name direction function

UART TX output printf UART transmit pad
UART RX input printf UART receive pad
UART CTS input printf UART clear to send
UART RTR output printf UART ready to receive

148

version 0.03 August 19, 2021

21.11 SDC Interface

GPIO pads

The configuration SD controller core use 6 GPIO pads. To map the desired function to GPIO pad
please see section 22.4.

name direction function

SDIO CLK output SD bus clock
SDIO CMD inout command bus
SDIO D0 inout data bus bit 0
SDIO D1 inout data bus bit 1
SDIO D2 inout data bus bit 2
SDIO D3 inout data bus bit 3

Register 21.66: sdc config (0x00000210)

un
us

ed

—

31 10

cl
oc

k
di

sa
bl

e
en

0

9

rd
in

it
re

q

0

8 7

rd
re

q
si
ze

2

6 4

gl
ob

al
se

gm
en

t

0

3 2

sd
c

cl
oc

k
en

0

1

cl
oc

k
di

vi
de

r
en

0

0

Reset

clock disable en (RW�) disable SD clock if DMA fails to fetch data fast enough
rd init req (RW�) number of additional noc read requests at cycle start
rd req size (RW�) noc read request size, valid: 2=32bit; 3=64bit; 4=128bit
global segment (RW�) global mmap segement select
sdc clock en (RW�) sd clock enable
clock divider en (RW�) sd clock divider enable

Register 21.67: sdc argument reg (0x00000214)

C
M

D
A

0

31 0

Reset

CMDA (RW�) CMDA command argument; command data, when writing to this register
the transmission starts

Register 21.68: sdc cmd setting (0x00000218)

un
us

ed

—

31 14

C
M

D
I

0

13 8

un
us

ed

—

7

C
W

D

0

6 5

C
IC

E

0

4

C
IR

C

0

3

C
B
SY

0

2

RT
S

0

1 0

Reset

149

version 0.03 August 19, 2021

CMDI (RW�) CMDI - command Index; Index of the next command
CWD (RW�) CWD - data transfer specification. 0x0 - no data transfer; 0x1 - triggers

read data transaction after command transaction; 0x2 - triggers write data
transaction after command transaction

CICE (RW�) CICE - command index check; 0 : Do not perform index check on response
CMD; 1 : Perform index check on response CMD

CIRC (RW�) CIRC - command CRC check; 0 : Do not perform CRC check on response
CMD; 1 : Perform CRC check on response CMD

CBSY (RW�) CBSY - check for busy signal after command transaction (if busy signal will be
asserted after command transaction, core will wait for as long as busy signal
remains)

RTS (RW�) RTS - response check config. 0x0 - don’t wait for response; 0x1 - wait for
short response (48-bits); 0x2 - wait for long response (136-bits)

Register 21.69: sdc response 0 (0x0000021c)

C
R
SP

0

—

31 0

Reset

Register 21.70: sdc response 1 (0x00000220)

C
R
SP

1

—

31 0

Reset

Register 21.71: sdc response 2 (0x00000224)

C
R
SP

2

—

31 0

Reset

Register 21.72: sdc response 3 (0x00000228)

C
R
SP

3

—

31 0

Reset

150

version 0.03 August 19, 2021

Register 21.73: sdc data timeout (0x0000022c)

un
us

ed

—

31 24

D
T
O

0

23 0

Reset

DTO (RW�) DTO - data transfer timeout register, 0=disabled

Register 21.74: sdc control setting (0x00000230)

un
us

ed

—

31 1

C
T
R
L

1

0

Reset

CTRL (RW�) CTRL -control register, SD bus width, 0=1bit mode, 1=4bit mode

Register 21.75: sdc cmd timeout (0x00000234)

un
us

ed

—

31 24

C
T
O

0

23 0

Reset

CTO (RW�) CTO - command transfer timeout register, 0=disabled

Register 21.76: sdc clock divider (0x00000238)

un
us

ed

—

31 8

C
LK

D

2

7 0

Reset

CLKD (RW�) CLKD - clock divider, SD controller clock

Register 21.77: sdc software reset (0x0000023c)

un
us

ed

—

31 1

SR
ST

0

0

Reset

151

version 0.03 August 19, 2021

SRST (RW�) SRST - software reset; 0:1: Reset the hardware

Register 21.78: sdc voltage (0x00000240)

V
B
U
S

3300

31 0

Reset

VBUS (RW�) VBUS - bus voltage information register, 3.3V

Register 21.79: sdc capabilies (0x00000244)

C
A
PA

0

31 0

Reset

CAPA (RW�) CAPA - capability register

Register 21.80: sdc cmd int status (0x00000248)

un
us

ed

—

31 6

C
II
D

—

5

C
IC

C

—

4

C
IT

E

—

3

C
IE

R

—

2

C
IC

T

—

1

C
IR

S

0

0

Reset

CIID (R�) CIID - interrupt: index error
CICC (R�) CICC - interrupt: CRC error
CITE (R�) CITE - interrupt: timeout error
CIER (R�) CIER - interrupt: error
CICT (R�) CICT - interrupt: command transaction successful completed
CIRS (RW�) CIRS - interrupt: reset register, resets triggered resets

Register 21.81: sdc cmd int enable (0x0000024c)

un
us

ed

—

31 5

E
N

C
II
D

0

4

E
N

C
IC

C

0

3

E
N

C
IT

E

0

2

E
N

C
IE

R

0

1

E
N

C
IC

T

0

0

Reset

152

version 0.03 August 19, 2021

EN CIID (RW�) EN CIID - enable: index error interrupt
EN CICC (RW�) EN CICC - enable: CRC error interrupt
EN CITE (RW�) EN CITE - enable: timeout error interrupt
EN CIER (RW�) EN CIER - enable: error interrupt
EN CICT (RW�) EN CICT - enable: command transaction successful completed interrupt

Register 21.82: sdc data int status (0x00000250)

un
us

ed

—

31 6

D
C
FE

—

5

D
IC

C

—

4

D
C
T
E

—

3

D
IE

R

—

2

D
ID

T

—

1

D
IR

S

0

0

Reset

DCFE (R�) DCFE - interrupt: FIFO error
DICC (R�) DICC - interrupt: CRC error
DCTE (R�) DCTE - interrupt: timeout error
DIER (R�) DIER - interrupt: error
DIDT (R�) DIDT - interrupt: data transaction successful completed
DIRS (RW�) DIRS - interrupt: reset register, resets triggered resets

Register 21.83: sdc data int enable (0x00000254)

un
us

ed

—

31 5

E
N

D
C
FE

0

4

E
N

D
IC

C

0

3

E
N

D
C
T
E

0

2

E
N

D
IE

R

0

1

E
N

D
ID

T

0

0

Reset

EN DCFE (RW�) EN DCFE - enable: FIFO error interrupt
EN DICC (RW�) EN DICC - enable: CRC error interrupt
EN DCTE (RW�) EN DCTE - enable: timeout error interrupt
EN DIER (RW�) EN DIER - enable: error interrupt
EN DIDT (RW�) EN DIDT - enable: data transaction successful completed interrupt

Register 21.84: sdc block size (0x00000258)

un
us

ed

—

31 12

B
LK

S

511

11 0

Reset

BLKS (RW�) BLKS - block size, max. counter value for block byte counter

153

version 0.03 August 19, 2021

Register 21.85: sdc block count (0x0000025c)

un
us

ed

—

31 16

B
LK

C

0

15 0

Reset

BLKC (RW�) BLKC - block count, max. counter value for block number counter

Register 21.86: sdc dma addr reg (0x00000260)

D
M

A
A

0

31 0

Reset

DMAA (RW�) DMAA - DMA NoC mmap address

154

version 0.03 August 19, 2021

22 Host Interface

The SpiNNaker system connects to a host machine via a high-speed serial link. Each SpiNNaker chip
includes a host link, although only a few of the chips are expected to use this interface.

In essence the module provides the following features:

1. 16x dynamic ports and one static port (1800) for incoming NOC data

2. 16x UDP port dependent routing and 16x dynamic ports for incoming Raw data

3. 16x Modid dependent udp routing for outgoing data

4. 16x C2C channel dependent udp routing for outgoing data

5. Spinnaker packet type (mc, nn, c2c, grw) dependent udp routing for outgoing data

6. Optional UDT layer and/or frame id protocol as measure to counteract possible packet loss

7. data alingment of incoming raw data (descend order, 32b/128b input, 32b order of 128b input,
addr inc disable)

8. 5 different data modes for outgoing data (default and for each outgoing routing port)

9. error & status check registers

22.1 UDP Routing

UDP routing is divided into incoming (ic) and outgoing (og) packets. Both directions have different
features and routing modes.

22.1.1 Incoming Packets

Incoming Packets are divided into NoC packet format (see attachement F) and raw data format.
Both options provide a set of 16 dynamically set ports each (0x00000074 - 0x00000090 for noc
and 0x00000094 - 0x000000b0 for raw). The module identifies the incoming data format by the port
which is used for the incoming data. If the data is formatted as one or multiple NoC packets there are
3 possible burst formats one can utilize the UDP data frame headers listed in table 22.1.1. Figure 36
shows the three possibilities for data transfer with the NoC data type. For the incoming noc format
with only one address field each new addr for the resulting noc packet is incremented by the size of
the payload. It is further possible to disable the address increment by setting ic addr inc disable.

Label Magic Description

UDP MAGIC SEND A 0x722acce7 data send in always contain noc header and addr for each
128bit payload

UDP MAGIC SEND B 0x722acce8 data sent in contains only one noc header and addr for full
udp datagramm

UDP MAGIC SEND C 0x722acce9 data sent in always contain add for each 128bit payload
but only one noc header

0x722acce7 noc header addr payload addr payload addr payload...

0x722acce8 addr payload payload payload...

0x722acce9 addr payload addr payload addr payload...

burst size

burst size

frame id

frame id

frame id

noc header

noc header

noc header noc header

Figure 36: Incoming Packet Format for NoC Packets. Each field is 32bit big, except payload which
can be 32bit, 64bit or 128bit. Please note that ”frame id” is optional and disabled by default (see
section 22.1.4). Burst size is the number of payload fields. If UDT is enabled this data field gets
wrapped by a UDT header (see ??).

For the incoming raw format each dynamic port has a 32b global address regfile entry paired with
it. These global addresses determine to where the resulting noc packets are routed to. Per default the
addresses of the generated noc packets are incremented for each resulting noc packet. Furthermore one
datagramm frame can be translated into different noc packets by control bits. Those can be mixed.
Figure 37a shows the default interpretation. Figure 37b-e shows the effect of the transformation to
noc packets if specific control bits are flipped.

155

version 0.03 August 19, 2021

A0 A1 A2 A3
 B0 B1 B2 B3
 C0 C1 C2 C3

global addr rf
addr

wreq header

wreq header addr A0 A1 A2 A3

wreq header addr + 16 B0 B1 B2 B3

wreq header addr + 32 C0 C1 C2 C3

wreq header addr A0
A1
A2

wreq header addr + 4
wreq header addr + 8

wreq header addr A0 A1 A2 A3

wreq header addr B0 B1 B2 B3

wreq header addr C0 C1 C2 C3

wreq header addr A0 A1 A2 A3

wreq header addr - 16 B0 B1 B2 B3

wreq header addr - 32 C0 C1 C2 C3

wreq header addr A0A1A2A3

wreq header addr + 16 B0B1B2B3

wreq header addr + 32 C0C1C2C3

a)

b)

c)

d)

e)

ic port

Figure 37: Options of noc packet conversion. The address and the write request noc header field
is generated by the udp port selected register field which contains a global s2 address starting at
0x000000b4 . The noc packet interpretation can be changed by the following options. Each field is
32bit wide (except ”ic port”). a) Using the default configuration. b) Enable ic raw 32b mode. c)
Disable ic raw save addr. d) Enable ic raw descend. e) Enable ic raw order32b.

156

version 0.03 August 19, 2021

22.1.2 Outgoing Packets

The outgoing direction provides different UDP datagram interpretations which can be controlled
with og data mode. As it is with the incoming direction the user can choose between different burst
modes and raw data formats which are described in figure 38. For the burst mode the user can
set the maximum UDP datagram size with og mtu and if the UDP datagram should be send out
earlier if a noc packet arrives with a different noc header than the previous burst data noc packets
with og burst break. The udp noc module waits a time specified in (unoc ctrl1) before sending out
a burst UDP datagram. This timeout can also be disabled. The UDP source/destination port is
either selected from a programmable register file entry or by reusing the ports from the last incoming
UDP datagram. The send out is triggered either automatically or by setting og auto mode and
og trigger accordingly. Additionally a sendout can be triggered by magic packets described in table
??. Furthermore the user can choose to use a LUT table for ip addresses and destination ports which
are either dependent on the modid of noc packets or dependent on the SpiNNaker2 noc packet type.
The routing priority is type routing ¿ modid routing ¿ default routing. For the c2c type the user can
specify a different routing for different c2c channels. Each routing table entry has its own data mode
entry.

Description Magic

UDP MAGIC RECV 0x2e2acce7
UDP MAGIC RECV BURST 0x2e2acce9
UDP MAGIC RECV RAW 0x2e2accea
UDP MAGIC RECV RAW BURST 0x2e2acceb

22.1.3 Packet Counters

For each incoming and outgoing packets there is a counter regfile entry. The outgoing direction differs
by counting type specific routing (each type has its own counter, see ?? to ??), modid specific routing
(one counter, see ??) and a counter for everything else (see ??). The incoming direction has a counter
for each entry of the 16 noc port LUT table (see ?? to ??) and for each eantry of the 16 raw port
LUT table (see ?? to ??). Each entry can be reset by the host by sending a specific magic for each
entry which are shown in the next table. x values must be replaced by the index of the entry e.g.
resetting the third entry for incoming raw packets with 0x6e2a0003.

Description Magic

UDP MAGIC RESET CNT ALL 0x4e2acce6
UDP MAGIC RESET CNT IC ALL 0x4e2acce7
UDP MAGIC RESET CNT OG ALL 0x4e2acce8
UDP MAGIC RESET CNT IC NOC 0x5e2axxxx
UDP MAGIC RESET CNT IC RAW 0x6e2axxxx
UDP MAGIC RESET CNT OG DEF 0x7e2acce5
UDP MAGIC RESET CNT OG NN 0x7e2acce6
UDP MAGIC RESET CNT OG MC 0x7e2acce7
UDP MAGIC RESET CNT OG GRW 0x7e2acce8
UDP MAGIC RESET CNT OG C2C 0x7e2acce9
UDP MAGIC RESET CNT OG C2C L 0x8e2axxxx
UDP MAGIC RESET CNT OG MODID 0x9e2axxxx

22.1.4 Frame ID Protocol

On top of UDT the host interface also provides a simple packet count protocol. If activated for either
incoming or outgoing packets an additional frame id field is added for non-raw UDP packets. For
incoming packets this incrementing field is compared to the packet counters and sends out an error
signal as UDP datagram.

Description Magic

UDP MAGIC STATUS 0x2e2acce8
UDP MAGIC FRAME ID ERROR 0xae2acce8

157

version 0.03 August 19, 2021

addr

noc header

noc header 0 addr0 A0 A1 A2 A3

noc header 0 addr1 B0 B1 B2 B3

noc header 0
 addr3 D0 D1 D2 D3

a)

b)

c)

d)

e)

noc header 1 addr2 C0 C1 C2 C3

0x722acce7 frame id noc header 0 addr0 A0 A1 A2 A3

0x722acce7 frame id
0x722acce7 frame id
0x722acce7 frame id

noc header 0 addr1 B0 B1 B2 B3

noc header 0
 addr3 D0 D1 D2 D3

noc header 1 addr2 C0 C1 C2 C3

0x722acce7 frame id noc header 0 addr0 A0 A1 A2 A3

noc header 0 addr1 B0 B1 B2 B3

noc header 0
 addr3 D0 D1 D2 D3

noc header 1 addr2 C0 C1 C2 C3

datagram 0
datagram 1
datagram 2
datagram 3

datagram 0

0x722acce9 frame id noc header 0 addr0 A0 A1 A2 A3

addr1 B0 B1 B2 B3

addr3 D0 D1 D2 D3

addr2 C0 C1 C2 C3

datagram 0

0x722acce9 frame id noc header 0 addr0 A0 A1 A2 A3

addr1 B0 B1 B2 B3

addr3 D0 D1 D2 D3

addr2 C0 C1 C2 C3

datagram 0

noc header 1
noc header 0

0x722acce9 frame id
0x722acce9 frame id

datagram 1
datagram 2

0x722acce8 frame id noc header 0 addr0 A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

datagram 0

f) A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

datagram 0
datagram 1
datagram 2
datagram 3

g) A0
A1
A2
A3

datagram 0
datagram 1
datagram 2
datagram 3

A0 A1 A2 A3
 B0 B1 B2 B3
 C0 C1h) datagram 0

og port

og port

og port

og ip addr

og ip addr

og ip addr

Figure 38: Options of UDP datagram conversion for an incoming stream of noc packets from chip
side. Each field is 32bit wide (except ”og port”). The destination port and destination ip address
are selected by either a default regfile entry (??) or picked out by the LUT for modid or type routing
which corresponds to the modid field or Spinnaker packet type (with channel field if c2c) respectively.
Frame id is optional and disabled per default. a) data mode=0. b) data mode=1. c) data mode=2.
d) data mode=2 + og burst break enabled. e) data mode=3. f) data mode=4. g) data mode=5. h)
data mode=6.

158

version 0.03 August 19, 2021

22.2 UDT

Although UDP provides a high-speed data transmission between host and chips, the unguaranteed
reliability prevents some data completeness demanding applications. To address this, a UDP-based
Data Transfer Protocol (UDT) module is integrated into the spinnaker host interface. The UDT
module has the following features:

1. High throughput designed for 1 Gbps.

2. Transparent to UDP packets according to port number.

3. Apply both control packets and data packets.

4. Allow loss packet resending.

5. Apply congestion control to avoid transmission jam.

22.2.1 UDT Packet Type

UDT provides data packet and 6 kinds of control packets (see Fig.39). Each data packet is assigned
with a unique sequence number raising from 1 up to 0x7fffffff. The entire UDP frame is encapsulated as
payload of UDT data packet. Control packets carry only scheduling information. Handshake packets
(HS) are exchanged twice between two sides at the beginning to establish the UDT communication
channel. Keep-alive packets (KA) is used to refresh timers of the peer side to avoid the channel close
induced by time out. Acknowledgement (ACK) feeds back the maximum received data sequence
number along with other information of the receiver, such as round-trip time (RTT), standard variance
of RTT (RTTVar), free buffer size, packet arrival speed and estimated link capacity. As the response
of an ACK packet, an acknowledgement of the acknowledgement (ACK2) confirms with the same
ACK number. The sequence number of detected loss packets are compressed and transmitted by the
negative acknowledgement (NAK). To close the channel, UDT informs the peer entity with the shut
down (SD) packet. The individual packet and its main payloads are listed in Table 12.2 Selection of Protocol

0 Packet Sequence Number

FF O Message Number

Time Stamp

Destination Socket ID

Data

32 bits

(a) Data Packet

1 Type Reserved

Additional Info

Time Stamp

Destination Socket ID

Control Information Field

32 bits

(b) Control Packet

Figure 2.7: Structure of UDT Packet

To overcome TCP’s inefficiency in high BDP network is the first and the most
important motivation of UDT. UDT uses rate control and window-based flow
control to regulate the outgoing data traffic for the purpose of congestion avoid-
ance. The rate control updates the packet sending interval, whereas flow control
determines the flow window size as long as an acknowledgement received [GG07].

Furthermore, the Internet is still evolving, for its development in the future
UDT provides a platform for network researchers to rapidly develop, implement
and deploy their own algorithms and protocols. For example, UDT reserved a
configurable congestion control interface to allow users to test their design through
accessing some parameters. Finally, for some certain applications such as punching
NAT firewalls, UDP based protocol has some natural advantages.

There are two kinds of packet transferred under UDT, the data packet (DP)
and the control packet (CP). The control packet contains no valid data, which is
only used to ensure the efficient transmission successfully.

As shown in fig. 2.7, although DP and CP have different packet lengths, their
packet headers are as long as each other and have similar structure. Whether the
incoming packet is a DP or CP depends on the MSB of the packet header. DP has
a MSB of 0. UDT uses packet based sequencing, the following 31 bits are occupied
by packet sequence number. This number will be wrapped when it is increased
to the maximum value (231

≠ 1). UDT supports 2 working modes, reliable data
streaming and partial reliable messaging. The second row of the DP header is for
messaging mode. FF instructs the position of the packet in the message (first,
middle, last or the only one) and O represents if the message is sent in order or
not. The message number is independent of sequence number. In this thesis the

17

Figure 39: UDT packet structure

Table 12: UDT packet overview

Type Head Payload
DATA < 0x80000000 timestamp, data

HS 0x80000000 timestamp, socket ID, initial seq number, flow window size,
cookie, destination IP

KA 0x80010000 timestamp
ACK 0x80020000 timestamp, LASN, RTT, RTTVar, available buffer size, ar-

rival speed, link capacity
NAK 0x80030000 timestamp, compressed loss seq number
SD 0x80050000 timestamp

ACK2 0x80060000 timestamp, ACK number

159

version 0.03 August 19, 2021

22.2.2 Channel Set up and Shut down

The connection mode of UDT in spinnaker2 is in server-client paradigm. The host is the client to
launch accesses, whereas spinnaker2 is the server for responding. Therefore in the idle state, the UDT
in spinnaker2 is always listening to the listen socket and only responds the handshake request. After
the first handshake response is received, a second handshake will be sent by the client to verify the
cookie. If the authentication is passed with the second handshake response, the UDT data channel
is open between the client and server.

Three approaches are feasible to shut down the established channel,. First, users explicitly set
the shut down register in register file. Second, UDT received a shut down packet from the peer side.
Third, the expiration timer times out as there is no sending or receiving actions for a long time (30
seconds). After the shut down, UDT returns to the idle state to wait for the next handshake packet.

22.2.3 Architecture

As a UDP-based protocol, UDT parses packets before UDP frames are converted to NoC packets,
therefore the UDT module is connected with the UDP Ethernet interface and the UDP-NoC converter
via udp ic/og and udt ic/og, respectively. The top level view of UDT is illustrated in Fig. 40.

ic_fsm

og_fsm

fsm_hs

fsm_ka

fsm_ack_event

fsm_sd

fsm_nak_event

fsm_dp

fre_div

timer4

ai

pi

rll

sll

ack_hw

cf_ctrl_1g

buffer

fsm_ack2

udt_ic

udt_og

udp_ic

udp_og

udt_cfg

mem_if

Figure 40: Top view of UDT module

UDT is designed as a configurable module addressing multifarious application scenarios. Users
set UDT configuration registers in udt noc regfile to shape the behaviours of UDT, such as buffer
size, congestion control, etc. More configuration details can be referred to section 22.2.4. Those set
values are fed into UDT via udt cfg signals.

There are 18 sub-modules abstracted into 3 levels. The 2 finite state machines (FSMs) in top
level take over all packets in-flight from 2 directions. The 7 dedicated FSMs in the middle layer load
information from units in bottom level to pack up an outgoing packet once corresponding event is
triggered. The 9 functional units in the bottom layer calculate the information required by control
packets, maintain and update values regularly. Their functionalities are described as follows.

fre div The frequency divider divides the reference frequency of 100 MHz into 1 MHz and generates
system time stamps with the unit of microsecond, which are carried in every UDT packets.

timer4 A cluster of 4 timers counting down to trigger data sending (SND), acknowledgement
(ACK), negative acknowledgement (NAK) and expiration (EXP) events as initiatives. When condi-
tion is not met, the trigger signal is ignored. The minimal and maximal expiration time are 27 s,
30 s, respectively.

ai The arrival interval estimator stores the latest 16 data packet time interval and takes the median
value as the current arrival interval. A look-up table is used to convert the interval to data arrival
speed, which is inserted into the ACK packet.

160

version 0.03 August 19, 2021

pi The data packet pair estimator investigates the arrival interval of 2 adjacent data packets with
sequence number 16n and 16n+ 1, also known as a packet pair to estimate the link capacity. Analo-
gously, a median value filtering and look-up table based calculation is used to obtain the packet pair
speed, which is loaded into the ACK packet as well.

rll The receiver’s loss list stores the sequence number of all detected loss packets at receiving from
discontinuous received sequence number. The stored items will be removed once new ACK packets
confirm them.

sll The sender’s loss list stores the sequence number of all detected loss packets at sending in a
compressed format, either from NAK packets or the all unacknowledged sent packets at EXP event.
As long as sender’s loss list is not empty, all loss packets are resent prior to any new data packets
due to the higher priority.

ack hw The acknowledgement history window stores the sending time of ACK and receiving time
of ACK2 packets to calculate the round-trip time (RTT) and its variance (RTTVar), which are used
to dynamically regulate the control packets sending period.

cf ctrl 1g The congestion control targeting 1 Gbps adjusts the congestion window size and data
sending period through DAIMD algorithm. A brake signal from configuration register slows down
the speed in advance to avoid the happening of congestion.

buffer The buffer only manages data packets, which aims to not only transfer data to the destination
module, but also preserves a snapshot in the local TX/RX memory. Sending buffering is required for
resending request in case packet loss is detected at the receiver, whereas receiving buffering is useful
to maintain the packet order during the wait for the missing packet, so that packets will be parsed
by next modules as desired. A 192 kB SRAM based buffer memory is connected with this module
via mem if. A detailed buffer memory can be referred to section 22.2.5.

22.2.4 UDT Configuration

UDT configuration registers are used to regulate UDT to fit the communication requirement. Their
names, bit width and reset values are listed in Table 13. The buffer memory accommodates in total
128 data packets. As a balanced setting, TX and RX buffer have half each as default, but for any
specific biased case, e.g. TX is dominating, unbalanced buffer size is also supported. However, due
to the limitation of port numbers of memory, an alignment of 16 packets should be respected. The
possible combinations of buffer size are listed in Table 14.

In terms of power saving, UDT is clock gated and disabled in default. To activate this module,
udt clock en and udt enable should be set. Conversely, udt shutd is applied to forcibly close the UDT
connection, which can be manipulated by the program running in PE.

Table 13: UDT configuration registers

Name Reset Description
udt rx size 7’d64 RX buffer size [packets]
udt tx size 7’d64 TX buffer size [packets]
udt shutd 1’d0 UDT shut down

udt clock en 1’d0 UDT clock open
udt enable 1’d0 UDT enable
udt socket 32’d2021 UDT server socket
udt brake 16’d15 UDT brake threshold

udt snd init 16’d63 UDT initial send period
udt syn 16’d10000 UDT minimal synchronization period

udt cwnd init 16’d16 UDT initial congestion window size [packets]

The initial data sending speed of UDT is defined by udt snd init. The speed adapts dynamically
according to the link situation during the transmission. It aims to achieve 1 Gbps if no congestion
occurs. By approaching the peak value, users are allowed to define a brake threshold (udt brake), after

161

version 0.03 August 19, 2021

Table 14: Supported configuration of the buffer size

rx size [packets] tx size [packets] total [packets] comment
16 112 128 TX biased
32 96 128 TX biased
48 80 128 TX biased
64 64 128 balanced
80 48 128 RX biased
96 32 128 RX biased
112 16 128 RX biased

which the speed increases quasi-linearly instead of exponentially. This brake concept is not contained
in the original UDT protocol but an empirical result. The speed and the corresponding configure
values have a constant speed-value product of 12000 Mbps. Hence the default brake threshold is
800 Mbps, whereas the initial sending speed is around 200 Mbps.

Analogously, the sending period of control packets (ACK, NAK) is also adapted dynamically
based on the estimation of RTT. However, a lower limitation of this synchronization period is coded
by udt syn of 10 ms with value 10000, in order to save bandwidth for data transmission as much
as possible. To assist the rate control, UDT applied flow control as well with a sliding congestion
window to constrict the maximum on-flight data packets, which is defined as the window size and
whose initial value is set as udt cwnd init of 16.

22.2.5 Buffer Memory

The buffer memory, in total of 192 kB and instantiated with 24 SRAM macros (2048×38 bits, 6 of
38 for ECC), each with 8 kB, is allocated as RX and TX buffer. As a UDP frame is limited by
the maximum size of 1500 bytes, each UDT buffer segment is assigned with 1.5 kB for each UDT
data packet, namely 384 words, as shown in Fig.41. The first word is stored with the data sequence
number, followed by the data word length of this segment and the data payload. Due to the port
number limitation, the RX/TX buffers are required to be separated in different SRAM banks. Hence,
the RX/TX buffer size is regulated every 16 segments (16× 1.5 kB = 24 kB = 3× 8 kB) via register
file, referring to Table 14.

seq1

length1

data1

addr 0

addr 383

32 bit

Figure 41: One segment of UDT buffer memory

22.3 Register summary

Debug Regs and Regfile Ctrl

Addresses 0x00000000 to 0x0000000c are debugging registers. These can be used to test access
via the ethernet interface.

162

version 0.03 August 19, 2021

Register 22.1: debug 0 (0x00000000)

de
bu

g
0

0

31 0

Reset

debug 0 (RW) debug register #0

Register 22.2: regfile ctrl (0x00000010)

un
us

ed

—

31 3

pr
ot

en

0

2

cl
oc

kg
at

e
en

1

1

ti
m

eo
ut

en

1

0

Reset

prot en (RW) enable protected mode
clockgate en (RW) enable clock gating for register file
timeout en (RW) enable timeout for the case regfile is not reacting

UDT Buffer SRAM Control

The UDT utilizes a SRAM buffer which can be controlled by accessing the regfile adressess 0x00000020
to 0x00000040 .

Register 22.3: mbist cmd seq0 (0x00000020)

va
l

0

31 0

Reset

val (RW) bist command sequence lower 32bit

Register 22.4: mbist cmd seq1 (0x00000024)

un
us

ed

—

31 16

va
l

0

15 0

Reset

val (RW) bist command sequence upper 16bit

163

version 0.03 August 19, 2021

Register 22.5: mbist ctrl (0x00000028)

un
us

ed

—

31 3

m
em

se
l

0

2

en

0

1

st
ar

t

0

0

Reset

mem sel (RW) memory wrap selection
en (RW) enable bist of udt buffer
start (RW) start mbist

Register 22.6: mbist status (0x0000002c)

un
us

ed

—

31 15

pc
2

—

14 12

re
su

lt
2

—

11

bu
sy

2

—

10

pc
1

—

9 7

re
su

lt
1

—

6

bu
sy

1

—

5

pc
0

—

4 2

re
su

lt
0

—

1

bu
sy

0

—

0

Reset

pc2 (R) captured program counter
result2 (R) bist test result 0: PASS 1: FAIL
busy2 (R) bist test is running
pc1 (R) captured program counter
result1 (R) bist test result 0: PASS 1: FAIL
busy1 (R) bist test is running
pc0 (R) captured program counter
result0 (R) bist test result 0: PASS 1: FAIL
busy0 (R) bist test is running

Register 22.7: mbist addr0 (0x00000030)

un
us

ed

—

31 26

ad
dr

1

—

25 13

ad
dr

0

—

12 0

Reset

addr1 (R) failed addr
addr0 (R) failed addr

Register 22.8: mbist addr1 (0x00000034)

un
us

ed

—

31 13

ad
dr

2

—

12 0

Reset

164

version 0.03 August 19, 2021

addr2 (R) failed addr

Register 22.9: sram ctrl (0x00000040)

un
us

ed

—

31 12

re
te

nt
io
n

0

11 10

de
la
y

0b1000

9 4

ec
c

er
r2

—

3

ec
c

er
r1

—

2

ec
c

er
r0

—

1

ec
c

en

1

0

Reset

retention (RW) SRAM retention setting for power management state off
delay (RW) SRAM delay setting
ecc err2 (R) detected SRAM ECC error
ecc err1 (R) detected SRAM ECC error
ecc err0 (R) detected SRAM ECC error
ecc en (RW) enable SRAM ECC

UDT Layer General Control

The UDT can be controlled with the regfile addressess 0x00000050 to 0x0000005c . For a more in
depth description please refer to section 22.2.4.

Register 22.10: udt cfg0 (0x00000050)

un
us

ed

—

31 17

ud
t
rx

si
ze

64

16 10

ud
t
tx

si
ze

64

9 3

ud
t
sh

ut
d

0

2

ud
t
cl
oc

k
en

0

1

ud
t
en

ab
le

0

0

Reset

udt rx size (RW) RX buffer size (packets [0,127]), tx+rx <=128
udt tx size (RW) TX buffer size (packets [0,127]), tx+rx <=128
udt shutd (RW) Active shut down UDT connection
udt clock en (RW) Enable clock for udt module
udt enable (RW) Enable more stable udt transfer

Register 22.11: udt cfg1 (0x00000054)

ud
t
so

ck
et

2021

31 0

Reset

udt socket (RW) udt server socket

165

version 0.03 August 19, 2021

Register 22.12: udt cfg2 (0x00000058)

ud
t
br

ak
e

0xf

31 16

ud
t
sn

d
in

it

63

15 0

Reset

udt brake (RW) udt brake mode (800 mbps)
udt snd init (RW) udt init send period (200 mbps)

Register 22.13: udt cfg3 (0x0000005c)

ud
t
sy

n

10000

31 16

ud
t
cw

nd
in

it

16

15 0

Reset

udt syn (RW) udt min sync period (10 ms) of ACK, NAK
udt cwnd init (RW) udt init congestion sending window (packets)

UDP2NOC General Control

The DNoC router is enabled by default. To disable the module bit zero of register 0x00000060
(udp enable) must be set to zero. Register entry ?? controls how UDP datagrams are translated into
NoC packets or vice versa. Register entry ?? controls if or how long the Hostif should wait for a NoC
packet before sending out a udp frame. The LSB of entry ?? can be set to send out exactly one udp
frame.

166

version 0.03 August 19, 2021

Register 22.14: unoc ctrl0 (0x00000060)

og
m

tu

350

31 18

og
bu

rs
t
br

ea
k

0

17

og
da

ta
m

od
e

0

16 14

og
au

to
m

od
e

0

13

og
de

f
sr
c

po
rt

0

12

og
de

f
ds

t
po

rt
ad

dr

0

11

og
m

od
id

ro
ut

in
g

0

10

og
ty

pe
ro

ut
in

g

0

9

og
ra

w
or

de
r3

2b

0

8

og
fr
am

e
id

pr
ot

en

0

7

ic
ra

w
32

b
m

od
e

0

6

ic
ra

w
sa

ve
ad

dr

1

5

ic
ra

w
de

sc
en

d

0

4

ic
ra

w
or

de
r3

2b

0

3

ic
ad

dr
in

c
di

sa
bl

e

0

2

ic
fr
am

e
id

pr
ot

en

0

1

ud
p

en
ab

le

1

0

Reset

og mtu (RW) maximum transfer size for outgoing packets 32b
og burst break (RW) while waiting for noc packets during burst sendout the udp

frame is send out not only if mtu reached but also if noc packet
arrives with different noc header

og data mode (RW) 0- single noc packet / 1- burst with each noc header + addr /
2- burst with only one noc header + each addr per udp frame
/ 3- burst with only one noc header + addr per udp frame / 4-
raw single 128b / 5- raw single 32b / 6- raw burst

og auto mode (RW) 0- outgoing packets sent out only after activated from outside
package or og trigger rf / 1- outgoing packets always sent out
as burst

og def src port (RW) 0- use last incoming destination ip address as source / 1- ip
from outgoing LUT table (default)

og def dst port addr (RW) 0- use last incoming source ip address/port as destination /
1- port and addr from outgoing LUT table (default) -> 3rd
priority

og modid routing (RW) 1- use ip addrress and port from outgoing LUT table (modid
dependent) -> 2nd priority

og type routing (RW) 1- use ip addrress and port from outgoing LUT table (type
dependent) -> 1st priority

og raw order32b (RW) 0- outgoing 128b payload are ordered 3/2/1/0 / 1- ordered
0/1/2/3

og frame id prot en (RW) enable protocol to send out warning if udp frame id sequence
interrupted -> adds 32b header for frame id after magic (does
not work in raw mode)

ic raw 32b mode (RW) 0- bundle 128b payload noc packets inside spinn2 and write 128b
mem aligned / 1- 32b payload (unperformant but can avoid data
fragmentation between udp packets)

ic raw save addr (RW) 0- overwrite last raw udp packet in same addr / 1- increase/de-
crease ic addr regfile between udp packet

ic raw descend (RW) 0- destination address increases per incoming raw packets / 1-
addr decreases

ic raw order32b (RW) 0- incoming 128b payload are ordered 3/2/1/0 / 1- ordered
0/1/2/3

ic addr inc disable (RW) disable address increment/decrement for incoming noc & raw
packets

ic frame id prot en (RW) enable protocol to send out warning if udp frame id sequence
interrupted -> adds 32b header for frame id after magic (does
not work in raw mode)

udp enable (RW) enable udp noc

167

version 0.03 August 19, 2021

Register 22.15: unoc ctrl1 (0x00000064)

un
us

ed

—

31 17

og
no

c
ti
m

eo
ut

di
sa

bl
e

0

16

og
no

c
ti
m

eo
ut

th
re

sh

0xff

15 0

Reset

og noc timeout disable (RW) disable timer -> outgoing data waits for a noc packet
og noc timeout thresh (RW) set the timer how long outgoing data should wait for a noc

packet

Register 22.16: unoc og trigger (0x00000068)

un
us

ed

—

31 1

og
tr
ig
ge

r

0

0

Reset

og trigger (RW) 1- trigger to send out noc packet/raw data/burst, only works if auto mode
== 0

UDP2NOC Status and Error

Register 22.17: unoc noc status (0x0000006c)

un
us

ed

—

31 10

st
at

us
cn

oc
si
ze

—

9 7

st
at

us
cn

oc
ic

st
al
l

—

6

st
at

us
cn

oc
og

re
ad

y

—

5

st
at

us
dn

oc
si
ze

—

4 2

st
at

us
dn

oc
ic

st
al
l

—

1

st
at

us
dn

oc
og

re
ad

y

—

0

Reset

Register 22.18: unoc errors (0x00000070)

ic
gl
bl

ad
dr

er
ro

rs

—

31 24

og
ti
m

eo
ut

s

—

23 16

ic
ov

er
flo

w
s

—

15 8

ic
eo

f
er

ro
rs

—

7 0

Reset

168

version 0.03 August 19, 2021

UDP2NOC Dynamic Incoming Ports

There are 16 ports for each noc and raw format. They are each 16bit in 8 regfile entries. NoC format
ports are between address 0x00000074 and 0x00000090 . Raw format ports are between 0x00000074
and 0x00000094 .

UDP2NOC Dynamic Incoming Raw Data Routing

Register 22.19: unoc ic raw dst addr 0 (0x000000b4)

ra
w

ds
t
ad

dr
0

0xffffffff

31 0

Reset

UDP2NOC Dynamic Outgoing Default Routing

Register 22.20: unoc og lut cfg default ports (0x000000f4)

og
lu

t
ds

t
po

rt
de

fa
ul

t

0

31 16

og
lu

t
sr
c

po
rt

de
fa

ul
t

0

15 0

Reset

Register 22.21: unoc og lut cfg default addr (0x000000f8)

og
lu

t
ds

t
ad

dr
de

fa
ul

t

0

31 0

Reset

169

version 0.03 August 19, 2021

UDP2NOC Dynamic Outgoing Type Routing

Register 22.22: unoc og lut c2c cfg (0x000000fc)

un
us

ed

—

31 19

og
lu

t
da

ta
m

od
e

c2
c

0

18 16

og
lu

t
ds

t
po

rt
c2

c

0

15 0

Reset

Register 22.23: unoc og lut c2c addr (0x00000100)

og
lu

t
ds

t
ad

dr
c2

c

0

31 0

Reset

Register 22.24: unoc og lut mc cfg (0x00000104)

un
us

ed

—

31 19

og
lu

t
da

ta
m

od
e

m
c

0

18 16

og
lu

t
ds

t
po

rt
m

c

0

15 0

Reset

Register 22.25: unoc og lut mc addr (0x00000108)

og
lu

t
ds

t
ad

dr
m

c

0

31 0

Reset

170

version 0.03 August 19, 2021

Register 22.26: unoc og lut nn cfg (0x0000010c)

un
us

ed

—

31 19

og
lu

t
da

ta
m

od
e

nn

0

18 16

og
lu

t
ds

t
po

rt
nn

0

15 0

Reset

Register 22.27: unoc og lut nn addr (0x00000110)

og
lu

t
ds

t
ad

dr
nn

0

31 0

Reset

Register 22.28: unoc og lut grw cfg (0x00000114)

un
us

ed

—

31 19

og
lu

t
da

ta
m

od
e

gr
w

0

18 16

og
lu

t
ds

t
po

rt
gr

w

0

15 0

Reset

Register 22.29: unoc og lut grw addr (0x00000118)

og
lu

t
ds

t
ad

dr
gr

w

0

31 0

Reset

171

version 0.03 August 19, 2021

Register 22.30: unoc og lut c2c ch 0 (0x0000011c)

un
us

ed

—

31 27

og
lu

t
c2

c
da

ta
m

od
e

0

26 24

og
lu

t
c2

c
ds

t
po

rt

20000

23 8

og
lu

t
c2

c
ch

id

0

7 0

Reset

Register 22.31: unoc og lut c2c ch addr 0 (0x00000120)

og
lu

t
ds

t
ad

dr

3232235650

31 0

Reset

UDP2NOC Dynamic Outgoing Modid Routing

Register 22.32: unoc og lut modid 0 (0x0000019c)

un
us

ed

—

31 27

og
lu

t
da

ta
m

od
e

0

26 24

og
lu

t
ds

t
po

rt

30000

23 8

og
lu

t
sr
c

m
od

id

0

7 0

Reset

Register 22.33: unoc og lut modid addr 0 (0x000001a0)

og
lu

t
ds

t
ad

dr

3232235750

31 0

Reset

172

version 0.03 August 19, 2021

UDP2NOC Packet Counter

Register 22.34: unoc og default packet cnt 16 (0x0000021c)

og
de

fa
ul

t
pa

ck
et

cn
t

—

31 0

Reset

Register 22.35: unoc og nn packet cnt 16 (0x00000220)

og
nn

pa
ck

et
cn

t

—

31 0

Reset

Register 22.36: unoc og c2c packet cnt 16 (0x00000224)

og
c2

c
pa

ck
et

cn
t

—

31 0

Reset

Register 22.37: unoc og mc packet cnt 16 (0x00000228)

og
m

c
pa

ck
et

cn
t

—

31 0

Reset

173

version 0.03 August 19, 2021

Register 22.38: unoc og grw packet cnt 16 (0x0000022c)

og
gr

w
pa

ck
et

cn
t

—

31 0

Reset

Register 22.39: unoc og lut packet cnt 0 (0x00000230)

og
lu

t
pa

ck
et

cn
t

—

31 0

Reset

Register 22.40: unoc og packet cnt 0 (0x000002b0)

og
lu

t
c2

c
pa

ck
et

cn
t

—

31 0

Reset

Register 22.41: unoc ic noc packet cnt 0 (0x000002f0)

ic
no

c
pa

ck
et

cn
t

—

31 0

Reset

174

version 0.03 August 19, 2021

Register 22.42: unoc ic raw packet cnt 0 (0x00000330)

ic
ra

w
pa

ck
et

cn
t

—

31 0

Reset

175

version 0.03 August 19, 2021

22.4 GPIO MUX

The GPIO multiplexer allows to map internal interfaces e.g. UART to a GPIO pads of HostIF. Figure
29 shows the basic structure. Each individual pad has up to 5 different functions.

pad func0 func1 func2 func3

20 RF CUART1 TX PWM1 0 SPIS1 NSS
21 RF CUART1 RX PWM1 1 SPIS1 SCLK
22 RF I2CM1 SDA PWM1 2 CH0 SPIS1 IO0
23 RF I2CM1 SCL PWM1 2 CH1 SPIS1 IO1
24 RF unused PWM1 2 CH2 SPIS1 IO2
25 RF SPIS1 IRQ0 N PWM1 2 CH3 SPIS1 IO3
26 RF SPIS1 IRQ1 N FBIST O unused

pad func4 func5 func6

20 UART1 0 TX MDC SPIM1 NSS
21 UART1 0 RX MDIO DATA SPIM1 SCLK
22 unused UART1 1 TX SPIM1 IO0
23 unused UART1 1 RX SPIM1 IO1
24 UART1 0 RTR UART1 1 RTR SPIM1 IO2
25 UART1 0 CTS UART1 1 CTS SPIM1 IO3
26 unused RMII IRPT unused

22.5 Register summary

22.6 Fault-tolerance

Fault insertion

1. TO BE DONE

Fault detection

1. TO BE DONE

Fault isolation

1. TO BE DONE

Reconfiguration

1. TO BE DONE

176

version 0.03 August 19, 2021

23 System Controller

The System Controller incorporates a number of functions for system start-up, fault-tolerance testing
(invoking, detecting and resetting faults), general performance monitoring, etc.

23.1 Features

1. ‘Arbiter’ read-sensitive register bit to determine Monitor Processor ID at start-up.

2. 32 test-and-set registers for general software use, e.g. to enforce mutually exclusive access to
critical data structures.

3. individual interrupt, reset and enable controls and ‘processor OK’ status bits for each processor.

4. sundry parallel IO and test and control registers.

5. PLL and clock management registers.

TO BE DONE: which of the above do we need?

23.2 Register summary

23.3 Fault-tolerance

Fault insertion

1. TO BE DONE

Fault detection

1. TO BE DONE

Fault isolation

1. TO BE DONE

Reconfiguration

1. TO BE DONE

177

version 0.03 August 19, 2021

24 Watchdog timer

The watchdog timer is an ARM PrimeCell component (ARM part SP805, documented in ARM DDI
0270B) that is responsible for applying a system reset when a failure condition is detected. Normally,
the Monitor Processor will be responsible for resetting the watchdog periodically to indicate that all
is well. If the Monitor Processor should crash, or fail to reset the watchdog during a pre-determined
period of time, the watchdog will trigger.

24.1 Features

1. generates an interrupt request after a programmable time period;

2. causes a chip-level reset if the Monitor Processor does not respond to an interrupt request
within a subsequent time period of the same length.

24.2 Register summary

Base address: 0xe3000000 (buffered write), 0xf3000000 (unbuffered write).

User registers

The following registers allow normal user programming of the Watchdog timer:

Name Offset R/W Function

r0: WdogLoad 0x00 R/W Count load register
r1: WdogValue 0x04 R Current count value
r2: WdogControl 0x08 R/W Control register
r3: WdogIntClr 0x0C W Interrupt clear register
r4: WdogRIS 0x10 R Raw interrupt status register
r5: WdogMIS 0x14 R Masked interrupt status register
r6: WdogLock 0xC00 R/W Lock register

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the programmer:

Name Offset R/W Function

WdogITCR 0xF00 R/W Watchdog integration test control register
WdogITOP 0xF04 W Watchdog integration test output set register
WdogPeriphID0-3 0xFE0-C R Watchdog peripheral ID byte registers
WdogPCID0-3 0xFF0-C R Watchdog Prime Cell ID byte registers

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for further
details of the test and ID registers.

24.3 Register details

r0: Load

012345678910111213141516171819202122232425262728293031

Wdog load

1 1

This read-write register contains the value the from which the counter is to decrement. When this
register is written to, the count immediately restarts from the new value. The minimum value is 1.

178

version 0.03 August 19, 2021

r1: Count

012345678910111213141516171819202122232425262728293031

Wdog count

1 1

This read-only register contains the current value of the decrementing counter. The first time
the counter decrements to zero the Watchdog raises an interrupt. If the interrupt is still active the
second time the counter decrements to zero the reset output is activated.

r2: Control

012345678910111213141516171819202122232425262728293031

E I

reset: 0 0

The functions of these fields are described in the table below:

Name Offset R/W Function

E 1 R/W Enable the Watchdog reset output (1)
I 0 R/W Enable Watchdog counter and interrupt (1)

Once the Watchdog has been initialised both enables should be set to ‘1’ for normal watchdog
operation.

r3: Interrupt clear

012345678910111213141516171819202122232425262728293031

A write of any value to this register clears the watchdog interrupt and reloads the counter from
r1.

r4: Raw interrupt status

012345678910111213141516171819202122232425262728293031

R

reset: 0

The function of this field is described in the table below:

Name Offset R/W Function

R 0 R Raw (unmasked) watchdog interrupt

r5: Masked interrupt status

012345678910111213141516171819202122232425262728293031

W

reset: 0

The function of this field is described in the table below:

Name Offset R/W Function

W 0 R Watchdog interrupt output

179

version 0.03 August 19, 2021

r6: Lock

012345678910111213141516171819202122232425262728293031

Key L

reset: 0

The functions of these fields are described in the table below:

Name Offset R/W Function

Key 31:0 W Write 0x1ACCE551 to enable writes
L 0 R Write access enabled (0) or disabled (1)

A read from this register returns only the bottom bit, indicating whether writes to other registers
are enabled (0) or disabled (1). A write of 0x1ACCE551 enables write access to the other registers;
a write of any other value disables write access to the other registers. Note that the ‘Key’ field is 32
bits and includes bit 0.

The lock function is available to ensure that the watchdog will not be reset by errant programs.

180

version 0.03 August 19, 2021

25 Power Management Architecture

As shown in Fig. 42, allows for switching between two VDD rails (PL1 and PL2 in Fig. ??)
during operation. To enable ulra-low voltage operation, the PE domain is adaptively body biased.
Adaptive body biasing (ABB) is a technique for FDSOI technologies [?] for the compensation of device
performance variations caused by process, voltage and temperature (PVT) variations by means of
the adaptive control of the back-gate voltages [?]. Considering energy per operation metric, there
exists a minimum energy point (MEP) at nominal 0.50V operation. At higher voltages, more energy
per operation is spent due to higher switching energy. At lower voltages more energy per operation is
accumulated due to leakage power over the longer clock period. As result, the target implementation
point has been chose at 0.50V nominal, at 150MHz sign-off frequency. However, this does not denote a
significant performance scaling compared to the first generation SpiNNaker processor [?]. Therefore,
the DVFS technique from [?, ?] is applied here, with two performance levels (PLs). PL1 is the MEP
operating point of (0.50V, 150MHz) and PL2 is defined as the higher performance level at (0.80V,
300MHz).

ARM
Cortex M4F

AHB Slave MUX

Timer

NMU
(exp, log,
PRNG)

MAC
Array DMA

SRAM

SRAM

SRAM

SRAM

Crossbar

NoC IF

AH
B

32

AH
B

32

AH
B

32

AH
B

32

AH
B

32

C
on

fig

m
m

ap

AHB 32 ARM
SRAM

AHB 32 ARM
SRAM

32

32

32

32

32

32

32

32

32

32

32 32
3232

TRNG
(from PLL)

local
SRAM

comms_ctrl

Data

Instr.

VDD railsVSRAM
(0.80 V)

PL2
(0.60 V)

PL1
(0.45 V)

VPW

VNW
Body bias rails

(FBB)

Figure 42: PE power management architecture

181

version 0.03 August 19, 2021

Te
st
m
od
e

clkdiv_a clkdiv_b clkdiv_c clkdiv_d

Testmode
PE

Testmode

CGate

clock_mgmt_sel

clk_core_0...3clk_dnoc

clk_share

clk_div_a clk_div_b clk_div_c clk_div_d

clock_mgmt_div

clock_mgmt_src

cl
k_
ne
ig
hb
ou
r_
ou
t

cl
k_
ne
ig
hb
ou
r_
in

clk_src

clk_ref

Figure 43: QPE Clocking

182

version 0.03 August 19, 2021

A Packaging

183

version 0.03 August 19, 2021

B Input and Output signals

TO BE DONE

184

version 0.03 August 19, 2021

C Electrical Specification

C.1 Operating Temperature

name unit min typ max comment

T C 0 85

C.2 Power Supply

name unit min typ max comment

VDDPE V 0.475 0.500 0.525 core supply for PEs
VDD V 0.760 0.800 0.840 core supply

VDDIO V 1.620 1.800 1.980 IO supply
VDDSER V 0.475 0.500 0.525 C2C Link supply

VDDQ V 1.100 LPDDR4 interface supply
VDDPLL V 0.760 0.800 0.840 PLL analog supply

C.3 Current consumption

supply domain power unit min typ max comment

P(VDDPE) W 0.654 core supply for PEs
P(VDD) W 4.963 core supply

P(VDDIO) W 0.130 IO supply
P(VDDSER) W 0.180 C2C Link supply

P(VDDQ) W 0.140 LPDDR4 interface supply
P(VDDPLL) W 0.050 PLL analog supply

185

version 0.03 August 19, 2021

D Application Note

D.1 External Components

D.2 PCB Integration Guideline

186

version 0.03 August 19, 2021

E SpiNNaker2 Address Map and Register Summary

E.1 Core memories

Main configuration register and QuadPE register address space is located from s 0xf000 0000 to
0xf3ffffff. The particular memory address can be determined from the module NoC X and Y coordi-
nate (see Figure 2):

Register E.1: register memory map

co
re

m
em

or
y

0xf

31 28

Q
ua

dP
E
/R

F

0

27 26

re
gi
st
er

fil
e

x

25

N
oC

X

x

24 22

N
oC

Y

x

21 19

P
E

ID

x

18 17

lo
ca

l ad
dr

m
em

x

16 12

lo
ca

l ad
dr

m
em

+
R
F

x

11 0

value

Accessing register files is done by setting address bit 25 to one and NoC X + NoC Y of the desired
module. The local register file address is determined by the lowest 12 bit of the address. Bits 12 to
18 are ignored. The QuadPE memory can be accessed similarly by setting bit 20 to zero and X+Y
value. The PE (0 to 3) is set with bits 17+18. The local memory address is set with the lowest 17
bits.

NoC X NoC Y Ref Function

0 0 [21] Periphery components
1-2 0 - unused
1-7 1-7 [4] Quad PE
4 4 [18] SpiNNaker Router ID0
4 5 [18] SpiNNaker Router ID1
0 1 [??] LPDDR4 IF0 low
0 2 [??] LPDDR4 IF0 high
0 5 [??] LPDDR4 IF1 low
0 6 [??] LPDDR4 IF1 high
5 7 [22] HostIF right
6 7 [22] HostIF left
3 0 [20] Spike SerDesH 0 left
4 0 [20] Spike SerDesH 0 right
5 0 [20] Spike SerDesH 1 left
6 0 [20] Spike SerDesH 1 right
2 7 [20] Spike SerDesH 2 left
1 7 [20] Spike SerDesH 2 right
4 7 [20] Spike SerDesH 3 left
3 7 [20] Spike SerDesH 3 right
0 4 [20] Spike SerDesV 0 left
0 3 [20] Spike SerDesV 0 right
7 3 [20] Spike SerDesV 1 left
7 4 [20] Spike SerDesV 1 right
x y - TODO

187

version 0.03 August 19, 2021

F NoC packet formats and header definitions

F.1 NoC packet format

Read request

pa
ck

et
he

ad
er

0x00000000

191 160

ad
dr

es
s

0x00000000

159 128

pa
yl

oa
d

3

0x00000000

127 96

pa
yl

oa
d

2

0x00000000

95 64

pa
yl

oa
d

1

0x00000000

63 32

pa
yl

oa
d

0

0x00000000

31 0

value

F.2 NoC header definitions

The NoC packet header formats are summarised as follows:

Read request

pa
ck

et
da

ta
si
ze

x x x

31 29

de
st

X

x x x

28 26

de
st

Y

x x x

25 23

de
st

re
gi
st
er

fil
e

x

22

de
st

P
E
(s
)

x x x x

21 18

C
N
oC

ro
ut

in
g

x

17

ty
pe

0 0 0

16 14

so
ur

ce
X

x x x

13 11

so
ur

ce
Y

x x x

10 8

so
ur

ce
P
E

x x

7 6

so
ur

ce
ty

pe

x x

5 4

re
ad

si
ze

x x x

3 1

pr
iv

ile
ge

d
ac

ce
ss

x

0

value

188

version 0.03 August 19, 2021

Read response

pa
ck

et
da

ta
si
ze

x x x

31 29

de
st

X

x x x

28 26

de
st

Y

x x x

25 23

de
st

re
gi
st
er

fil
e

x

22

de
st

P
E
(s
)

x x x x

21 18

C
N
oC

ro
ut

in
g

x

17

ty
pe

0 0 1

16 14

so
ur

ce
X

x x x

13 11

so
ur

ce
Y

x x x

10 8

so
ur

ce
P
E

x x

7 6

so
ur

ce
ty

pe

x x

5 4

un
us

ed

3 1

bu
s
er

ro
r

x

0

value

Write request

pa
ck

et
da

ta
si
ze

x x x

31 29

de
st

X

x x x

28 26

de
st

Y

x x x

25 23

de
st

re
gi
st
er

fil
e

x

22

de
st

P
E
(s
)

x x x x

21 18

C
N
oC

ro
ut

in
g

x

17

ty
pe

0 1 0

16 14

so
ur

ce
X

x x x

13 11

so
ur

ce
Y

x x x

10 8

so
ur

ce
P
E

x x

7 6

so
ur

ce
ty

pe

x x

5 4

un
us

ed

3 2

bu
ffe

re
d

w
ri
te

x

1

pr
iv

ile
ge

d
ac

ce
ss

x

0

value

Write response

pa
ck

et
da

ta
si
ze

x x x

31 29

de
st

X

x x x

28 26

de
st

Y

x x x

25 23

de
st

re
gi
st
er

fil
e

x

22

de
st

P
E
(s
)

x x x x

21 18

C
N
oC

ro
ut

in
g

x

17

ty
pe

0 1 1

16 14

so
ur

ce
X

x x x

13 11

so
ur

ce
Y

x x x

10 8

so
ur

ce
P
E

x x

7 6

so
ur

ce
ty

pe

x x

5 4

un
us

ed

3 1

bu
s
er

ro
r

x

0

value

Control and exception command

pa
ck

et
da

ta
si
ze

x x x

31 29

de
st

X

x x x

28 26

de
st

Y

x x x

25 23

de
st

re
gi
st
er

fil
e

x

22

de
st

P
E
(s
)

x x x x

21 18

C
N
oC

ro
ut

in
g

x

17

ty
pe

1 0 0

16 14

so
ur

ce
X

x x x

13 11

so
ur

ce
Y

x x x

10 8

so
ur

ce
P
E

x x

7 6

so
ur

ce
ty

pe

x x

5 4

un
us

ed

3 2

bu
ffe

re
d

w
ri
te

x

1

pr
iv

ile
ge

d
ac

ce
ss

x

0

value

Protocol message

pa
ck

et
da

ta
si
ze

x x x

31 29

de
st

X

x x x

28 26

de
st

Y

x x x

25 23

de
st

re
gi
st
er

fil
e

x

22

de
st

P
E
(s
)

x x x x

21 18

C
N
oC

ro
ut

in
g

x

17

ty
pe

1 0 1

16 14

so
ur

ce
X

x x x

13 11

so
ur

ce
Y

x x x

10 8

so
ur

ce
P
E

x x

7 6

so
ur

ce
ty

pe

x x

5 4

un
us

ed

3 1

pr
iv

ile
ge

d
ac

ce
ss

x

0

value

189

version 0.03 August 19, 2021

SpiNNaker: Multicast (MC)

pa
ck

et
da

ta
si
ze

x x x

31 29

de
st

X

x x x

28 26

de
st

Y

x x x

25 23

de
st

re
gi
st
er

fil
e

x

22

de
st

P
E
(s
)

x x x x

21 18

C
N
oC

ro
ut

in
g

x

17

ty
pe

1 1 1

16 14

un
us

ed

13 11

Sp
iN

N
ak

er
pa

ck
et

ty
pe

00

7 6

so
ft
w
ar

e
de

fin
ed

x x

5 4

ti
m

e
st
am

p

x x

3 2

sp
in

na
ke

r
pa

ck
et

si
ze

x x

1 0

value

SpiNNaker: Core to Core (C2C)

pa
ck

et
da

ta
si
ze

x x x

31 29

de
st

X

x x x

28 26

de
st

Y

x x x

25 23

de
st

re
gi
st
er

fil
e

x

22

de
st

P
E
(s
)

x x x x

21 18

C
N
oC

ro
ut

in
g

x

17

ty
pe

1 1 1

16 14

un
us

ed

13 11

Sp
iN

N
ak

er
pa

ck
et

ty
pe

01

7 6

so
ft
w
ar

e
de

fin
ed

x x

5 4

ti
m

e
st
am

p

x x

3 2

sp
in

na
ke

r
pa

ck
et

si
ze

x x

1 0

value

SpiNNaker: Nearest Neighbour (NN)

pa
ck

et
da

ta
si
ze

x x x

31 29

de
st

X

x x x

28 26

de
st

Y

x x x

25 23

de
st

re
gi
st
er

fil
e

x

22

de
st

P
E
(s
)

x x x x

21 18

C
N
oC

ro
ut

in
g

x

17

ty
pe

1 1 1

16 14

un
us

ed

13 11

Sp
iN

N
ak

er
pa

ck
et

ty
pe

10

7 6

?

?

5

ro
ut

e

x x x

4 2

sp
in

na
ke

r
pa

ck
et

si
ze

x x

1 0

value

190

version 0.03 August 19, 2021

Name Function

packet data size Payload size
Dest X Notional NoC X position of destination QPE
Dest Y Notional NoC Y position of destination QPE
Dest register destination is register file within QPE
Dest PE One-hot encoded destination PE(s) within QPE
CNoC routing Use CNoC (=1) instread of DNoC (=0)
Source X Notional NoC X position of source QPE
Source Y Notional NoC Y position of source QPE
Source PE Source PE identifier within QPE (0 to 3)
Source Type Source unit type within PE (i.e. subsystem ID)
Read Size Requested data size
Bus Error Bus Error response
Buffered Write buffer write operation (no response packet)
Privileged Privileged / Supervisor bus cycle
Link Off-chip link code
Software Defined Software defined field
Time Stamp time stamp of SpiNNaker packet
Route NOT SURE!
SpiNNaker Size Payload size in SpiNNaker packet (duplicate info.)

Packet Data Size is used primarily to determine how much of the potential packet is actually
delivered.

Data Size] Payload ‘Size’ equivalent

0 0 0 0 (no payload) 0 0
0 0 1 1 byte 0 1
0 1 0 2 bytes 0 1
0 1 1 4 bytes 0 1
1 0 0 8 bytes 1 0
1 0 1 16 bytes 1 1
1 1 0 — —
1 1 1 — —

Read Size is used primarily to determine how many and how ‘full’ the returned data packets will
be.

Read Size Returned bytes Returned ‘Pkt Sz’

0 0 0 1 0 0 1
0 0 1 2 0 1 0
0 1 0 4 0 1 1
0 1 1 8 1 0 0
1 0 0 16 1 0 1
1 0 1 32 1 0 1
1 1 0 64 1 0 1
1 1 1 128 1 0 1

Dest Register If ‘R’ is set the packet is addressed to the NoC registers at the upper QPE level.

Dest PE Is a multicast code. The numbered bits indicate which PE(s) the packet isdelivered to, a
‘1’ indicating tht PE is included. From any one to all PEs may be indicated.

0123

0 1 2 3

191

version 0.03 August 19, 2021

Source Type Identifies a source/sink within a PE.

Source Type Source

0 0 M4 bus (bridge)
0 1 Tx/Rx (software)
1 0 DMA
1 1 ML-accelerator

route Something to do with NN packets.

F.3 NoC packet formats

Fig. 45 illustrates the SpiNNaker2 NoC packet formats.

192

version 0.03 August 19, 2021

Sp
iN

N
ak

er
2

N
oC

 p
ac

ke
t f

or
m

at
s

v9
[S

BF
, 1

3
O

ct
ob

er
 2

01
7

+
JD

G
 2

0
Ju

ne
 2

01
9]

Re
ad

 R
eq

ue
st

:

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

0
1

2
3

4
5

6
7

8
9

…
…

…
…

…
…

…
12

0
12

1
12

2
12

3
12

4
12

5
12

6
12

7

0
0

0
x

y
R

0
1

2
3

0
0

0
x

y

0
no

 d
at

a
pa

yl
oa

d
0

Re
ad

 R
eq

Da
ta

 s
iz

e
of

 R
ea

d
Re

sp
on

se
 (N

B:
 d

iff
er

en
t f

ro
m

 h
ea

de
r D

at
a

si
ze

!)
:

0
1-

by
te

 re
sp

on
se

1
1-

by
te

 p
ay

lo
ad

1
Re

ad
 R

es
p

By
te

 a
nd

 h
al

f-
w

or
d

re
ad

s
sh

ou
ld

 b
e

al
ig

ne
d

w
ith

in
 a

 3
2-

bi
t d

at
a

pa
yl

oa
d

1
2-

by
te

 re
sp

on
se

2
2-

by
te

 p
ay

lo
ad

2
W

rit
e

Re
q

2
4-

by
te

 re
sp

on
se

3
4-

by
te

 p
ay

lo
ad

3
W

rit
e

Re
sp

Pr
iv

ile
ge

d
ac

ce
ss

3
8-

by
te

 re
sp

on
se

4
8-

by
te

 p
ay

lo
ad

4
Co

nt
ro

l a
nd

 E
xc

ep
tio

n
Co

m
m

an
d

(r
eq

ue
st

er
 is

 in
 S

up
er

vi
so

r m
od

e)
4

16
-b

yt
e

re
sp

on
se

5
16

-b
yt

e
pa

yl
oa

d
(M

ax
 fo

r s
in

gl
e-

fli
t)

5
Pr

ot
oc

ol
 m

es
sa

ge
5

32
-b

yt
e

re
sp

on
se

 -
2

re
sp

on
se

 p
ac

ke
ts

6
SD

RA
M

 D
M

A
co

nt
ro

l
6

64
-b

yt
e

re
sp

on
se

 -
4

re
sp

on
se

 p
ac

ke
ts

7
Sp

iN
N

ak
er

 P
ac

ke
t

7
12

8-
by

te
 re

sp
on

se
 -

8
re

sp
on

se
 p

ac
ke

ts

3-
bi

t x
 a

nd
 y

 c
oo

rd
s

3-
bi

t x
 a

nd
 y

 c
oo

rd
s

x
y

of
 re

ce
iv

in
g

Q
PE

x
y

of
 s

en
di

ng
 Q

PE

0x
xx

x
1

bi
t p

er
 P

E
So

ur
ce

 P
E

0.
.3

R
0

1
2

3
10

00
0

re
gs

.

de
st

in
at

io
n

N
oC

:
So

ur
ce

 T
yp

e:
Re

ad
 R

es
po

ns
e:

0
- D

N
oC

; 1
 -

CN
oC

CP
U

 (0
),

Tx
 (1

),
DM

A
(2

),
M

L
(3

)

x
y

R
0

1
2

3
0

0
1

x
y

Bu
s

Er
ro

r
Da

ta
 p

ay
lo

ad
 is

 0
 (o

nl
y

in
 th

e
ca

se
 o

f B
us

 E
rr

or
),

1,
 2

 o
r 4

 3
2-

bi
t w

or
ds

.
W

rit
e

Re
qu

es
t:

x
y

R
0

1
2

3
0

1
0

x
y

Bu
ff

er
ed

 w
rit

e:
W

rit
e

pa
yl

oa
d

is
 1

, 2
 o

r 4
 3

2-
bi

t w
or

ds
.

W
rit

e
Re

sp
on

se
:

no
 re

sp
on

se
N

B:
 b

yt
e

an
d

ha
lf-

w
or

d
w

rit
es

 s
ho

ul
d

be
 a

lig
ne

d
w

ith
in

 a
 3

2-
bi

t d
at

a
pa

yl
oa

d

0
0

0
x

y
R

0
1

2
3

0
1

1
x

y

Co
nt

ro
l a

nd
 E

xc
ep

tio
n

Co
m

m
an

d:

x
y

R
0

1
2

3
1

0
0

x
y

Pr
ot

oc
ol

 m
es

sa
ge

: x
y

R
0

1
2

3
1

0
1

x
y

SD
RA

M
 D

M
A

co
nt

ro
l:

x
y

R
0

1
2

3
1

1
0

x
y

DM
A

ty
pe

:
Re

ad
 s

et
 u

p
0

W
rit

e
se

t u
p

1
Re

ad
 d

at
a

re
q

2
<=

 m
ay

 b
e

de
si

ra
bl

e
to

 a
dd

 le
ng

th
 o

f b
ur

st
 (i

n
pa

ck
et

s)
 to

 re
qu

es
t(

Le
ng

th
 fi

el
d

co
ul

d
ex

pa
nd

)
W

rit
e

da
ta

 re
q

3
Re

ad
 d

at
a

4
W

rit
e

da
ta

5
L

W
rit

e
co

m
pl

et
e

6
(s

pa
re

)
7

Sp
iN

N
ak

er
 P

ac
ke

t:
L

la
st

 p
ac

ke
t i

n
tr

an
sf

er
po

si
tio

n
of

 p
ac

ke
t i

n
bu

rs
t (

fie
ld

 c
ou

ld
 e

xp
an

d
fo

r l
on

ge
r b

ur
st

s)

x
y

R
0

1
2

3
1

1
1

Sp
iN

N
ak

er
 in

co
m

in
g

lin
k,

Sp
iN

N
ak

er
 p

ay
lo

ad
 is

 0
, 1

, 2
 o

r 4
 3

2-
bi

t w
or

ds
.

fo
r r

e-
in

se
rt

io
n

Ty
pe

: 0
0

=
M

C;
 0

1
=

C2
C;

 1
0

=
N

N
; 1

1
=

un
us

ed
SW

: s
of

tw
ar

e
us

e
(n

or
m

al
 o

r p
ee

k/
po

ke
 +

 R
ou

te
[2

] f
or

 N
N

)
TS

: T
im

e
St

am
p

(R
ou

te
[1

:0
] f

or
 N

N
)

Si
ze

: 0
0

=
no

 p
ay

lo
ad

; 0
1

=
32

-b
it

pa
yl

oa
d;

 1
0

=
64

-b
it

pa
yl

oa
d;

 1
1

=
12

8-
bi

t p
ay

lo
ad

.
M

C:
 3

2-
bi

t r
ou

tin
g

ke
y

C2
C:

 1
6-

bi
t s

ou
rc

e
ch

ip
 ID

; 8
-b

it
so

ur
ce

 P
E

ID
; 8

-b
it

ch
an

ne
l I

D
N

N
: 3

2-
bi

t a
dd

re
ss

 o
n

de
st

in
at

io
n

ch
ip

15
-b

it
N

oC
 h

ea
de

r
49

-b
it

Re
ad

 C
om

m
an

d

Da
ta

 s
iz

e
De

st
 Q

PE
De

st
 P

E
C

Ty
pe

So
ur

ce
 Q

PE
Sr

c
PE

Sr
c

T
Si

ze
S

32
-b

it
re

ad
 a

dd
re

ss
no

 d
at

a
pa

yl
oa

d

Da
ta

 s
iz

e
Ty

pe
Si

ze

S

De
st

 Q
PE

So
ur

ce
 Q

PE

De
st

 P
E(

s)
Sr

c
PE

C
Sr

c
T

15
-b

it
N

oC
 h

ea
de

r
49

- t
o

17
7-

bi
t R

ea
d

Re
sp

on
se

Da
ta

 s
iz

e
De

st
 Q

PE
De

st
 P

E
C

Ty
pe

So
ur

ce
 Q

PE
Sr

c
PE

Sr
c

T
un

us
ed

BE
32

-b
it

re
ad

 a
dd

re
ss

0
to

 1
28

-b
it

da
ta

 p
ay

lo
ad

 (a
lig

ne
d

rig
ht

)

BE

15
-b

it
N

oC
 h

ea
de

r
81

- t
o

17
7-

bi
t W

rit
e

Co
m

m
an

d

Da
ta

 s
iz

e
De

st
 Q

PE
De

st
 P

E
C

Ty
pe

So
ur

ce
 Q

PE
Sr

c
PE

Sr
c

T
un

us
.

B
S

32
-b

it
w

rit
e

ad
dr

es
s

32
 to

 1
28

-b
it

da
ta

 p
ay

lo
ad

 (a
lig

ne
d

rig
ht

)

B

15
-b

it
N

oC
 h

ea
de

r
49

-b
it

W
rit

e
Re

sp
on

se

Da
ta

 s
iz

e
De

st
 Q

PE
De

st
 P

E
C

Ty
pe

So
ur

ce
 Q

PE
Sr

c
PE

Sr
c

T
un

us
ed

BE
32

-b
it

w
rit

e
ad

dr
es

s
no

 d
at

a
pa

yl
oa

d

15
-b

it
N

oC
 h

ea
de

r
81

- t
o

17
7-

bi
t C

on
tr

ol
 a

nd
 E

xc
ep

tio
n

Co
m

m
an

d

Da
ta

 s
iz

e
De

st
 Q

PE
De

st
 P

E
C

Ty
pe

So
ur

ce
 Q

PE
Sr

c
PE

Sr
c

T
un

us
.

B
S

32
-b

it
Co

nt
ro

l a
nd

 E
xc

ep
tio

n
ad

dr
es

s
32

 to
 1

28
-b

it
co

nt
ro

l a
nd

 e
xc

ep
tio

n
da

ta
 p

ay
lo

ad
 (a

lig
ne

d
rig

ht
)

15
-b

it
N

oC
 h

ea
de

r
49

- t
o

17
7-

bi
t P

ro
to

co
l m

es
sa

ge

Da
ta

 s
iz

e
De

st
 Q

PE
De

st
 P

E
C

Ty
pe

So
ur

ce
 Q

PE
Sr

c
PE

Sr
c

T
un

us
ed

S
32

-b
it

pr
ot

oc
ol

 c
om

m
an

d
0

to
 1

28
-b

it
pr

ot
oc

ol
 d

at
a

pa
yl

oa
d

(a
lig

ne
d

rig
ht

)

Le
ng

th
 (i

n
w

or
ds

) 8
 b

its

un
us

ed
un

us
ed

un
us

ed
12

8-
bi

t d
at

a
pa

yl
oa

d
un

us
ed

Se
q

#

15
-b

it
N

oC
 h

ea
de

r
SD

RA
M

 D
M

A
fu

nc
tio

n

Da
ta

 s
iz

e
De

st
 Q

PE
De

st
 P

E
C

Ty
pe

So
ur

ce
 Q

PE
Sr

c
PE

Sr
c

T
DM

A
T

S
DM

A
T

de
pe

nd
en

t
0

to
 1

28
-b

it
pr

ot
oc

ol
 d

at
a

pa
yl

oa
d

(a
lig

ne
d

rig
ht

)

15
-b

it
N

oC
 h

ea
de

r
49

- t
o

17
7-

bi
t S

pi
N

N
ak

er
 p

ac
ke

t p
ay

lo
ad

Da
ta

 s
iz

e
De

st
 Q

PE
De

st
 P

E
C

Ty
pe

un
us

ed
Li

nk
Co

nt
ro

l b
yt

e
32

-b
it

ro
ut

in
g

ke
y

0
to

 1
28

-b
it

da
ta

 p
ay

lo
ad

 (a
lig

ne
d

rig
ht

)

Li
nk

Co
nt

ro
l b

yt
e

Ty
pe

SW
TS

Si
ze

32
-b

it
ro

ut
in

g
ke

y

un
us

ed

Se
q

#

DM
A

T

un
us

ed

32
-b

it
w

or
d

ad
dr

es
s

Figure 44: SpiNNaker2 NoC packet format

193

version 0.03 August 19, 2021

1
1

G G
lo
ba
l:

0
32

‐b
it
re
ad

 re
qu

es
t

0
‐ f
lo
w
 c
on

tr
ol
 c
re
di
t;
1
‐ S
yt
em

‐w
id
e
re
ad
/w

rit
e

1
64

‐b
it
re
ad

 re
qu

es
t

2
12

8‐
bi
t r
ea
d
re
qu

es
t

3
un

bu
ffe

re
d
w
rit
e

4
bu

ffe
re
d
w
rit
e

5
re
ad

 re
sp
on

se
6

w
rit
e
re
sp
on

se
7

er
ro
r

32
-b

it
re

ad
 r

eq
ue

st

1
1

1

64
-b

it
re

ad
 r

eq
ue

st

1
1

1

12
8-

bi
t r

ea
d

re
qu

es
t

1
1

1

un
bu

ff
er

ed
 3

2-
bi

t w
ri

te

1
1

1

un
bu

ff
er

ed
 6

4-
bi

t w
ri

te

1
1

1

bu
ff

er
ed

 3
2-

bi
t w

ri
te

1
1

1

bu
ff

er
ed

 6
4-

bi
t w

ri
te

1
1

1

re
ad

 r
es

po
ns

e

1
1

1

w
ri

te
 r

es
po

ns
e

1
1

1

er
ro

r

1
1

1
R

E
R

: r
et

ry
E:

 b
us

 e
rr

or

11
1

01
er

ro
r m

es
sa

ge
C

on
tro

l b
yt

e
16

'h
0

ho
st

in
te

rf
ac

e
TP

SW

C
M

D

G

C
on

tro
l b

yt
e

32
-b

it
ad

dr
es

s
00

0
01

32
-b

it
ad

dr
es

s

16
-b

it
de

st
in

at
io

n
ID

ho
st

in
te

rf
ac

e

01
1

11

pa
yl

oa
d

0
32

-b
it

ke
y

fie
ld

pa
yl

oa
d

3
pa

yl
oa

d
2

pa
yl

oa
d

1

32
-b

it
ad

dr
es

s

32
-b

it
ad

dr
es

s

32
-b

it
ad

dr
es

s

32
-b

it
w

rit
e

da
ta

 0

32
-b

it
w

rit
e

da
ta

 0

CM
D

ho
st

in
te

rf
ac

e
C

on
tro

l b
yt

e
01

1
10

16
-b

it
de

st
in

at
io

n
ID

C
on

tro
l b

yt
e

32
-b

it
w

rit
e

da
ta

 0
32

-b
it

ad
dr

es
s

do
n’

t c
ar

e
32

-b
it

w
rit

e
da

ta
 1

32
-b

it
w

rit
e

da
ta

 0
32

-b
it

ad
dr

es
s

10
0

11

ho
st

in
te

rf
ac

e

ho
st

in
te

rf
ac

e
C

on
tro

l b
yt

e
16

-b
it

de
st

in
at

io
n

ID
10

0
10

16
-b

it
de

st
in

at
io

n
ID

10
1

si
ze

de
pe

nd
s o

n
si

ze
de

pe
nd

s o
n

si
ze

C
on

tro
l b

yt
e

16
-b

it
de

st
in

at
io

n
ID

do
n’

t c
ar

e
32

-b
it

w
rit

e
da

ta
 1

ho
st

in
te

rf
ac

e

TP
SW

TP
SW

TP
SW

de
pe

nd
s o

n
si

ze
de

pe
nd

s o
n

si
ze

11
0

si
ze

C
on

tro
l b

yt
e

16
'h

0
ho

st
in

te
rf

ac
e

ho
st

in
te

rf
ac

e
C

on
tro

l b
yt

e
16

'h
0

de
pe

nd
s o

n
si

ze
de

pe
nd

s o
n

si
ze

TP
SW

TP
SW

de
pe

nd
s o

n
si

ze
de

pe
nd

s o
n

si
ze

4t
h
Sp
iN
N
ak
er
 p
ac
ke
t t
yp
e

[S
FB

 G
L
20

 A
pr
 2
02

1] TP
SW

TP
SW

TP
SW

TP
SW

01

C
on

tro
l b

yt
e

00
1

01
16

-b
it

de
st

in
at

io
n

ID

16
-b

it
de

st
in

at
io

n
ID

ho
st

in
te

rf
ac

e

ho
st

in
te

rf
ac

e

C
on

tro
l b

yt
e

01
0

C
on

tro
l b

yt
e

Si
ze

Figure 45: SpiNNaker2 NoC packet format

194

	System architecture
	Routing
	Time references
	System-level address spaces

	Chip Organization
	Block Diagram
	System-on-Chip hierarchy
	High-Level Goals
	Register description convention

	NoC
	Description
	Register summary
	Fault-tolerance
	SDRAM DMA transfers
	Features
	Description
	SDRAM reads and writes
	SpiNNaker Router traffic
	QPE to QPE DMA transfers
	QPE to QPE reads and writes

	Register summary
	Fault-tolerance

	Quad-core ARM processing subsystem (QPE)
	Features
	Description
	Quad-core ARM Cortex M4F subsystem organisation
	The QPE DMA and NoC subsystem
	Fault-tolerance

	ARM Cortex M4F processing element (PE)
	Features
	Organization
	Address map
	PE bus description
	Fault-tolerance

	Crossbar
	DMA Controller (DMAC)
	Features
	Limitations
	Operating modes
	Memory-to-memory block transfers
	Terminology
	General
	Read transfers
	Write transfers
	CRC
	SDRAM transfers
	QPE transfers

	I/O transfers
	Register summary
	Fault-tolerance

	Fixed-point Elementary Function Accelerator
	Features
	Description
	Implementation
	Accuracy
	Register summary
	Register details
	Fault-tolerance

	Random Number Generator
	Features
	Description
	Register summary
	Fault-tolerance

	Stochastic Rounding Accelerator
	Features
	Description
	Implementation
	Register summary
	Register details
	Fault-tolerance

	Machine Learning Accelerator (MLA)
	Features
	Overview
	Configuration and Command Registers
	Mode of Operation
	Matrix Multiplication
	Convolution

	ARM C code & Execution

	Counter/timer
	Features
	Register summary
	Register details
	Fault-tolerance

	Exchange - the PE communications switch
	Features
	Overview
	NoC interface
	Bus master interface

	Exception subunit
	Interrupt exceptions

	Register summary
	Register details

	Comms unit
	Features
	Overview
	Area map
	Packet transmitter
	Packet receiver
	Rx Module
	Messages

	Register summary
	Register details
	Transmitter
	Default receiver
	Messages
	Miscellaneous
	Receiver filters

	Bus bridge
	Monitoring
	Fault-tolerance

	NoC DMA Submodule (memDMA)
	Features
	Description
	Register summary
	Flow control
	Local bus masters

	Bus bridge to NoC
	Features
	Description
	SDRAM mapping
	Operation

	Response unit
	Response packet generator submodule

	SpiNNaker Packet Router
	Features
	Description
	Packet formats
	Control byte summary
	Debug access to neighbouring devices
	Internal organization
	Multicast (MC) router
	The core-to-core (C2C) router
	The nearest-neighbour (NN) router
	Time phase handling
	Packet error handler
	Register summary
	Register details
	Fault-tolerance

	SDRAM interface
	Features
	DMA
	DMA Overview
	DMA SDRAM read
	DMA SDRAM write
	DMA SDRAM configuration

	Register summary
	Fault-tolerance

	Inter-chip transmit and receive interfaces
	Features
	Key features for the Chip-to-Chip Link
	Key features for the LVDS AURORA link

	Configuration
	register selection

	Chip-to-Chip Link (C2C Link)
	C2C Link Transceiver

	Periphery
	Start-up Control
	Register File Interface
	GPIO MUX
	Clock Configuration
	Periphery Arm Cortex-M4
	JTAG
	SPI
	NoC SPI
	SPI slave
	SPI master
	SPI flash start-up controller
	Spike SPI slave

	I2C
	I2C slave
	I2C master

	PWM
	PWM0 and PWM1
	PWM2
	GPIO debug output

	UART
	CUART
	Printf UART

	SDC Interface

	Host Interface
	UDP Routing
	Incoming Packets
	Outgoing Packets
	Packet Counters
	Frame ID Protocol

	UDT
	UDT Packet Type
	Channel Set up and Shut down
	Architecture
	UDT Configuration
	Buffer Memory

	Register summary
	GPIO MUX
	Register summary
	Fault-tolerance

	System Controller
	Features
	Register summary
	Fault-tolerance

	Watchdog timer
	Features
	Register summary
	Register details

	Power Management Architecture
	Appendix Packaging
	Appendix Input and Output signals
	Appendix Electrical Specification
	Operating Temperature
	Power Supply
	Current consumption

	Appendix Application Note
	External Components
	PCB Integration Guideline

	Appendix SpiNNaker2 Address Map and Register Summary
	Core memories

	Appendix NoC packet formats and header definitions
	NoC packet format
	NoC header definitions
	NoC packet formats

