Mobile 3D Graphics API

Technical Specification

Version 1.1

June 22, 2005

Java Community Process (JCP)
JSR-184 Expert Group

Copyright Notice and Disclaimers

Mobile 3D Graphics APl Specification (" Specification™)
Version: 1.1

Status: Maintenance Release

Specification Lead: Nokia Corporation (" Specification Lead")
Release: 2005-06-22

Copyright 2005 Nokia Corporation.
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Specification Lead hereby grants Y ou afully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under the
Specification Lead's applicable intellectual property rights to view, download, use and reproduce the Specification only for the purpose of internal evaluation,
which shall be understood to include devel oping applications intended to run on an implementation of the Specification provided that such applications do not
themselves implement any portion(s) of the Specification. The Specification contains proprietary information of the Specification Lead and may only be used
in accordance with the license terms set forth herein.

Subject to the reciprocity requirement set forth below Specification Lead also grants Y ou a perpetual, non-exclusive, worldwide, fully paid-up, royalty free,
irrevocable limited license (without the right to sublicense) under any applicable copyrights or patent rights it may have in the Specification to create and/or
distribute an Independent Implementation of the Specification that: (&) fully implements the Specification without modifying, subsetting or extending the
public class or interface declarations whose names begin with "java" or "javax" or their equivalentsin any subsequent naming convention adopted by
Specification Lead through the Java Community Process, or any recognized successors or replacements thereof; (b) implement all required interfaces and
functionality of the Specification; (c) only include as part of such Independent |mplementation the packages, classes or methods specified by the
Specification; (d) pass the technology compatibility kit ("TCK") for such Specification; and (€) are designed to operate on a Java platform which is certified
to pass the complete TCK for such Java platform. For the purpose of this agreement the applicable patent rights shall mean any claims for which there is no
technically feasible way of avoiding infringement in the course of implementing the Specification. Other than thislimited license, Y ou acquire no right,
license, title or interest in or to the Specification or any other intellectual property rights of the Specification Lead.

Y ou need not include limitations (a)-(e) from the previous paragraph or any other particular "pass through" requirements in any license Y ou grant concerning
the use of Y our Independent Implementation or products derived from it. However, except with respect to implementations of the Specification (and products
derived from them) by Y our licensee that satisfy limitations (a)-(€) from the previous paragraph, Y ou may neither: (i) grant or otherwise pass through to Y our
licensees any licenses under Specification Lead's applicable intellectual property rights; nor (ii) authorize Y our licensees to make any claims concerning their
implementation’'s compliance with the Specification in question.

The license provisions concerning the grant of licenses hereunder shall be subject to reciprocity requirement so that Specification Lead's grant of licenses
shall not be effective asto Y ou if, with respect to the Specification licensed hereunder, Y ou (on behalf of yourself and any party for which Y ou are authorized
to act with respect to this Agreement) do not make available, in fact and practice, to Specification Lead and to other licensees of Specification on fair,
reasonable and non-discriminatory terms a perpetual, irrevocable, non-exclusive, non-transferable, worldwide license under such Y our (and such party's for
which Y ou are authorized to act with respect to this Agreement) patent rights which are or would be infringed by all technically feasible implementations of
the Specification to develop, distribute and use an Independent Implementation of the Specification within the scope of the licenses granted above by
Specification Lead. However, Y ou shall not be required to grant alicense:

1. toalicensee not willing to grant a reciprocal license under its patent rights to Y ou and to any other party seeking such alicense with respect to the
enforcement of such licensee's patent claims where there is no technically feasible alternative that would avoid the infringement of such claims;

2. with respect to any portion of any product and any combinations thereof the sole purpose or function of which is not required in order to be fully
compliant with the Specification; or

3. with respect to technology that is not required for developing, distributing and using an Independent Implementation.

Furthermore, Y ou hereby grant a non-exclusive, worldwide, royalty-free, perpetual and irrevocable covenant to Specification Lead that Y ou shall not bring a
suit before any court or administrative agency or otherwise assert a claim that the Specification Lead has, in the course of performing its responsibilities as the
Specification Lead under JCP process rules, induced any other entity to infringe Y our patent rights.

For the purposes of this Agreement: "Independent Implementation” shall mean an implementation of the Specification that neither derives from the reference
implementation to the Specification ("Reference Implementation™) source code or binary code materials nor, except with an appropriate and separate license
from licensor of the Reference Implementation, includes any of Reference Implementation's source code or binary code materials.

This Agreement will terminate immediately without notice from Specification Lead if You fail to comply with any material provision of or act outside the
scope of the licenses granted above.

TRADEMARKS

Nokiais aregistered trademark of Nokia Corporation. Nokia Corporation's product names are either trademarks or registered trademarks of Nokia
Corporation. Y our access to this Specification should not be construed as granting, by implication, estoppel or otherwise, any license or right to use any marks
appearing in the Specification without the prior written consent of Nokia Corporation or Nokia's licensors.

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun'slicensors, is granted hereunder. Sun, Sun Microsystems, the
Sun logo, Java, 2ME, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION ISPROVIDED "ASIS". SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTSWILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER
RIGHTS. This document does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF
ANY. SPECIFICATION LEAD MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the then-current license for the
applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SPECIFICATION LEAD OR ITSLICENSORS BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITSOR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SPECIFICATION LEAD AND/
ORITSLICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Y ou will indemnify, hold harmless, and defend Specification Lead and its licensors from any claims arising or resulting from: (i) Y our use of the
Specification; (ii) the use or distribution of Y our Java application, applet and/or clean room implementation; and/or (iii) any claimsthat later versions or
releases of any Specification furnished to Y ou are incompatible with the Specification provided to Y ou under this license.

RESTRICTED RIGHTSLEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor
(at any tier), then the Government's rights in the Software and accompanying documentation shall be only as set forth in this license; thisis in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD
acquisitions).

REPORT

Y ou may wish to report any ambiguities, inconsistencies or inaccuracies Y ou may find in connection with Y our use of the Specification ("Feedback"). To the
extent that Y ou provide Specification Lead with any Feedback, Y ou hereby: (i) agree that such Feedback is provided on a non-proprietary and non-
confidential basis, and (ii) grant Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense
through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related to the Specification and
future versions, implementations, and test suites thereof.

Contents

Overview 2
Package javax.microedition.m3g

Class Hierarchy 20
AnimationController 21
AnimationTrack 29
Appearance 40
Background 46
Camera 54
CompositingMode 60
Fog 68
Graphics3D 73
Group 94
Image2D 100
IndexBuffer 107
KeyframeSequence 109
Light 121
Loader 130
Material 135
Mesh 141
MorphingMesh 146
Node 152
Object3D 164
PolygonMode 173
Raylntersection 181
SkinnedMesh 186
Sprite3D 194
Texture2D 203
Transform 215
Transformable 223
TriangleStripArray 230
VertexArray 232
VertexBuffer 237
World 245
Constant Field Values 250

M3G File Format 254

Mobile 3D Graphics API Version 1.1

Overview

Preface

This document contains the specification of the Mobile 3D Graphics API (abbreviated "M3G") for the Java 2 Platform,
Micro Edition ("J2ME"). The specification was defined within the Java Community Process ("JCP') under Java
Specification Request 184 ("JSR-184"). The specification is subject to the terms of the JCP agreements (i.e. JSPA and/or
[EPA).

The Mobile 3D Graphics API is an optional package. An optional package can be adopted to existing 2ME profiles. A
profile of J2ME defines device-type-specific sets of APIsfor aparticular vertical market or industry. The main target
platform of this optional API is 2ME/CLDC, used with profiles such as MIDP 1.0 or MIDP 2.0. However, the APl can
also be implemented on top of 2ME/CDC, or any Java platform in general.

Technical details of the API can be found in the package overview and the individual class descriptions; see especially
the Graphics3D class. To see how the API isused in practice, refer to the example MIDlets at the end of the Package

overview.

This specification uses definitions based upon those specified in RFC 2119 (available on the IETF web site).

Term Definition

MUST The associated definition is an absolute requirement of this specification.

MUST NOT The definition is an absolute prohibition of this specification.

Indicates a recommended practice. There may exist valid reasonsin particular circumstances to
SHOULD ignore this recommendation, but the full implications must be understood and carefully weighed
before choosing a different course.

Indicates a non-recommended practice. There may exist valid reasons in particular circumstances
when the particular behavior is acceptable or even useful, but the full implications should be

SHOULD NOT understood and the case carefully weighed before implementing any behavior described with this
label.
MAY Indicates that an item istruly optional.

Background

The objective of the Mobile 3D Graphics API Expert Group was to provide an efficient 3D Graphics API suitable for the
J2ME platform, in particular CLDC/MIDP. The API istargeted at CLDC class of devicesthat typically have very little
processing power and memory, and no hardware support for 3D graphics or floating point math. The API has been
defined such that implementations on that kind of hardware are feasible. However, the API aso scales up to higher-end
devices featuring a color display, a DSP, afloating point unit, or even specialized 3D graphics hardware.

The M3G specification is based on the requirements, summarized below, that were agreed on by the Expert Group. The
rationale for each requirement is presented in the paragraphs following the summary.

. The APl must support retained mode access (that is, a scene graph).
. The APl must support immediate mode access, with features similar to OpenGL.

http://www.ietf.org/

Mobile 3D Graphics API Version 1.1

. The APl must support mixing and matching of immediate and retained mode access.
. The APl must not include optional parts (that is, all methods must be implemented).
. The APl must have importers for meshes, textures, entire scene graphs, etc.

. The APl must be efficiently implementable on top of OpenGL ES.

. The APl must use the native float data type of Java, not introduce a custom type.

. The APl must be efficiently implementable without floating point hardware.

. The APl should be implementable within 150 kB on areal mobile terminal.

. The APl must be structured so that garbage collection is minimized.

. The APl must be interoperable with related Java APIs, especialy with MIDP.

Several applications were identified for the Mobile 3D Graphics API, including games, map visualization, user
interfaces, animated messages, product visualization, and screen savers. Each of these have different needs: some require
simple content creation, some require high polygon throughput, yet others require high quality still images with special
effects.

It isclear that such awide spectrum of different needs cannot be fulfilled by a scene graph API aone, nor an immediate
mode API alone. It isalso clear that having two separate APIswould lead to developer confusion and sub-optimal usage
of precious memory space. Rather, there must be only one indivisible API, with only one Rl and TCK, that covers both
types of accessin aunified way. A developer should be able to use either one, or both at the same time, depending on the
task at hand.

The immediate mode (or low-level) part of the API should be a subset of OpenGL with no added functionality. That is,
the low-level features should be compatible with OpenGL ES, which is being standardized by Khronos. For the
Reference |mplementation, the scene graph (or high-level) part must be built on top of the low-level interface, and shall
never bypass it when rendering. This ensures that the scene graph does not include rendering features that cannot be
implemented directly with the low-level interface. The low-level implementation may then be changed freely, or even
accelerated with dedicated hardware.

In many cases, there is little el se to an application than displaying a scene and playing back some animation created in a
3D modeling tool. This should not require much Java programming. Even in more demanding cases, it greatly speeds up
development if it is easy to import objects and animations into a midlet. Therefore, the API must provide importer
functions for different data types, such as textures, meshes, animations, and scene hierarchies. The data must be encoded
in abinary format for compact storage and transmission.

Most mobile terminals do not have hardware support for floating point processing. This should be reflected in the API, so
that it can be efficiently implemented using integer arithmetic. However, since programming with fixed point
mathematics is difficult and error prone, the API should use floating point values wherever feasible, and plain integers
otherwise. Fixed point values must not be used. Also, instead of introducing a custom Float type or packing floating point
valuesinto integers, Java's built-in float data type must be used. As a consequence, this API can not be implemented on
top of CLDC 1.0.

Like all APIstargeting MIDP, we need to strive for as compact an implementation as possible. It should be possible to
implement the APl in lessthan 150 kB of ROM space, including the native graphics engine, Java class files (ROMized),
and content importing facilities. To minimize garbage collection, the API should be structured so that using it does not
require repetitive creation of objects.

The API must be tightly integrated with MIDP's LCDUI, such that 2D and 3D graphics can be efficiently rendered on the
same Canvas or Image, for example. The decision of whether to use double buffering or not should be delegated to the
MIDP implementation. The API should also be able to bind with other GUI APIs, such as AWT.

Related Literature

. The Java Language Specification, James Gosling, Bill Joy, and Guy L. Steele, 1996.

Mobile 3D Graphics API Version 1.1

« Quaternion Algebra and Calculus, David Eberly, 1999.

. Key Frame Interpolation via Splines and Quaternions, David Eberly, 1999.

. Connected, Limited Device Configuration (JSR-30), Sun Microsystems, Inc.

« Connected, Limited Device Configuration 1.1 (JSR-139), Sun Microsystems, Inc.
. Connected Device Configuration (JSR-36), Sun Microsystems, Inc.

. Mobile Information Device Profile (JSR-37), Sun Microsystems, Inc.

. Mobile Information Device Profile 2.0 (JSR-118), Sun Microsystems, Inc.

. OpenGL 1.3 Specification, Silicon Graphics, Inc.

« PNG file format, World Wide Web Consortium (W3C).

Revision History

Date Version Description

22 Jun 2005 1.1 Maintenance Release

19 Nov 2003 10 Final Release

Changes from version 1.0to 1.1
New features:

. The Loader now supports all PNG color types and bit depths.

. The Node alphafactor now affects Sprite3D as well.

. Severa get methods added to alow all propertiesto be queried.
. OVERWRI TE hint flag added to G- aphi cs3D. bi ndTar get .

Removed or relaxed exceptions:

. hj ect 3D. renmoveAni mat i onTr ack no longer throws NullPointerException.

. Graphi cs3D. rel easeTar get nolonger throws Illegal StateException.

. Removed several deferred exception situationsin VertexBuffer.

. Largest possible target surface and viewport need no longer be square.

« Group. addChi | d no longer throws an exception if the Node is aready a child of the Group.

New or tightened exceptions:
. Target surfaces larger than maximum viewport are no longer allowed in Graphics3D.
Resolved interoperability issues:

. Default projection matrix is now required to be identity, with projection type GENERI C.
. TheLoader must now treat all file names as case sensitive.

. Mutable MIDP Images are treated as RGB, immutable Images as RGBA.

. Emphasized that flipping the sign of a quaternion when interpolating is not allowed.

. Downscaling of sprite and background imagesis now well specified.

. Clarified the role of the crop rectangle with scaled sprites.

http://www.geometrictools.com/Documentation/Quaternions.pdf
http://www.geometrictools.com/Documentation/KeyframeAnimation.pdf
http://java.sun.com/products/cldc/
http://jcp.org/en/jsr/detail?id=139
http://java.sun.com/products/cdc/
http://java.sun.com/products/midp/
http://jcp.org/jsr/detail/118.jsp
http://www.opengl.org/developers/documentation/version1_3/glspec13.pdf
http://www.w3.org/TR/PNG

Mobile 3D Graphics API

Acknowledgements

Version 1.1

The Mobile 3D Graphics API (JSR-184) Expert Group member companies are listed in the table below, aswell as the

names of those company representatives who contributed to the version 1.0 specification.

Contributors

Member Companies

Tomi Aarnio, Nokia (Editor)

Dirk Ambras, Siemens

Paul Beardow, Superscape

Mark Callow, HI Corporation
Frederic Condolo, In-Fusio

Sean Ellis, Superscape (Associate Editor)
Harri Holopainen, Hybrid Graphics
Jyri Huopaniemi, Nokia (Spec L ead)
James Irwin, Vodafone

Kari Kangas, Nokia

Matti Kantola, Nokia

Hidekazu Koizumi, Aplix

Ville Miettinen, Hybrid Graphics
Hannu Napari, Hybrid Graphics
Mark Patel, Motorola

Kari Pulli, Nokia

Kimmo Roimela, Nokia (Associate Editor)
Michael Steliaros, Superscape

Jacob Strom, Sony Ericsson

Mika Tammenkoski, Sumea

Mark Tarlton, Motorola

Doug Twilleager, Sun Microsystems
Brian Y oung, Research In Motion
Lincoln Wallen, MathEngine

Simon Wood, Superscape

Aplix

ARM

Banda Networks
Cingular Wireless
Cellon France
France Telecom
Fuetrek

HI Corporation
Hybrid Graphics
In-Fusio

Insignia Solutions
Intel

Intergrafx
MathEngine
Motorola

Nokia (Spec L ead)
Research In Motion
Siemens

Sony Ericsson
Sun Microsystems
Superscape
Symbian

Texas Instruments
3ddw

Vodafone

Zucotto Wireless

The following companies and individuals contributed to the version 1.1 specification:

Contributors

Member Companies

Tomi Aarnio, Nokia (Spec L ead, Editor)
Paul Beardow, Superscape

Mark Callow, HI Corporation

Sean Ellis, Superscape

Chris Grimm, ATI

Ville Miettinen, Hybrid Graphics

Kari Pulli, Nokia

Kimmo Roimela, Nokia (Associate Editor)
Keh-Li Sheng, Aplix

Michael Steliaros, Superscape

Jacob Strém, Sony Ericsson

Mark Tarlton, Motorola

Simon Wood, Superscape

Aplix

ATI

HI Corporation
Hybrid Graphics
Motorola

Nokia (Spec L ead)
Sony Ericsson
Superscape

Mobile 3D Graphics API

Version 1.1

Package javax.microedition.m3g

Defines an API for rendering three-dimensional (3D) graphics at interactive frame rates, including a scene graph
structure and a corresponding file format for efficient management and deployment of 3D content.

See:
Description

Class Summary

AnimationController

Controls the position, speed and weight of an animation sequence.

AnimationTrack

Associates a KeyframeSequence with an AnimationController and an animatable property.

Appearance A set of component objects that define the rendering attributes of a Mesh or Sprite3D.
Background Defines whether and how to clear the viewport.
Camera A scene graph node that defines the position of the viewer in the scene and the projection from

3D to 2D.

CompositingM ode

An Appearance component encapsulating per-pixel compositing attributes.

Fog An Appearance component encapsulating attributes for fogging.

Graphics3D A singleton 3D graphics context that can be bound to a rendering target.

Group A scene graph node that stores an unordered set of nodes asiits children.

Image2D A two-dimensional image that can be used as a texture, background or sprite image.

IndexBuffer An abstract class defining how to connect vertices to form a geometric object.

KeyframeSequence | Encapsulates animation data as a sequence of time-stamped, vector-valued keyframes.

Light A scene graph node that represents different kinds of light sources.

L oader Downloads and deserializes scene graph nodes and node components, as well as entire scene
graphs.

Material An Appearance component encapsul ating material attributes for lighting computations.

Mesh A scene graph node that represents a 3D object defined as a polygonal surface.

Mor phingMesh A scene graph node that represents a vertex morphing polygon mesh.

Node An abstract base class for all scene graph nodes.

Object3D An abstract base class for all objects that can be part of a 3D world.

PolygonM ode An Appearance component encapsulating polygon-level attributes.

Raylntersection

A Raylntersection object isfilled in by the pi ck methodsin Group.

SkinnedM esh

A scene graph node that represents a skeletally animated polygon mesh.

Sprite3D

A scene graph node that represents a 2-dimensional image with a 3D position.

Mobile 3D Graphics API Version 1.1

An Appearance component encapsulating a two-dimensional texture image and a set of

Texture2D . e . : .
exur attributes specifying how the image is to be applied on submeshes.

Transform A generic 4x4 floating point matrix, representing a transformation.

An abstract base class for Node and Texture2D, defining common methods for manipulating

Transformable .
node and texture transformations.

TriangleStripArray | TriangleStripArray defines an array of triangle strips.

An array of integer vectors representing vertex positions, normals, colors, or texture

VertexArray .

coordinates.

VertexBuffer holds references to VertexArrays that contain the positions, colors, normals, and
VertexBuffer . .

texture coordinates for a set of vertices.
World A special Group node that is atop-level container for scene graphs.

Package javax.microedition.m3g Description

Defines an API for rendering three-dimensional (3D) graphics at interactive frame rates, including a scene graph
structure and a corresponding file format for efficient management and deployment of 3D content.

The function of this API is to provide Java application programmers with an efficient and flexible means to display
animated 3D graphicsin real time on embedded devices. To cater for the needs of different types of applications, both an
easy-to-use scene graph structure and an immediate mode interface are provided. All animation and rendering features
are available for scene graph objects and individually rendered objects alike. The developer therefore does not need to
choose between the immediate mode and the scene graph, but rather can mix and match both within the same application.

Besides the API itself, a corresponding file format for efficient storage and transfer of all necessary datais aso defined.

This data includes meshes, textures, scene hierarchies, material properties, animation keyframes, and so on. Dataiis
written into afile by content creation tools on a PC, and loaded into the API through the Loader class.

Getting Started

The example applications at the end of this page provide a good means to get a quick overview of this API. Of the
individual classes, G aphi cs3Dis perhaps the most important, because all rendering is done there. The Wor | d classis
crucial because it serves as the root of the scene graph structure. Cbj ect 3Disthe base class of all objects that can be

rendered or loaded from afile, and also the place where animations are applied. We aso recommend you to read the rest
of this package description.

Package Discovery

Because of its optional nature, this APl may not always be available on every platform. Each profile and platform may
have their own methods for J2ME package discovery asthereis no universal method existing at this time. An additional
method for package discovery of the Mobile 3D Graphics API is by using a system properties query. To discover this
package, call Syst em get Pr operty withakey of m croedi ti on. nBg. ver si on. If the APl is present, the
value returned is the version of the API (thisversionis"1.1", and the previous version was "1.0"). If the API is not
present then the key is also not present and nul | will be returned.

Mobile 3D Graphics API Version 1.1

Documentation Conventions
The following general conventions are observed in the documentation of this API.

. Coordinate systems. All 2D coordinate systems follow the MIDP convention where the origin isin the upper
left corner and integer coordinates are at pixel boundaries. By default, 3D coordinate systems are right-handed,
and rotations abey the right-hand rule: looking along the positive axis of rotation, positive angles are clockwise.
The camera coordinate system follows the OpenGL convention where the view direction coincides with the
negative z-axis, the positive x-axis points right, and the positive y-axis points up. However, the application is
freeto set up left-handed 3D coordinate systems by use of transformation matrices.

. Matrix notation. Matrices are denoted as upper case bold letters, and vectors as lower case bold letters. For
example, M denotes a matrix and v a vector. Matrices have 4x4 and vectors 4 elements, unless stated otherwise.
Vectors are always column vectors, and are consequently on the right hand side when multiplied with a matrix:
V'=Mv.

. Numericintervals. Closed intervals are denoted with square brackets and open intervals with round brackets.
For example, [0, 10) denotes the values from zero to ten, including zero but not including ten. Depending on the
context, a numeric interval may consist of real numbers or integers.

. OpenGL references. All references to OpenGL in this specification are to version 1.3. See Related Literature
on the overview page.

. Diagram notation. The following common notation is used in diagrams that involve scene graph nodes and
node components.

Grey objects are "Nodes" -

n groups or children of groups White objects are components

/ » Component .
P Arrows indicate references.

| These components are
m referenced by the node.
P

Component » Component

\ 4

Components can reference other | /
components, and nodes can !
reference other nodes. |

General Implementation Requirements

Rasterization

By default, vertices, indices, triangles, and fragments are processed asin OpenGL. In particular, triangle rasterization is
done as specified in section 3.5.1 of the OpenGL specification.

The reference geometry and fragment pipelines are shown below. A rough mapping of Mesh components and other
objectsto the pipeline stages is also shown. Note that the ordering of the stages is the same asin OpenGL.
Implementations may optimize their operation by doing thingsin a different order, but only if the result is exactly the
same as it would be with the reference pipelines.

Mobile 3D Graphics API Version 1.1

normals (colors >

texcoord
scale & bias

position
scale & bias

: vertex color "
N bt tracking
M enable
M*v
y A
v
: two-sided .
: lightin Normalization Material
M*S*v :‘ g g ¢ ateria
Texture2D - —>
IndexBuffer " Light Lighting |«———
Triangle < “0
Assembly < O
e S i lighting Graphl_qs?»p PongonMode ComposmngMode
; .. . enable A SR B
2 shading) | . (projection e ’ (" viewport, winding,
mode matrix e . depth range cullmg
. " — Division Ef Viewport Triangle : Triangle
Flatshading _> v P*v [~ Clipping | — by w —> Mapping _> Culling —> Rasterization
...... S Camera : " rendering :
PongonMode e - e - . enable
Fragment
Pipeline
Geometry B Graphics3D
Plpellne ERTRPPRR .
SIS enable o ’ ’
. Texel Texture . : Depth Buffer Color Buffer
————»| Generation ———» Application : B
——|———® (UNITO) (UNITO) | .
mode, color, .
color mode, :
: density, |
mode, : nearfar | -
color :
g Texel Texture |[:
————»| Generation ——»{ Application —»| Fog F—® Alpha Test —»{ Depth Test ——®
—— | (UNIT1) (UNIT1) |: : :
e enable E""i'_...enable.“} threshold 5---{‘.‘enable."_?
Image2D Texture2b o e R

CompositingMode

Mobile 3D Graphics API Version 1.1

Numeric Range and Accuracy

The floating point format used for input and output is the standard | EEE float, having an 8-bit exponent and a 24-bit
mantissa normalized to [1.0, 2.0). To facilitate efficient operation without floating point hardware, implementations are
allowed to substitute more constrained representations internally. The internal format, and conversion from the input
format to the internal format, must satisfy the following:

. The numeric range must be at least R = [-263, 263]. Vaues outside of R may produce undefined resullts.
. The minimum absolute value must be at most d = 2-63, Smaller absolute values may be flushed to zero.
. Theprecision must be at least p = 16 significant bitsfor all values x in R, abs(x) >= d.

These requirements also apply to elementary arithmetic operations, which include addition, subtraction and
multiplication. The operands are then taken to be in the internal format rather than the input format, and the value against
which the precision is measured is taken to be the mathematically correct result, rounded to the nearest representable
value. In addition, elementary arithmetic operations must satisfy the following:

« X:0=0-x=0,foral vauesxinR.
« 1-x=x-1=x,foralvauesxinR.
« X+0=0+x=x, foral valuesxinR.
. 00=1

These requirements apply to all operationsin this API, except rasterization and per-fragment operations, such as depth
buffering, blending, and interpolation of colors and texture coordinates. In particular, the requirements do apply to node
transformations in the scene graph; vertex coordinate, texture coordinate and normal vector transformations; picking;
keyframe interpolation; mesh morphing; skinning; and all methods in the Transform class.

Blending, interpolation, comparisons and other operations on color, alpha and (screen-space) depth values must have a
numeric range, minimum absolute value, and precision at least equivalent to the corresponding channel in the frame
buffer. For example, an 8-bit color channel has R = [0, 1], d = 1/255, and p = 8. Within that domain, the rules are as
specified above, with two additional requirements:

« All operations must be done component-wise and clamped to [0, 1].
. a-s+(1-a) -s=sforal vaduesaand sin [0, 1].

Loss of precision is alowed when converting the result of the operation into the frame buffer format, which is commonly
fixed-point. The higher-precision internal value may be rounded to either of the two closest representable valuesin the
frame buffer format. Note that the final precision will get progressively worse as the intermediate result approaches zero.
In the worst case, al significant bits except the leading zero or one will be lost.

Correspondence of Getters and Setters

When querying the value of some property in the API, the returned value does not need to be exactly the same that was
set with the corresponding set method. Instead, it may be any value that produces an equivalent result. The returned
values are also hot required to be in any "canonical" or "normalized" form. In the case of node orientation, for example,
there are a number of different axis-angle combinations that specify the same orientation, and any one of them may be
returned.

The returned value may also be an approximation of the original value, as long as the accuracy constraints for the
particular type of data are satisfied.

10

Mobile 3D Graphics API Version 1.1

References to Objects

Object3D instances are dways held by reference rather than copied in. Changes to an Object3D therefore have
immediate effect in any referring Object3D. For example, changes to an Image2D attached to a Background take effect
without having to call the Backgr ound. set | mage method again.

Objects that are not instances of Object3D are copied in by default. Any exceptions to thisrule are clearly documented in
the individual method descriptions. Note that arrays are Objects in Java, and are therefore copied in rather than held by
reference. Also note that the Transform class, although defined in this API, is not derived from Object3D.

To clarify the handling of arrays, consider a hypothetical class X that takes in an Object3D array in its constructor. The
constructor copiesin the array, but stores the elements of the array by reference. Thus, replacing one Object3D in the
array with another will have no effect on the instance of X that was just created. Indeed, the application may freely reuse
the array or leave it for garbage collection. By contrast, any modifications to the actual Object3D instances that were
contained in the array will automatically be reflected in the new instance of X.

Deferred exceptions

The scene graph aswell asindividual objects are allowed to remain in an incomplete or invalid state for aslong as their
contents are not actually needed by the implementation (for rendering or some other purpose). An Illegal StateException
is thrown only when the objects really must be valid. Thiskind of deferred error checking is necessary for aggregate
objects, whose validity depends on other objects that the application can add, remove or change at any time. There are
four operations in this API that can throw these deferred exceptions: ther ender methodsin Graphics3D, the pi ck
methods in Group, theal i gn method in Node, and the ani mat e method in Object3D.

The fact that deferred exceptions may or may not be thrown, depending on whether the implementation actually needs
the offending data, can cause varying behavior between different implementations. For example, some implementations
may use visibility culling to remove objects from further processing without having to check their vertex arrays, while
others may use a brute-force approach and push all objects through the rendering pipeline. To reduce this variability
without restricting innovation, implementations must obey the following rules when rendering or picking:

1. Objectsthat are out of scope or disabled must not be validated.

2. Objectsthat are not rendered or picked, even though they are enabled and within scope, may be validated.
3. Any datathat are required in order for rendering or picking to produce meaningful results must be validated.

A Node can be disabled by clearing its rendering and picking enable flags. A submesh can be disabled by setting its
Appearance to null. By definition, al objects are disabled when rendering from a Camera that has zero view volume.

Thread Safety

I mplementations must not crash or throw an exception as aresult of being accessed from multiple threads at the same
time. However, the results of the requested operation in that case may be unpredictable.

No method in this API is allowed to block waiting for aresource, such as arendering target, to be released. Thisisto
guarantee that no deadlock situations will occur. Also, any resources required by a method must be rel eased upon return.
No method is allowed to leave its host object or other resources locked.

Pixel Format Conversion

Several different pixel formats are supported in rendering targets, textures, sprites, and background images. Depending

11

Mobile 3D Graphics API Version 1.1

on the case, a mismatch between the source and destination pixel formats may require aformat conversion to be done.
The genera rulesthat are obeyed throughout the API are as follows:

. Luminance to RGB: The luminance value is replicated to each of R, G and B.

. Luminance to Alpha: The luminance valueis copied in as the alpha value.

. RGBA to Alpha: The alphavalueis copied in, and the RGB values are discarded.

. RGB to Alpha: Unspecified, but must take all components into account. For example, (R+G+B) / 3.

. RGB to Luminance: Unspecified, but must take all components into account. For example, (R+G+B) / 3.
. Alphato Luminance: The alphavalueis copied in as the luminance value.

. Any missing luminance, color or apha components are set to 1.0, unless explicitly stated otherwise.

More specific rules related to pixel formats are specified on a case-by-case basis in classes dealing with images and the
frame buffer. These include Graphics3D, Image2D, Texture2D, CompositingM ode and Background.

Example Applications

Two example MIDlets using the API are presented below. The first MIDIet is a pure immediate mode application that
displays arotating, texture-mapped cube. It shows how to initialize a 3D graphics context, bind it to a MIDP Canvas, and
render some simple content with it. It also illustrates how to create a Mesh object "manually", that is, how to set up the
coordinates, triangle connectivity, texture maps, and materials. In practice, thisis usually not done programmatically, but
with a 3D modeling tool. Loading a ready-made Mesh object with all the necessary attributes is a simple matter of calling
thel oad method in Loader.

The other example MIDlet is a retained mode application that plays back a ready-made animation that it downloads over
http.

Examples:
(1) Immediate mode example M1Dlet: Class MyCanvas.

i mport javax.mcroedition.lcdui.?*;
i mport javax. m croedition.nBg.*;

public class MyCanvas extends Canvas ({

private G aphics3D i GBD;

private Canera i Caner a;

private Light i Li ght;

private fl oat i Angl e = 0. Of;

private Transform i Transform = new Transform();

private Background i Background = new Background();

private VertexBuffer i Vb; /1l positions, nornmals, colors, texcoords
private | ndexBuffer ilb; /1 indices to iVB, formng triangle strips
private Appearance i Appearance; // material, texture, conpositing,
private Material i Material = new Material ();

private | mage i | mage;

/**

* Construct the Displayable.
*/
public MyCanvas() {

/1l set up this Displayable to listen to conmand events

set CommandLi st ener (new CommrandLi st ener () {

public void conmandActi on(Command c, Displayable d) {
if (c.getCommandType() == Command. EXIT) ({
/'l exit the M D et

12

Mobile 3D Graphics API Version 1.1

M Dl et Mai n. qui t App() ;

}
}
1)
try {
init();
}

cat ch(Exception e) {
e.printStackTrace();
}
}

/**
* Conponent initialization
*/
private void init() throws Exception ({
/1 add the Exit command
addCommand(new Command("Exit", Conmand. EXIT, 1));

/1l get the singleton G aphics3D instance
i GBD = G aphi cs3D. getlnstance();

/'l create a canera
i Canera = new Canera();

i Caner a. set Per specti ve(60. Of, /1 field of view
(float)getWdth()/ (float)getHeight(), // aspectRatio
1. Of , /1 near clipping plane

1000.0f); // far clipping plane

/1 create a |ight

i Li ght = new Light();

i Li ght.setColor (Oxffffff); /1 white |ight
i Li ght.setlntensity(1l.25f); /'l overbright

/1 init some arrays for our object (cube)

/1l Each line in this array declaration represents a triangle strip for
/'l one side of a cube. The only primtive we can draw with is the

/1 triangle strip so if we want to nake a cube with hard edges we

/1l need to construct one triangle strip per face of the cube.
//1*****0

// * % *
// * * *
// * * %
// 3*****2

/1 The ascii diagram above represents the vertices in the first line
[l (the first tri-strip)
short[] vert = {

10, 10, 10, -10, 10, 10, 10,-10, 10, -10,-10, 10, /1 front
-10, 10,-10, 10, 10,-10, -10,-10,-10, 10, - 10, - 10, /'l back
-10, 10, 10, -10, 10,-10, -10,-10, 10, -10,-10,-10, Il left

10, 10, -10, 10, 10, 10, 10, -10, - 10, 10,-10, 10, /1 right

10, 10,-10, -10, 10,-10, 10, 10, 10, -10, 10, 10, /'l top

10,-10, 10, -10,-10, 10, 10,-10,-10, -10,-10,-10 }; // bottom

/] create a VertexArray to hold the vertices for the object
VertexArray vertArray = new VertexArray(vert.length / 3, 3, 2);
vertArray.set (0, vert.length/3, vert);

/'l The per-vertex normals for the cube; these match with the vertices
/'l above. Each normal is perpendicular to the surface of the object at
/1 the correspondi ng vertex.

13

Mobile 3D Graphics API

byte[] norm = {

0, 0, 127, 0, 0, 127, 0, 0, 127, 0, 0, 127,
0, 0,-127, 0, 0,-127, 0, 0,-127, 0, 0,-127,
-127, 0, O, -127, 0, O, -127, 0, O, -127, 0, O,
127, 0, O, 127, 0, O, 127, 0, O, 127, 0, O,
0, 127, 0, 0, 127, 0, 0, 127, 0, 0, 127, 0,
0,-127, O, 0,-127, 0, 0,-127, 0, 0,-127, 0 };

/'l create a vertex array for the normals of the object
VertexArray normArray = new VertexArray(normlength / 3, 3, 1);
normArray. set (0, normlength/3, norm;

/'l per vertex texture coordinates
short[] tex = {

1, O, 0, 0, 1, 1, 0, 1,
1, O, 0, O, 1, 1, 0, 1,
1, O, 0, O, 1, 1, 0, 1,
1, O, 0, O, 1, 1, 0, 1,
1, O, 0, 0, 1, 1, 0, 1,
1, O, 0, O, 1, 1, 0, 11};

/'l create a vertex array for the texture coordi nates of the object
VertexArray texArray = new VertexArray(tex.length / 2, 2, 2);
texArray.set (0, tex.length/2, tex);

/1 the length of each triangle strip
int[] stripLen = { 4, 4, 4, 4, 4, 4 };

/'l create the VertexBuffer for our object
VertexBuffer vb = iVb = new VertexBuffer();

vb. set Positions(vertArray, 1.0f, null); /1 unit scale, zero bias
vb. set Nor mal s(nor mAr r ay) ;
vb. set TexCoords(0, texArray, 1.0f, null); /1 unit scale, zero bias

/'l create the index buffer for our object (this tells howto
/1l create triangle strips fromthe contents of the vertex buffer).
ilb = new TriangleStripArray(0, stripLen);

/1 load the image for the texture
i | mage = | mage. createl mage("/texture.png");

/'l create the I nage2D (we need this so we can nake a Texture2D)
I mage2D i mage2D = new | nage2D(| mage2D. RGB, il nage);

/'l create the Texture2D and enabl e m pnappi ng
/'l texture color is to be nodulated with the Iit material color
Texture2D texture = new Texture2D(image2D);
texture.setFiltering(Texture2D. FI LTER NEAREST,
Text ur e2D. FI LTER _NEAREST) ;

texture. set Wappi ng(Text ur e2D. WRAP_CLAMP,

Text ur e2D. WRAP_CLAMP) ;
texture. set Bl endi ng(Text ur e2D. FUNC_MODULATE) ;

/'l create the appearance

i Appear ance = new Appear ance();

i Appear ance. set Texture(0, texture);

i Appear ance. set Materi al (i Material);

i Materi al . set Col or (Materi al . Dl FFUSE, OxFFFFFFFF); [l white
i Materi al . set Col or (Materi al . SPECULAR, OxFFFFFFFF); // white
i Mat eri al . set Shi ni ness(100. 0f) ;

i Backgr ound. set Col or (0xf54588); // set the background col or

14

Version 1.1

Mobile 3D Graphics API

}

/**

* Paint the scene.

*/

protected void paint(Gaphics g) {

/1 Bind the Graphics of this Canvas to our G aphics3D. The

/1 viewport is automatically set to cover the entire clipping
/'l rectangle of the Gaphics object. The paraneters indicate
/1 that z-buffering, dithering and true color rendering are
/'l enabl ed, but antialiasing is disabled.

i G3D. bi ndTarget (g, true,
G aphi ¢s3D. DI THER |
G aphi ¢cs3D. TRUE_COLCR) ;

/'l clear the color and depth buffers
i G3D. cl ear (i Background) ;

/1l set up the canera in the desired position
Transformtransform = new Transform);
transf orm post Transl at e(0. 0f , 0. 0f, 30.0f);
i G3D. set Canera(i Canera, transform;

/1l set up a "headlight": a directional Iight shining
/1 fromthe direction of the canera

i G3D. reset Li ghts();

i G3D. addLi ght (i Li ght, transform;

/] update our transform (this will give us a rotating cube)

i Angl e += 1. 0f;

i Transform setldentity();

i Transf orm post Rot at e(i Angl e, /'l rotate 1 degree per frane
1.0f, 1.0f, 1.0f); // rotate around this axis

/'l Render our cube. We provide the vertex and index buffers
/1l to specify the geonetry; the appearance so we know what
/1 material and texture to use; and the transformto tell
/1 where to render the object

i G3D. render (i Vb, ilb, iAppearance, iTransform;

/1 flush
i GBD. rel easeTarget ();

Version 1.1

(2) Immediate mode example MIDlet: ClassMIDletMain.

{

i mport javax.mcroedition. mdlet.*;
i mport javax. mcroedition.|cdui.*;
i mport java.util.*;

public class MD etMiin extends M D et

static M Dl et Mai n instance;
MyCanvas di spl ayabl e = new MyCanvas();
Timer i Timer = new Tiner();

/**

15

Mobile 3D Graphics API Version 1.1

* Construct the mdlet.
=/
public MD etMin() {
this.instance = this;
}

/**
* Mai n net hod.
*/
public void startApp() {
Di spl ay. get Di spl ay(this).setCurrent (di spl ayabl e);
i Ti mer. schedul e(new MyTi mer Task(), 0, 40);

}
/**
* Handl e pausing the MDlet.
*/
public void pauseApp() {
}
/**
* Handl e destroying the MDl et.
*/
public void destroyApp(bool ean unconditional) {
}
/**
* Quit the MDet.
*/

public static void quitApp() {
i nstance. destroyApp(true);
i nstance. noti fyDestroyed();
i nstance = nul |

}

/**
* Qur timer task for providing animtion.
*/
cl ass MyTi ner Task extends Ti mer Task {
public void run() {
if(displayable !'=null) {
di spl ayabl e. repai nt();
}

(3) Retained mode example M1Dlet.

croedition.mdlet. MD et;
croedition.mdlet. M D et St at eChangeExcepti on

I mport j avax.
i mport javax.

3. 3.

i mport javax.
I mport j avax.
i mport javax.
i mport javax.
i mport javax.
I nport javax.

croedi tion. | cdui.G aphics;
croedi tion. | cdui.Display;
croedition. | cdui.D spl ayabl e;
croedition. | cdui.Comand;
croedition. | cdui.Canvas;
croedition. | cdui.CommandLi st ener;

3.3 33 3 3

i nport java.util.Tinmer;

16

Mobile 3D Graphics API

i mport java.util.TimerTask;
I nport javax. m croedition.nBg.*;

public class JesterTestlet extends MD et inplenents CommandLi stener

{
private Display nyDi splay = null;
private JesterCanvas myCanvas = nul | ;

private Tinmer nyRefreshTiner = new Tiner();
private Tinmer Task nyRefreshTask = null;

private Command exit Comand = new Command("Exit", Conmand.|TEM 1);

private World nyWrld = null;

/**
* JesterTestlet - default constructor.
*/
public JesterTestlet()
{
/1 Set up the user interface.
myDi spl ay = Display. getDi splay(this);
myCanvas = new Jest er Canvas(this);
myCanvas. set ConmandLi st ener (t hi s);
myCanvas. addConmand(exi t Command) ;

}
/**
* start App()
*/
public void startApp() throws M Dl et St at eChangeExcepti on

{
myDi spl ay. set Current (myCanvas) ;

try
{
// Load a file.
oj ect3D[] roots =
Loader .| oad("http://ww. exanpl e. com nB8g/ sanpl es/ si npl e. nBg") ;
/'l Assunme the world is the first root node | oaded.
nyWorld = (World)roots[0];
/1 Force a repaint so that we get the update |oop started.
myCanvas. repai nt();
}
cat ch(Exception e)
{
e.printStackTrace();
}
}
/**
* pauseApp()
4/
public void pauseApp()
{
/'l Rel ease resources.
myWrld = null;
}

17

Version 1.1

Mobile 3D Graphics API Version 1.1

/**
* destroyApp()
*/
public void destroyApp(bool ean unconditional) throws M D et St at eChangeException

{

myRef reshTi mer . cancel () ;
myRefreshTi mer = nul | ;

/'l Rel ease resources.

myWorld = nul | ;
}
/**
* M Dl et paint nethod.
*/
public void paint (G aphics Q)
{
/1 We are not fully initialised yet; just return.
if(myCanvas == null || myWorld == null)
return;
/'l Delete any pending refresh tasks.
i f(nmyRefreshTask != null)
{
nyRef r eshTask. cancel ();
nyRefreshTask = nul | ;
}
/1l Get the current tine.
long currentTinme = SystemcurrentTimeM I lis();
/1 Update the world to the current tine.
int validity = nyWrld.animate((int)currentTi ne);
/'l Render to our G aphics.
G aphi ¢s3D nyG aphi cs3D = Graphi cs3D. get | nst ance() ;
my G aphi cs3D. bi ndTar get (g) ;
myG aphi ¢cs3D. render (nyWor | d) ;
my G aphi cs3D. rel easeTarget () ;
/1 Subtract time taken to do the update.
validity -= SystemcurrentTimeMIlis() - currentTine;
if(validity < 1)
{ /1 The validity is too snmall; allow a m ni rum of 1ns.
validity = 1;
}
/1 If the validity is not infinite schedule a refresh task.
if(validity < Ox7fffffff)
{
/]l Create a new refresh task.
nyRefreshTask = new RefreshTask();
/1 Schedul e an updat e.
myRef reshTi mer . schedul e(nyRefreshTask, validity);
}
}
/**

* Handl e conmmands.
*/
public void commandActi on(Command cnd, Di spl ayabl e di sp)

18

Mobile 3D Graphics API

{
if (cmd == exit Conmand)
{
try
{
dest royApp(fal se);
noti fyDestroyed();
}
cat ch(Exception e)
{
e.printStackTrace();
}
}
}
/**
* Inner class for refreshing the view
*/

private class RefreshTask extends Ti mer Task

{

public void run()

{

/'l Get the canvas to repaint itself.
myCanvas. repai nt();

}

/**

* Inner class for handling the canvas.

= Testlet;

*/
cl ass JesterCanvas extends Canvas
{
JesterTestl et nyTestlet;
/**
* Construct a new canvas
*/
JesterCanvas(JesterTestl et Testlet) { nyTestl et
/**
* Initialize self.
*/
void init() { }
/**
* Cl eanup and destroy.
*/
void destroy() { }
/**
* Ask nyTestlet to paint itself
*/
protected void paint(Gaphics g) { nmyTestlet.paint(g); }
}

}

Version 1.1

19

Mobile 3D Graphics API

Class Hierarchy

o classjavalang.Object
o classjavax.microedition.m3g.Graphics3D
o classjavax.microedition.m3g.L oader
o classjavax.microedition.m3g.0bject3D
o classjavax.microedition.m3g.AnimationController
o classjavax.microedition.m3g.AnimationTrack
o classjavax.microedition.m3g.Appear ance
o classjavax.microedition.m3g.Background
o classjavax.microedition.m3g.CompositingM ode
o classjavax.microedition.m3g.Fog
o classjavax.microedition.m3g.lmage2D
o classjavax.microedition.m3g.l ndexBuffer
o classjavax.microedition.m3g.TriangleStripArray
o classjavax.microedition.m3g.K eyframeSequence
o classjavax.microedition.m3g.M aterial
o classjavax.microedition.m3g.PolygonM ode
o classjavax.microedition.m3g.Transformable
o classjavax.microedition.m3g.Node
o classjavax.microedition.m3g.Camera
o classjavax.microedition.m3g.Group
o classjavax.microedition.m3g.World
o classjavax.microedition.m3g.Light
o Cclassjavax.microedition.m3g.M esh
o classjavax.microedition.m3g.M or phingM esh
o classjavax.microedition.m3g.SkinnedM esh
o classjavax.microedition.m3g.Sprite3D
o classjavax.microedition.m3g.Texture2D
o classjavax.microedition.m3g.VertexArray
o classjavax.microedition.m3g.VertexBuffer
o classjavax.microedition.m3g.Rayl nter section
o classjavax.microedition.m3g.Transform

20

Version 1.1

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class AnimationController

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedition. nBg. Ani mati onControl | er

public class AnimationController
extends Object3D

Controls the position, speed and weight of an animation sequence.

In anything other than the simplest scenes, an animation sequence will require control of more than one property of more
than one object. For example, ajointed figure performing a single gesture is usually thought of as a single animation, yet
it involves the coordinated control of the position and orientation of many different objects.

We define an animation sequence to mean a set of individual AnimationTracks that are controlled by asingle
AnimationController. Each AnimationTrack object contains all the data required to control a single animatable property
on one target object.

An AnimationController object enables its associated animation sequence as a whole to be paused, stopped, restarted,
fast-forwarded, rewound, arbitrarily repositioned, or deactivated. More formally, it defines alinear mapping from world
time to sequence time.

The detailed behaviour of how the data flows through the animation system as a whole is documented in the
Ani mat i onTr ack class.

Animation application

In both immediate and retained mode, animations are explicitly applied to target objects by calling the ani mat e method
on the target Object3D itself. This re-evaluates the values of all object properties that have one or more animations
attached. Animations are also applied to the children of the target object, so the application is free to choose between
calling myWor | d. ani mat e to animate everything in nyWbr | d at once, or applying animations to more fine-grained
groups of objectsindividually.

Animation controllers have an active interval, specified by minimum and maximum world time values, during which the
animation controller is active. Animations controlled by inactive animation controllers have no effect on their target
objects and are simply ignored during animation application.

Animation weighting

Each animation controller has aweight associated with it. The contributions of al active animations targeting the same
property at the same time are blended together by their respective weights. Formally, the value of a scalar property P asa
function of weights w; and contributions P; is:

P=sum[w;P;]

21

Mobile 3D Graphics API Version 1.1

For vector-valued properties, the above formulais applied for each vector component separately.

For most types of animation, the simple weighted sum as shown above is sufficient, but for orientation values the
implementation is required to normalize the resulting quaternion. The quaternion must be normalized even if thereisonly
one active animation controller, and that controller has unit weight, so that no actual weighting or blending takes place.
Note also that the individual contributing quaternions P; must not be normalized prior to weighting.

Timing and speed control

AnimationController specifies alinear mapping between world time, passed in to Cbj ect 3D. ani mat e, and sequence
timethat is used in sampling the associated keyframe data.

The sequencetime is calculated directly from the given world time at each call to ani mat e, instead of storing it
internally. Thisisto avoid undesirable accumulation of rounding errors and any artifacts potentially resulting from that. It
also simplifies the usage of the animation system by making it effectively stateless (as opposed to atraditional state
machine design).

The mapping from world time to sequence time is parameterized by three constants, specified in AnimationController,
and one variable, the world time, that is passed in to ani mat e. The formulafor calculating the sequence time tg

corresponding to agiven world timet,, is:

ts=tger + S (ty - twrer)
where

ts = the computed sequence time

t,, = the given world time

tgef = the reference sequence time

twref = the reference world time

s = the speed; sequence time per world time

Thereference point (tyef tser) 1S Specified with the set Posi t i on method and the speed with the set Speed method
(note that setting the speed may also change the reference point).

Sequence time can be visualized, in a coordinate system where world time is on the horizontal and sequence time on the
vertical axis, as aline having slope s and passing through the point (t,ef, tsef)-

As an example of the relationship between world time and sequence time, imagine a world where the current time is 5000
milliseconds since the start. An animation was started (from 0 ms sequence time) at 3000 ms, running at half speed. The
animation was started 2000 ms ago, but because the speed is 0.5, the actual required sequence time tg. is 1000 ms. Here,

we would have t,, = 5000 ms, t,,¢ = 3000 ms, tge = 0 Ms, and s= 0.5 in the formula above.

Note that the unit of time is not explicitly specified anywhere in the API or the file format. It is strongly recommended
that applications and content creation tools express times in milliseconds by default. Arbitrary units can, however, be
used in specific applications if mandated by range or precision requirements.

22

Mobile 3D Graphics API Version 1.1

Synchronized animation

We assume that synchronization of animation with other mediatypesis only based on the world time passed from the
controlling application. No synchronization events or other mechanisms are provided for this purpose. In the case of
synchronizing animation to music, for example, the current elapsed time is often available directly from the music player
library.

Example usage

As an example of using animation, consider a case where we want alight source to pulsate between red and green,
moving along a curved path. In both immediate and retained mode, this involves creating keyframe sequences and
associating them with the light node, asillustrated in Example 1 below.

To apply the animation to the light object in our rendering loop, we must call the ani mat e method, as shownin
Example 2.

See Also:

Binary format, Ani mat i onTr ack, KeyfraneSequence, Obj ect 3D
Examples:
(2) Creating an animation.

Light [ight = new Light(); /]l Create a |ight node

/1 Load a notion path froma stream assuming it's the first
/'l object there

Cbj ect 3D[] objects = Loader.|oad("http://ww.ex.com ex. nBg");
Keyf raneSequence notion = (KeyfranmeSequence) objects[0];

/'l Create a col or keyframe sequence, with keyfranes at 0 ns
/1 and 500 ns, and a total duration of 1000 ns. The ani nate
/1 method will throw an exception if it encounters a

/'l KeyfranmeSequence whose duration has not been set or whose
/'l keyfranes are out of order. Note that the Loader

/1 automatically validates any sequences that are | oaded from
/[l a file.

Keyf raneSequence bl inking = new KeyframeSequence(2, 3,

KeyfraneSequence. LI NEAR) ;
bl i nki ng. set Keyframe(0, 0, newfloat[] { 1.0f, 0.0f, 0.0f });
bl i nki ng. set Keyfranme(1, 500, new float[] { 0.0f, 1.0f, 0.0f });
bl i nki ng. set Dur ati on(1000);

Ani mati onTrack blink = new Ani mati onTrack(bl i nki ng,
Ani mati onTrack. COLOR) ;
Ani mati onTrack nove = new Ani mati onTrack(noti on,
Ani mat i onTr ack. TRANSLATI ON) ;
I'ight.addAni mati onTrack(bl i nk);
| i ght.addAni mati onTr ack(move);

// Create an AnimationController and make it control both the
/1 blinking and the novenent of our I|ight

Ani mati onController |ightAnim= new Animati onController();
blink.setController(lightAninm;

23

Mobile 3D Graphics API Version 1.1

nmove. set Control ler(lightAnin;

[l Start the animation when world tinme reaches 2 seconds, stop
/'l at 5 s. There is only one reference point for this

/1 ani mation: sequence tine nmust be zero at world tinme 2000

/1 ms. The animation will be running at normal speed (1.0, the
/] default).

I'i ght Ani m set Acti vel nterval (2000, 5000);
I'i ght Ani m set Position(0, 2000);

(2) Applying the animation during rendering.

appTi me += 30; /1l advance tine by 30 ns each frane
I'ight.ani mat e(appTi ne) ;

[l Assunme 'nyG aphics3D is the G aphics3D object we draw into
/1 1n inmrediate node, node transfornms are ignored, so we get
/1 our animated transformation into a [ocal Transform object,
[l "lightTowrld". As its nane inplies, the transformation is
/1 fromthe Light node's |ocal coordinates to world space

I'ight.getTransforn(light ToWwrld);
my G aphi cs3D. reset Li ght s();
my G- aphi cs3D. addLi ght (1i ght, |ight Towrld);

Constructor Summary

Ani mati onController()
Creates a new AnimationController object.

Method Summary

int |get Activel nterval End()

Retrieves the ending time of the current active interval of this animation controller, in world time
units.

int ([get Activelnterval Start ()

Retrieves the starting time of the current active interval of this animation controller, in world time
units.

float (getPosition(int worldTine)
Retrieves the sequence time that corresponds to the given world time.

int (get Ref Wor | dTi ne()
Returns the current reference world time.

fl oat |get Speed()
Retrieves the currently set playback speed of this animation controller.

float |get Wei ght ()
Retrieves the currently set blending weight for this animation controller.

void |set Activelnterval (int start, int end)
Sets the world time interval during which this animation controller is active.

24

Mobile 3D Graphics API

Version 1.1

void |setPosition(float sequenceTine, int worldTine)
Sets anew playback position, relative to world time, for this animation controller.

voi d |set Speed(fl oat speed, int worldTi ne)
Sets anew playback speed for this animation.

voi d |set Wi ght (fl oat wei ght)
Sets the blending weight for this animation controller.

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Constructor Detail

AnimationController

public AnimationController()

Creates a new AnimationController object. The default values for the new object are:

activeinterval: [0, 0) (always active)
blending weight: 1.0

Speed: 1.0

reference point: (0, 0)

[} [} [} [}

Method Detail

setActivelnterval

public void setActivelnterval (int start,
int end)

Sets the world time interval during which this animation controller is active.

This animation controller will subsequently be active when theworldtimetissuchthatstart <=t <
end, and inactive outside of that range. As a special case, if st art and end are set to the same value, this

animation controller is always active.

Note that changing the active interval has no effect on the mapping from world time to sequence time.

Parameters:
start -thestarting time of the active interval, in world time units (inclusive)
end - the ending time of the active interval, in world time units (exclusive)
Throws:

25

Mobile 3D Graphics API Version 1.1

java.lang. ||| egal Argunent Exception-ifstart > end
See Also:
get Activelnterval Start,get Acti vel nterval End

getActivelntervalStart
public int getActivelnterval Start ()

Retrieves the starting time of the current active interval of this animation controller, in world time units. The
value returned is the same that was last set with set Act i vel nt er val , or if it has not been called yet, the
default value set at construction.

Returns:

the starting time of the active interval
See Also:

set Acti vel nt erval

getActivelntervalEnd
public int getActivelnterval End()

Retrieves the ending time of the current active interval of this animation controller, in world time units. The
value returned is the same that was last set with set Act i vel nt er val , or if it has not been called yet, the
default value set at construction.

Returns:

the ending time of the active interval
See Also:

set Acti vel nterval

setSpeed

public void setSpeed(float speed,
i nt worl dTi nme)

Sets anew playback speed for this animation. The speed is set as afactor of the nominal speed of the animation:
1.0isnormal playback speed (as specified by the keyframe timesin the associated animation tracks), 2.0 is
double speed, and -1.0 is reverse playback at normal speed. A speed of 0.0 freezes the animation.

The speed setting effectively specifies how much to advance the internal playback position of this animation for
agiven increment in the global world time.

The internal reference point is modified so that sequence time at the given world time remains unchanged. This
allows the application to change the speed without causing the animation to "jump" forward or backward. To get
the desired effect, the application should pass its current world time to this method. Thisis the time that the
application has most recently used in ani mat e, or the time that it is next going to use.

The reference point (t,¢f, tsef) and Speed (s) are updated based on the given world time and speed as follows:

26

Mobile 3D Graphics API Version 1.1

tyref = WorldTime
tger = getPosition(worldTime)
S = speed

Note that the computation of the new reference sequence time takes place before updating the speed. See the
class description for the formulathat get Posi t i on uses, and for more discussion on animation timing.

Parameters:
speed - new playback speed; 1.0 isnormal speed
wor | dTi ne - reference world time; the value of sequence time at this point will remain constant
during the speed change
See Also:
get Speed

getSpeed
public float get Speed()

Retrieves the currently set playback speed of this animation controller.

Returns:

the current playback speed
See Also:

set Speed

setPosition

public void setPosition(float sequenceTi ne,
int worldTi ne)

Sets anew playback position, relative to world time, for this animation controller. This setsthe internal
reference point (e, tgef) to (Wor | dTi me, sequenceTi ne) to shift the animation to the new position.

Parameters:
sequenceTi e - the desired playback position in sequence time units
wor | dTi nme - the world time at which the sequence time must be equal to sequenceTi e

See Also:
get Posi tion

getPosition
public float getPosition(int worldTine)

Retrieves the sequence time that corresponds to the given world time. The returned value is computed with the
formulagiven in the class description. Note that because the result may be afractional number, it is returned as
afloat, not integer.

Parameters:
wor | dTi e - world time to get the corresponding sequence time of

27

Mobile 3D Graphics API Version 1.1

Returns:
animation sequence position in number of time units elapsed since the beginning of this animation,
until wor | dTi e

See Also:
set Posi tion

getRefWorldTime
public int getRefWrldTime()
Returns the current reference world time.

Returns:

the current reference world time
Since:

M3G 1.1
See Also:

set Posi tion

setWeight
public void setWight(float weight)

Sets the blending weight for this animation controller. The blending weight must be positive or zero. Setting the
weight to zero disables this animation controller; that is, the controller is subsequently not active even within its
active range. If the weight is non-zero, the animations controlled by this controller contribute to their target
properties as described in the class description.

Parameters:
wei ght - the new blending weight
Throws:
java.lang. ||l egal Argunment Exception-ifweight < 0
See Also:
get Wi ght
getWeight

public float getWight()

Retrieves the currently set blending weight for this animation controller.

Returns:

the current blending weight
See Also:

set Vi ght

28

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class AnimationTrack

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedition. nBg. Ani mati onTr ack

public class AnimationTrack
extends Object3D

Associates a KeyframeSequence with an AnimationController and an animatable property.

An animatable property is ascalar or vector variable that the animation system can directly update; for instance, the

orientation of a Node. Animatable properties are identified by the symbolic constants listed below. Some animatable
properties are only applicable to one class, such asthe SHI NI NESS of a Material, while others apply to two or more
classes.

Most classes derived from Object3D have one or more animatable properties. An Object3D instance with animatable
propertiesis called an animatable object. Each animatable property of an animatable object constitutes a unique
animation target.

Each animatabl e object may reference zero or more AnimationTracks. Each of these, when activated by their respective
AnimationControllers, isin charge of updating one of the animation targets of the animatable object. The values assigned
to the targets are determined by sampling the K eyframeSequence objects referenced by the AnimationTrack objects.
Each KeyframeSequence can be referenced by multiple AnimationTracks, allowing the keyframe data to be shared.

Each AnimationTrack is associated with exactly one AnimationController, one KeyframeSequence, and one animatable
property, but it may be associated with multiple animation targets. In other words, it can animate the same property in
many different objects simultaneousdly. It is also possible to have several AnimationTrack objects associated with asingle
animation target. In this case, the final value of the animation target is alinear combination of the values derived from the
individual AnimationTracks, weighted by their respective AnimationController weights.

Implementation guidelines

Clamping of interpolated values

Animation keyframes are input as floating point, and the values produced after interpolation and blending are also in
floating point. When applied to their target property, the values must be mapped to the closest representable value that is
valid for the property in question. For example, values for a floating point property must be clamped to the valid range
for that property; values for an integer property rounded to the closest integer; and values for a boolean property
interpreted as true when the value produced by animation is greater than or equal to 0.5, falseif less. Exceptions to this
rule are stated explicitly if necessary.

In summary, applying an animated quantity to its target property must never result in an exception or otherwiseillegal
state.

29

Mobile 3D Graphics API Version 1.1

Example implementation

When the whol e scene graph or a subtree of objectsis updated (using acall to Chj ect 3D. ani mat e), the world time,
maintained by the controlling application, is passed to each animatable object. In turn, each animatable object passes the
world time to each of the AnimationTrack objects which are bound to it.

The AnimationTrack object then checks to seeif the current world time falls within the active interval of its associated
AnimationController object. If not, then no further action is taken by this AnimationTrack. If no active AnimationTrack
objects are found for an animation target, the value of that target is unchanged. Note, however, that animation targets are
independent of each other, and other targets in the same object may still change.

If the AnimationController is active, it is used to determine the sequence time for the animation. (Details of this
calculation can be found in the AnimationController class description.) The sequence time is then used to obtain an
interpolated value from the K eyframeSequence object. (Details of interpolation are in the KeyframeSequence class
description.) This sample is then multiplied by the weight factor of the AnimationController object and applied to the
target property. If multiple AnimationTrack objects target the same property, they are blended together according to the
weights of their respective AnimationController objects; see AnimationController for more details on animation blending.

See Also:
Binary format, Keyf r ameSequence, Ani mat i onControl | er, Obj ect 3D. addAni mati onTr ack

Field Summary

static int |ALPHA

Specifies the alphafactor of a Node, or the al pha component of the Background color, Material
diffuse color, or VertexBuffer default color as an animation target.

static int [AVBI ENT_COLOR
Specifies the ambient color of aMaterial as an animation target.

static int |COLOR

Specifiesthe color of aLight, Background, or Fog, or the texture blend color in Texture2D, or
the VertexBuffer default color as an animation target.

static int |CROP
Specifies the cropping parameters of a Sprite3D or Background as an animation target.

static int | DENSI TY
Specifies the fog density in Fog as an animation target.

static int |DI FFUSE _COLOR
Specifies the diffuse color of aMaterial as an animation target.

static int |EM SSI VE COLOR
Specifies the emissive color of aMaterial as an animation target.

static int [FAR DI STANCE
Specifiesthe far distance of a Camera or Fog as an animation target.

static int [FI ELD OF VI EW
Specifies the field of view of a Camera as an animation target.

static int || NTENSI TY
Specifies the intensity of a Light as an animation target.

30

Mobile 3D Graphics API Version 1.1

static int [MORPH VEI GHTS

Specifies the morph target weights of a MorphingMesh as an animation target.
static int | NEAR DI STANCE

Specifies the near distance of a Camera or Fog as an animation target.
static int |ORI ENTATI ON

Specifies the orientation (R) component of a Transformable object as an animation target.
static int [Pl CKABI LI TY

Specifies the picking enable flag of a Node as an animation target.
static int | SCALE

Specifies the scale (S) component of a Transformable object as an animation target.
static int [SH N NESS

Specifies the shininess of a Material as an animation target.
static int [SPECULAR_COLOR

Specifies the specular color of aMateria as an animation target.
static int |SPOT_ANGLE

Specifies the spot angle of a Light as an animation target.
static int |SPOT_EXPONENT

Specifies the spot exponent of a Light as an animation target.
static int [TRANSLATI ON

Specifies the tranglation (T) component of a Transformable object as an animation target.
static int [VISIBILITY

Specifies the rendering enable flag of a Node as an animation target.

Constructor Summary

Ani mat i onTr ack(Keyf rameSequence sequence, int property)
Creates an animation track with the given keyframe sequence targeting the given property.

Method Summary

Ani mat i onController [get Controller()

Retrieves the animation controller used for controlling this animation track.

KeyfraneSequence |get Keyf raneSequence()

Returns the keyframe sequence object which defines the keyframe values for this
animation track.

int [get Tar get Property()
Returns the property targeted by this AnimationTrack.

void|set Control |l er (Ani mati onControl |l er controller)
Specifies the animation controller to be used for controlling this animation track.

Methods inherited from class javax.microedition.m3g.0Object3D

31

Mobile 3D Graphics API Version 1.1

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Field Detail

ALPHA
public static final int ALPHA

Specifies the alphafactor of a Node, or the alpha component of the Background color, Material diffuse color, or
VertexBuffer default color as an animation target. The interpolated value is clamped to the range [0, 1].

Number of components required: 1

See Also;
Constant Field Values

AMBIENT_COLOR
public static final int AMBIENT_COLOR

Specifies the ambient color of aMaterial as an animation target. The interpolated value of each color component
is clamped to therange [0, 1].

Number of components required: 3 (RGB)

See Also;
Constant Field Values

COLOR
public static final int COLOR

Specifies the color of aLight, Background, or Fog, or the texture blend color in Texture2D, or the VertexBuffer
default color as an animation target. The interpolated value of each color component is clamped to the range [O,
1].

Note that the alpha component of the background color or default color istargeted separately using the identifier
ALPHA (the other COLOR targets do not have an apha component).

Number of components required: 3 (RGB)

See Also;
Constant Field Values

32

Mobile 3D Graphics API Version 1.1

CROP
public static final int CROP

Specifies the cropping parameters of a Sprite3D or Background as an animation target. The required parameters
arethe X and Y coordinates of the crop rectangle upper left corner, and the width and height of the crop
rectangle, in that order.

The X and Y parameters may take on any value, regardless of whether the target object is a Sprite3D or
Background. The width and height, however, have differing limits depending on the target.

In case of a Background target, negative values of width and height are clamped to zero. In case of a Sprite3D
target, they are clamped to the range [-N, N], where N is the implementation specific maximum sprite crop size.
Recall that negative values of width and height cause the displayed image to be flipped in the corresponding
dimensions.

Number of components required: 2 (X, Y) or 4 (X, Y, width, height)

See Also;
Constant Field Values

DENSITY

public static final int DENSITY
Specifies the fog density in Fog as an animation target. If the interpolated value is negative, it is clamped to zero.
Number of components required: 1

See Also:
Constant Field Values

DIFFUSE_COLOR
public static final int D FFUSE COLOR

Specifies the diffuse color of aMaterial as an animation target. The interpolated value of each color component
is clamped to therange [0, 1].

Note that the alpha component of the diffuse color is targeted separately, using the identifier ALPHA.
Number of components required: 3 (RGB)

See Also;
Constant Field Values

EMISSIVE_COLOR

33

Mobile 3D Graphics API Version 1.1

public static final int EM SSI VE COLOR

Specifies the emissive color of aMaterial as an animation target. The interpolated values of the color
components are clamped to the range [0, 1].

Number of components required: 3 (RGB)

See Also:
Constant Field Values

FAR_DISTANCE
public static final int FAR DI STANCE

Specifies the far distance of a Camera or Fog as an animation target. In case of a Cameratarget in perspective
mode, negative values and zero are clamped to the smallest representabl e positive number. In case of a Fog
target, or a cameratarget in parallel mode, the value is not clamped.

Animating any of the camera parameters (near, far, field of view) only has an effect if the cameraisin
perspective or parallel mode.

Number of components required: 1

See Also;
Constant Field Values

FIELD_OF_VIEW
public static final int FIELD OF_VIEW

Specifies the field of view of a Camera as an animation target. The interpolated value is clamped to the range (0,
180) in case of a perspective Camera. In case of a parallel camera, negative values and zero are clamped to the
smallest representabl e positive number.

Animating any of the camera parameters (near, far, field of view) only has an effect if the cameraisin
perspective or parallel mode.

Number of components required: 1

See Also:;
Constant Field Values

INTENSITY
public static final int |INTENSITY

Specifies the intensity of a Light as an animation target.

34

Mobile 3D Graphics API Version 1.1

Number of components required: 1

See Also:
Constant Field Values

MORPH_WEIGHTS
public static final int MORPH VEI GHTS

Specifies the morph target weights of a MorphingMesh as an animation target. If there are N morph targetsin
the target mesh, the associated keyframes should be N-element vectors.

Since there is no direct reference from this object to its associated MorphingMesh node, there is no way to
check at construction time that the number of vector components matches the number of morph targets.
Denoting the number of components in the keyframe vectors by V, the following rules apply in case of a
mismatch:

If V <N, then morph target weights are set as

wli] = v[i], for0<=i <V
w[i] =0.0, for V <=i <N

If V > N, then morph target weights are set as

wl[i] = V[i], for0<=i <N
v[i] ignored for N <=i <V

Number of components required: N

See Also:;
Constant Field Values

NEAR_DISTANCE
public static final int NEAR DI STANCE

Specifies the near distance of a Camera or Fog as an animation target. In case of a Cameratarget in perspective
mode, negative values and zero are clamped to the smallest representable positive number. In case of a Fog
target, or a cameratarget in parallel mode, the value is not clamped.

Animating any of the camera parameters (near, far, field of view) only has an effect if the cameraisin
perspective or parallel mode.

Number of components required: 1

See Also:
Constant Field Values

35

Mobile 3D Graphics API Version 1.1

ORIENTATION

public static final int ORI ENTATI ON

Specifies the orientation (R) component of a Transformable object as an animation target.

The orientation is specified as a 4-element vector defining a quaternion. The quaternion components in the
keyframes are ordered as follows:

v[0] coefficient of i (related to the x component of the rotation axis)
v[1] coefficient of j (related to the y component of the rotation axis)
V[2] coefficient of k (related to the z component of the rotation axis)
v[3] the scalar component (related to the rotation angle)

[m} [m} [m} [m}

The quaternion resulting from interpolation is normalized automatically before applying it to the target, as
specified in the AnimationController class description, section "Animation weighting”.

Note that there are only two stages in the animation process where the implementation must normalize
quaternions. They must not be normalized anywhere else. The first iswhen SLERP or SQUAD keyframes are fed
in. The other iswhen the final, weighted result is applied to the target object.

Number of components required: 4

See Also:
Constant Field Values

PICKABILITY

public static final int PICKABILITY
Specifies the picking enable flag of a Node as an animation target.
Number of components required: 1

See Also;
Constant Field Values

SCALE

public static final int SCALE

Specifies the scale (S) component of a Transformable object as an animation target. The number of keyframe
components in the associated KeyframeSequence can be either one or three, for uniform or non-uniform scaling,
respectively.

Number of components required: 1 or 3 (XY Z)

See Also;

36

Mobile 3D Graphics API Version 1.1

Constant Field Values

SHININESS
public static final int SH N NESS

Specifies the shininess of a Material as an animation target. The interpolated value is clamped to the range [O,
128].

Number of components required: 1

See Also:
Constant Field Values

SPECULAR_COLOR
public static final int SPECULAR COLOR

Specifies the specular color of a Material as an animation target. The interpolated value of each color
component is clamped to the range [0, 1].

Number of components required: 3 (RGB)

See Also:;
Constant Field Values

SPOT_ANGLE

public static final int SPOT_ANGLE
Specifies the spot angle of a Light as an animation target. The interpolated value is clamped to the range [0, 90].
Number of components required: 1

See Also:
Constant Field Values

SPOT_EXPONENT

public static final int SPOT_EXPONENT

Specifies the spot exponent of a Light as an animation target. The interpolated value is clamped to the range [0,
128].

Number of components required: 1

See Also:

37

Mobile 3D Graphics API Version 1.1

Constant Field Values

TRANSLATION

public static final int TRANSLATI ON
Specifies the trandation (T) component of a Transformable object as an animation target.
Number of components required: 3 (XY Z)

See Also:
Constant Field Values

VISIBILITY

public static final int VISIBILITY
Specifies the rendering enable flag of a Node as an animation target.
Number of components required: 1

See Also:;
Constant Field Values

Constructor Detail

AnimationTrack

public Ani mati onTrack(KeyframeSequence sequence,
i nt property)

Creates an animation track with the given keyframe sequence targeting the given property. The keyframe
sequence must be compatible with the target property; for example, to animate the translation component of a
transformation, the keyframes must be 3-element vectors.

No controller isinitially attached to the track.

Parameters:
seqguence - aKeyframeSegquence containing the keyframe data for this animation track
property -oneof ALPHA, ..., VISIBILITY
Throws:
java. |l ang. Nul | Poi nt er Excepti on -if sequence isnull
java.lang. |11 egal Argunent Excepti on -if property isnot one of the symbolic constants listed
above
java.lang. Il 1 egal Argunent Excepti on - if sequence isnot compatible with pr operty

38

Mobile 3D Graphics API Version 1.1

M ethod Detail

setController

public void setController(AnimationController controller)

Specifies the animation controller to be used for controlling this animation track. The controller determines the
mapping from world time to sequence time, the speed of animation, and the active interval for all tracks under
its control.

Parameters:
control | er - an AnimationController object which defines the active state and sequence time for
this animation sequence; if thisis null then the behaviour is equivalent to associating this object with
an inactive animation controller

See Also:
get Controll er

getController
public AninmationController getController()

Retrieves the animation controller used for controlling this animation track.

Returns:
the AnimationController object which defines the active state and sequence time for this animation

sequence, as set by set Cont r ol | er . If no controller has yet been attached, this method returns null
See Also:

set Controller

getKeyframeSequence
publ i c KeyfranmeSequence get KeyframeSequence()

Returns the keyframe sequence object which defines the keyframe values for this animation track.

Returns:
the KeyframeSequence object which defines the keyframe values

getTargetProperty
public int getTargetProperty()

Returns the property targeted by this AnimationTrack. The target property is one of the symbolic constants
listed above.

Returns:
the object property targeted by this track

39

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Appearance

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croediti on. nBg. Appear ance

public class Appearance
extends Object3D

A set of component objects that define the rendering attributes of a Mesh or Sprite3D.

Appearance attributes are grouped into component objects, each encapsulating a set of properties that are functionally
and logically related to each other. This division helps applications to conserve memory by sharing component objects
across multiple meshes and sprites. The Appearance component classes and a summary of their contents are presented in
the figure below.

- Contains information for

lighting the object, such as
Appearance » Material color and shininess.
Contains information about
polygons, such as winding
Y Polygon " rufe and culling mode.
Mode

) blending this object into the
s

Compositing cene as a whole.

}
I
I
I
|
I
I
g
I
I
I
I
I
3 Contains information about

g Mode
Defines how to shade this
object based on its distance
Ly Fog ~~ | from the camera.

Image used as a texture.
Often shared between
multiple Texture2D objects.

Contains information
about how to apply
texture to this object.
The maximum
number of textures --___
per appearance
depends on the
number of texture
units supported.

~
R

—p Texture2D —p» Image2D

-1 Texture2D ——» Image2D

All components of anewly created Appearance object are initialized to null. It is completely legal for any or al of the
components to be null even when rendering. The behavior when each of the componentsis null is asfollows:

. If aTexture2D isnull, the corresponding texturing unit is disabled.
. If the PolygonModeis null, default values are used.
. |If the CompositingMode is null, default values are used.

40

Mobile 3D Graphics API Version 1.1

. If the Materia isnull, lighting is disabled.
. If the Fogisnull, fogging is disabled.

Using anull Appearance on a submesh (or sprite) disables rendering and picking of that submesh (or sprite). An
Appearance must always be provided for an object in order to make it visible.

Implementation guidelines

By default, everything in Appearance works exactly the same way asin OpenGL 1.3. Asageneral exception, the color
index (palette) mode is not supported. Other than that, any deviations from the OpenGL 1.3 specification are documented
explicitly in the individual Appearance component classes.

See Also:
Binary format

Constructor Summary

Appear ance()
Constructs an Appearance object with default values.

Method Summary

Conposi ti ngMde | get Conposi ti nghbde()
Returns the current CompositingMode for this Appearance.

Fog | get Fog()
Returns the current fogging attributes for this Appearance.

int [getLayer ()
Getsthe current rendering layer for this Appearance.

Material [get Materi al ()
Returns the current Material for this Appearance.

Pol ygonMode | get Pol ygonhode()
Returns the current PolygonMode for this Appearance.

Texture2D|get Text ure(int index)
Retrieves the current texture image and its attributes for the given texturing unit.

voi d |set Conposi ti ngMode(Conposi ti ngvbde conpositi nghMde)
Sets the CompositingM ode to use for this Appearance.

voi d |set Fog(Fog f oQ)
Sets the fogging attributes to use for this Appearance.

voi d |set Layer (int |ayer)
Sets the rendering layer for this Appearance.

void |setMaterial (Material material)
Sets the Material to use when lighting this Appearance.

voi d | set Pol ygonMode(Pol ygonMbde pol ygonMode)
Sets the PolygonMode to use for this Appearance.

41

Mobile 3D Graphics API Version 1.1

voi d [set Texture(int index, Texture2D texture)
Sets the texture image and its attributes for the given texturing unit.

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mati onTrackCount, get References, getUserl D, getUserject,
renoveAni mati onTrack, setUserlD, setUser (bject

Constructor Detail

Appearance
publ i c Appearance()
Constructs an Appearance object with default values. The default values are:

rendering layer : O

polygon mode : null (use defaults)
compositing mode : null (use defaults)

al textures: null (all texturing units disabled)
material : null (lighting disabled)

fog : null (fogging disabled)

[[[[[[

Method Detail

setLayer
public void setLayer(int |ayer)

Sets the rendering layer for this Appearance. When rendering a World, Group or Mesh, submeshes and sprites
are guaranteed to be rendered in the order of ascending layers. That is, all submeshes and sprites with an
appearance at alower layer are rendered prior to any submeshes or sprites at the higher layers. Furthermore, all
opaque submeshes and sprites at a specific layer are rendered prior to any blended submeshes or sprites at the
same layer. A submesh or a sprite is defined to be opague if it uses the REPLACE blending mode (see
CompositingMode), and blended otherwise.

Implementations are free to do any additional state sorting as long as the aforementioned constraints are met. To
allow implementations to operate as efficiently as possible, applications should only use layering constraints
when required. As aresult of the rules above, the default layer of zero should be sufficient for most uses. Cases
where non-zero layers may be useful include background geometry, sky boxes, lens flares, halos, and other
special effects.

Note that the rendering layer has no effect on picking.

Parameters.

42

Mobile 3D Graphics API Version 1.1

| ayer - therendering layer for submeshes and sprites having this Appearance
Throws:

java. |l ang. I ndexQut Of BoundsExcepti on-if | ayer isnotin[-63, 63]
See Also:

get Layer, Mesh

getLayer
public int getlLayer()
Gets the current rendering layer for this Appearance.

Returns:

the current rendering layer; thisis alwaysin the range [-63, 63]
See Also:

set Layer

setFog
public void setFog(Fog fog)
Sets the fogging attributes to use for this Appearance. If the Fog object is set to null, fogging is disabled.

Parameters:

f og - aFog object, or null to disable fogging
See Also:

get Fog

getFog

publ i ¢ Fog get Fog()

Returns the current fogging attributes for this Appearance.

Returns:

the current Fog object, or null if fogging is disabled
See Also:

set Fog

setPolygonMode
public void set Pol ygonMode(Pol ygonMode pol ygonhbde)

Sets the PolygonMode to use for this Appearance. If the PolygonMode is set to null, the default values are used.

Parameters:
pol ygonMode - a PolygonMode object, or null to use the defaults
See Also:

43

Mobile 3D Graphics API Version 1.1

get Pol ygonMode

getPolygonMode

publ i ¢ Pol ygonMbde get Pol ygonhMbode()

Returns the current PolygonMode for this Appearance.

Returns:

the current PolygonMode object, or null if no PolygonMode is set
See Also:

set Pol ygonMode

setCompositingMode
public void set Conpositi ngMdde(Conpositi ngMbde conpositi nghMde)

Sets the CompositingM ode to use for this Appearance. If the CompositingMode is set to null, the default values
are used.

Parameters:

composi t i ngMbde - a CompositingMade object, or null to use the defaults
See Also:

get Conposi ti nghvbde

getCompositingMode
publ i ¢ ConpositingMde get Conpositi nghode()
Returns the current CompositingMode for this Appearance.

Returns:

the current CompositingMode object, or null if no CompositingMode is set
See Also:

set Conposi ti nghvbde

setTexture

public void setTexture(int index,
Text ure2D texture)

Sets the texture image and its attributes for the given texturing unit. If the texture object is set to null, the
specified texturing unit is disabled.

Parameters:

i ndex - texturing unit index

t ext ur e - atexture object for the specified texturing unit, or null to disable the unit
Throws:

44

Mobile 3D Graphics API Version 1.1

j ava. |l ang. | ndexQut Of BoundsExcepti on - if i ndex isnot avalid texturing unit index
See Also:
get Texture

getTexture

publ i c Texture2D get Texture(int index)

Retrieves the current texture image and its attributes for the given texturing unit.

Parameters:
i ndex - texturing unit index
Returns:
the current texture object of the specified texturing unit, or null if the unit is disabled
Throws:
j ava. |l ang. I ndexQut Of BoundsExcepti on - if i ndex isnot avalid texturing unit index
See Also:
set Texture

setMaterial
public void setMaterial (Material material)

Sets the Material to use when lighting this Appearance. If the Material is set to null, lighting is disabled. See the
Material class description for more information.

Parameters:
mat eri al - aMaterial object, or null to disable lighting
See Also:
get Materi al
getMaterial

public Material getMaterial()

Returns the current Material for this Appearance.

Returns:

the current Material object, or null if lighting is disabled
See Also:

set Materi al

45

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Background

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi ti on. nBg. Backgr ound

public class Background
extends Object3D

Defines whether and how to clear the viewport.

The portions of the frame buffer that correspond to the current viewport are cleared according to a given Background
object. In retained mode (that is, when rendering a World), the Background object associated with the World is used. In
immediate mode, a Background object is given as a parameter to cl ear . In absence of a Background object, the default
values specified in the constructor are used.

Clearing can be enabled and disabled individually for the color buffer and the depth buffer. The color buffer is cleared
using the background color and/or the background image, as specified below. If the background image is set to null (the
initial value), only the background color is used. The depth buffer is always cleared to the maximum depth value.

Background image

The background image is stored as a reference to an Image2D. If the referenced Image2D is modified by the application,
or anew Image2D is bound as the background image, the modifications are immediately reflected in the Background
object.

The background image must be in RGB or RGBA format. Furthermore, it must be in the same format as the currently
bound rendering target. Thisis enforced by ther ender (Wor | d) and cl ear methodsin Graphics3D.

A cropping rectangle very similar to that of Sprite3D is available to facilitate scrolling and zooming of the background
image. The contents of the crop rectangle are scaled to fill the entire viewport. The crop rectangle need not lie within the
source image boundaries. If it does not, the source image is either considered to repeat indefinitely in the image space
(the REPEAT mode) or to not repeat at all, with pixels outside the source image having the background color (the
BORDER mode).

Contrary to texture images, the width and height of a background image do not have to be powers of two. Furthermore,
the maximum size of a background image is only determined by the amount of available memory; there is no fixed limit.
The dimensions of the crop rectangle are also unbounded.

Implementation guidelines

The requirements and recommendations given in the Implementation guidelines of Sprite3D also apply for Background
images. In particular, implementations using textured rectangles to blit the background image must follow the resampling
rules specified for sprites.

See Also:

46

Mobile 3D Graphics API Version 1.1

Binary format
Field Summary
static int | BORDER
Specifies that the imaginary pixels outside of the source image boundariesin X or Y direction are
considered to have the background color.
static int | REPEAT
Specifies that the imaginary pixels outside of the source image boundariesin X or Y direction are
considered to have the same color as the pixel in the corresponding position in the source image.
Constructor Summary
Background()
Constructs a new Background with default values.
Method Summary
int |get Col or ()
Retrieves the current background color.
i nt |get CropHei ght ()
Gets the current cropping rectangle height within the source image.
int |get CropW dt h()
Gets the current cropping rectangle width within the source image.
int |get CropX()
Retrieves the current cropping rectangle X offset relative to the source image top left corner.
int |get CropY()
Retrieves the current cropping rectangle Y offset relative to the source image top left corner.
| mage2D | get | mage()
Gets the current background image.
int |get| mageModeX()
Gets the current background image repeat mode for the X dimension.
int |getl mageModeY()
Gets the current background image repeat mode for the Y dimension.
bool ean |i sCol or Cl ear Enabl ed()
Queries whether color buffer clearing is enabled.
bool ean |i sDept hCl ear Enabl ed()
Queries whether depth buffer clearing is enabled.
voi d [set Col or (i nt ARGB)
Sets the background color.
voi d [set Col or Cl ear Enabl e(bool ean enabl e)
Enables or disables color buffer clearing.
void |setCrop(int cropX, int cropY, int width, int height)
Sets a cropping rectangle within the background image.

47

Mobile 3D Graphics API Version 1.1

voi d [set Dept hCl ear Enabl e(bool ean enabl e)
Enables or disables depth buffer clearing.

voi d |set | mage(| mage2D i mage)
Sets the background image, or switches from background image mode to background color mode.

voi d [set | rageMode(i nt nodeX, int nodeY)
Sets the background image repeat mode for the X and Y directions.

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Field Detail

BORDER
public static final int BORDER

Specifies that the imaginary pixels outside of the source image boundariesin X or Y direction are considered to
have the background color.

See Also;
Constant Field Values

REPEAT
public static final int REPEAT

Specifies that the imaginary pixels outside of the source image boundariesin X or Y direction are considered to
have the same color as the pixel in the corresponding position in the source image. Formally, a pixel at position
X will have the same color asthe pixel at position X % N, where N is the width or height of theimage and % is

the modulo operator.

See Also;
Constant Field Values

Constructor Detail

Background

publ i c Background()

Constructs a new Background with default values. The default values are:

48

Mobile 3D Graphics API Version 1.1

color clear enable : true (clear the color buffer)

depth clear enable : true (clear the depth buffer)
background color : 0x00000000 (black, transparent)
background image : null (use the background color only)
background image mode : BORDER, BORDER

crop rectangle : undefined (reset at set | nage

[} [} [} [} [} [}

M ethod Detail

setColorClearEnable
public void set Col or d ear Enabl e(bool ean enabl e)

Enables or disables color buffer clearing. If color buffer clearing is enabled, the portion of the color buffer that
corresponds to the viewport is cleared with the background image and/or the background color.

Parameters:
enabl e - true to enable color buffer clearing; false to disable

isColorClearEnabled
publ i ¢ bool ean i sCol or d ear Enabl ed()
Queries whether color buffer clearing is enabled.

Returns:
trueif color buffer clearing is enabled; false if it is disabled

setDepthClearEnable
public void set Dept hC ear Enabl e(bool ean enabl e)

Enables or disables depth buffer clearing. If depth buffer clearing is enabled, the portion of the depth buffer that
corresponds to the viewport is cleared to the maximum depth value.

This setting isignored if depth buffering is disabled in Graphics3D (see bi ndTar get).

Parameters:
enabl e - true to enable depth buffer clearing; false to disable

isDepthClearEnabled
publ i ¢ bool ean i sDept hC ear Enabl ed()

Queries whether depth buffer clearing is enabled.

49

Mobile 3D Graphics API Version 1.1

Returns:
true if depth buffer clearing is enabled; falseif it is disabled

setColor

public void setCol or(int ARGB)

Sets the background color. Thisisthe color that the imaginary pixels outside of the source image boundaries are
considered to have in the BORDER mode. If there is no background image, the viewport is cleared with this
color only.

The apha component of the background color is ignored when rendering to an RGB target.

Parameters:
ARGB - the new background color in OXAARRGGBB format
See Also:
get Col or
getColor

public int getColor()
Retrieves the current background color.

Returns:

the current background color in OXAARRGGBB format
See Also:

set Col or

setimage
public void setlnmage(l mage2D i mage)

Sets the background image, or switches from background image mode to background color mode. The
background image must be in the same format as the rendering target: RGB or RGBA in case of an Image2D
target and RGB in case of aMIDP Graphics target.

The crop rectangle is set such that itstop left corner is at the top left corner of the image, and its width and
height are equal to the dimensions of the image.

Parameters:
i mage - the background image, or null to disable the current background image (if any) and clear with
the background color only

Throws:
java.lang. | l1 egal Argunent Excepti on -if i mage isnotin RGB or RGBA format
See Also:
get | rage
getimage

50

Mobile 3D Graphics API Version 1.1

public | mage2D getl nage()

Gets the current background image.

Returns:

the current background image
See Also:

set | rage

setimageMode

public void setlmgeMde(int nodeX,
i nt nodeY)

Sets the background image repeat mode for the X and Y directions.

Parameters:
nodeX - X repeat mode; one of BORDER, REPEAT
nodeY - Y repeat mode; one of BORDER, REPEAT
Throws:
java.lang. ||l egal Argunment Excepti on - if nodeXor nodeY is not one of the enumerated
values listed above

getimageModeX
public int getlnmgeMdeX()
Gets the current background image repeat mode for the X dimension.

Returns:

the X repeat mode
See Also:

set | mageMode

getimageModeY
public int getlnmagehodeY()

Gets the current background image repeat mode for the Y dimension.

Returns:
the Y repeat mode
See Also:
set | rageMode
setCrop

public void setCrop(int cropX,

51

Mobile 3D Graphics API Version 1.1

i nt cropy,
i nt width,
i nt height)

Sets a cropping rectangle within the background image. The contents of the crop rectangle are scaled (stretched
or condensed) to fill the viewport entirely.

The position of the upper left corner of the crop rectangle is given in pixels, relative to the upper left corner of
the Image2D. The relative position may be negative in either or both axes. The width and height of the crop
rectangle are also given in pixels, and must not be negative. If either of them is zero, the color buffer is cleared
with the background color only.

If the crop rectangle lies completely or partially outside of the source image boundaries, the values of the
(imaginary) pixels outside of the image are defined by the repeat mode. In BORDER mode, the imaginary pixels
are taken to have the background color. In REPEAT made, the source imageis considered to repeat indefinitely.
The repeat mode can be specified independently for the X and Y directions.

Parameters:
cr opX - the X position of the top left of the crop rectangle, in pixels
cropY -theY position of the top left of the crop rectangle, in pixels
wi dt h - the width of the crop rectangle, in pixels
hei ght - the height of the crop rectangle, in pixels

Throws:
java.lang. ||l egal Argunent Exception-ifwidth < 0
java.lang. |1l egal Argunent Excepti on-ifheight < O

getCropX
public int getCropX()
Retrieves the current cropping rectangle X offset relative to the source image top left corner.

Returns:

the X offset of the cropping rectangle
See Also:

setCrop

getCropY
public int getCropY()
Retrieves the current cropping rectangle Y offset relative to the source image top left corner.

Returns:

the X offset of the cropping rectangle
See Also:

set Crop

getCropWidth

52

Mobile 3D Graphics API

public int getCropWdth()
Gets the current cropping rectangle width within the source image.

Returns:

the width of the cropping rectangle
See Also:

set Crop

getCropHeight

public int getCropHeight()

Gets the current cropping rectangle height within the source image.

Returns:

the height of the cropping rectangle
See Also:

set Crop

53

Version 1.1

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Camera

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D
I—j avax. m croedi tion. n8g. Transf or mabl e
I—j avax. m croedi ti on. nBg. Node

I—j avax. m croedi tion. n8g. Caner a

public class Camera
extends Node

A scene graph node that defines the position of the viewer in the scene and the projection from 3D to 2D.

The camerais always facing towards the negative Z axis, (0 0 -1), initslocal coordinate system. The camera can be
positioned and oriented in the same way as any other Node; that is, using the node transformations of the camera node
and its ancestors.

The projection matrix transforms homogeneous (4D) coordinates from camera space to clip space. Triangles are then
clipped to the view volume, which is defined by

-W<=X<=W
_W<:y<:W
-W<=z<=WwW

where (X y z w) are the clip-space coordinates of each vertex. A polygon is discarded by the clipper if al of its vertices
have a negative W value. If apolygon crosses the W = 0 boundary, the portion of the polygon that lies on the negative
side is discarded.

Subseguent to clipping, X, Y, and Z are divided by W to obtain normalized device coordinates (NDC). These are
between [-1, 1], and the center of the viewport lies at the origin. Finally, the viewport mapping and the depth range are
applied to transform the normalized X, Y and Z into window coordinates. The viewport and depth range mappings are
specified in Graphics3D.

Implementation guidelines

Clipping is done according to the OpenGL 1.3 specification, section 2.11, with the exception that user-defined clip planes
are not supported. Clipping of colors and texture coordinates is done according to section 2.13.8.

To clarify the handling of polygons with negative clip-space W, we deviate dightly from the OpenGL specification by
not only allowing implementations to discard any and al portions of polygons that liein the region W < 0, but actually
requiring them to do so.

See Also:
Binary format

54

Mobile 3D Graphics API Version 1.1

Field Summary

static int |GENERI C
Specifies a generic 4x4 projection matrix.

static int [PARALLEL
Specifies aparallel projection matrix.

static int | PERSPECTI VE
Specifies a perspective projection matrix.

Fieldsinherited from class javax.microedition.m3g.Node

NONE, ORIGN, X AXIS, Y AXIS, Z AXIS

Constructor Summary

Caner a()
Constructs a new Camera node with default values.

Method Summary

int |getProjection(float[] parans)
Gets the current projection parameters and type.

int |getProjection(Transformtransform
Gets the current projection matrix and type.

voi d [set Generi c(Transform transform
Sets the given 4x4 transformation as the current projection matrix.

void |setParall el (float fovy, float aspectRatio, float near, float far)
Constructs a parallel projection matrix and sets that as the current projection matrix.

voi d |[set Perspective(float fovy, float aspectRatio, float near, float far)
Constructs a perspective projection matrix and sets that as the current projection matrix.

Methodsinherited from class javax.micr oedition.m3g.Node

align, getAlignnmentReference, getAlignnmentTarget, getAl phaFactor, getParent,
get Scope, get Transformlo, isPicki ngEnabl ed, isRenderingEnabl ed, setAlignnent,
set Al phaFact or, set Pi cki ngEnabl e, set Renderi ngEnabl e, set Scope

Methods inherited from class javax.microedition.m3g.Transfor mable

get ConpositeTransform getOrientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
set Transl ation, translate

Methodsinherited from class javax.micr oedition.m3g.Object3D

55

Mobile 3D Graphics API Version 1.1

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Field Detail

GENERIC

public static final int GENERIC

Specifies a generic 4x4 projection matrix.

See Also;
Constant Field Values

PARALLEL

public static final int PARALLEL

Specifies aparalel projection matrix.

See Also;
Constant Field Values

PERSPECTIVE

public static final int PERSPECTI VE

Specifies a perspective projection matrix.

See Also:
Constant Field Values

Constructor Detail

Camera

public Camera()

Constructs a new Camera node with default values. The default values are as follows:

o projection mode : GENERI C
o projection matrix : identity

56

Mobile 3D Graphics API

Version 1.1

M ethod Detail

setParallel

public void setParallel (float
f | oat
f | oat
f | oat

fovy,
aspect Rati o,
near,
far)

Constructs a parallel projection matrix and sets that as the current projection matrix. Note that the near and far
clipping planes may bein arbitrary order, although usually near < far.

Denoting the width, height and depth of the view volume by w, h and d, respectively, the parallel projection

matrix P is constructed as follows.

2/w 0
2/ h

OO o
o o

where

h = height (= fovy)
w = aspectRatio * h
d =far - near

0 0

0 0
-2/d -(near+far)/d

0 1

The rendered image will "stretch" to fill the viewport entirely (not just the visible portion of it). It is therefore
recommended that the aspect ratio given here be equal to the aspect ratio of the viewport as defined in

set Vi ewpor t . Otherwise, the image will appear elongated in either the horizontal or the vertical direction.
No attempt is made to correct this effect automatically, for example by adjusting the field of view. Instead, the
adjustment is left for the application developer to handle as he or she prefers.

In the specia case when the near and far distance are equal, the view volume has, in fact, no volume and
nothing is rendered. Implementations must detect this rather than trying to construct the projection matrix, as
that would result in adivide by zero error.

Parameters:

f ovy - height of the view volume in camera coordinates

aspect Rat i o - aspect ratio of the viewport, that is, width divided by height
near - distanceto the front clipping plane in camera space

f ar - distance to the back clipping plane in camera space

Throws;

java.lang. ||l egal Argunment Exception-if height <= 0
java.lang. |1 egal Argunent Exception-if aspectRatio <= 0

setPerspective

public void setPerspective(float fovy,
fl oat aspectRati o,

57

Mobile 3D Graphics API Version 1.1

fl oat near,
float far)

Constructs a perspective projection matrix and sets that as the current projection matrix. Note that the near and
far clipping planes may bein arbitrary order, although usually near < far. If near and far are equal, nothing is
rendered.

The perspective projection matrix P is constructed as follows.

1/ w 0 0 0
0 1/h 0 0
0 0 -(near+far)/d -2*near*far/d
0 0 -1 0

where

h = tan(fovy/2)
w = aspectRatio * h
d =far - near

The rendered image will "stretch” to fill the viewport entirely (not just the visible portion of it). It is therefore
recommended that the aspect ratio given here be equal to the aspect ratio of the viewport as defined in

set Vi ewpor t . Otherwise, the image will appear elongated in either the horizontal or the vertical direction.
No attempt is made to correct this effect automatically, for example by adjusting the field of view. Instead, the
adjustment is left for the application devel oper to handle as he or she prefers.

In the special case when the near and far distance are equal, the view volume has, in fact, no volume and
nothing is rendered. | mplementations must detect this rather than trying to construct the projection matrix, as
that would result in adivide by zero error.

Parameters:
f ovy - field of view in the vertical direction, in degrees
aspect Rat i o - aspect ratio of the viewport, that is, width divided by height
near - distanceto the front clipping plane
f ar - distanceto the back clipping plane

Throws:
java.lang. ||| egal Argunent Excepti on -if any argumentis<= 0
java.lang. |1l egal Argunent Excepti on-iffovy >= 180

setGeneric

public void setGeneric(Transformtransform

Sets the given 4x4 transformation as the current projection matrix. The contents of the given transformation are
copied in, so any further changesto it will not affect the projection matrix.

Generic 4x4 projection matrices are needed for various rendering tricks and speed-up techniques that otherwise
could not be implemented at all, or not without incurring significant processing overhead. These include, for
example, viewing an arbitrarily large scene by setting the far clipping plane to infinity; rendering alarge image
in pieces using oblique projection; portals, TV screens and other re-projection cases; stereoscopic rendering; and

58

Mobile 3D Graphics API Version 1.1

some shadow algorithms.

Parameters:

t r ansf or m- a Transform object to copy as the new projection matrix
Throws:

java. |l ang. Nul | Poi nt er Excepti on -iftransf or misnull

getProjection
public int getProjection(Transformtransform

Gets the current projection matrix and type. This method is available regardiess of the type of projection, since
paralel and perspective projections can always be returned in the 4x4 matrix form.

Parameters:
t ransf or m- a Transform object to populate with the matrix, or null to only return the type of
projection

Returns:
the type of projection: GENERI C, PERSPECTI VE, or PARALLEL

Throws:
java.lang. Arithneti cExcepti on - if the transformation matrix cannot be computed due to
illegal perspective or parallel projection parameters (that is, if near == far)

getProjection
public int getProjection(float[] parans)

Gets the current projection parameters and type. The given float array is popul ated with the projection
parameters in the same order as they are supplied to the respective set methods, set Per specti ve and

set Par al | el . If the projection typeis GENERI C, the float array isleft untouched. Thisisthe case evenif the
generic projection matrix actually is a perspective or parallel projection.

Parameters:
par amns - float array to fill in with the four projection parameters, or null to only return the type of
projection
Returns:
the type of projection: GENERI C, PERSPECTI VE, or PARALLEL
Throws:
java.lang. ||l egal Argunent Exception-if(parans != null) && (parans.
I ength < 4)

59

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class CompositingMode

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi ti on. nBg. Conposi ti nghbde

public class CompositingM ode
extends Object3D

An Appearance component encapsulating per-pixel compasiting attributes.

Depth offset is added to the depth (Z) value of a pixel prior to depth test and depth write. The offset is constant across a
polygon. Depth offset is used to prevent Z fighting, which makes coplanar polygons intersect each other on the screen
due to the limited resolution of the depth buffer. Depth offset alows, for example, white lines on a highway or scorch
marks on awall (decalsin general) to be implemented with polygons instead of textures. Depth offset has no effect if
depth buffering is disabled.

Blending combines the incoming fragment's R, G, B, and A valueswiththe R, G, B, and A values stored in the frame
buffer at the incoming fragment's location. The table below defines the available blending modes, in terms of the source
color C5= (Rg, Gg, Bg, Ag) and the destination color Cy = (Ry, Gy, By, Ag)- The source color is the incoming fragment's
color value, while the destination color is the pre-existing color value in the frame buffer. The corresponding OpenGL
source and destination blend functions are included in the table for reference.

Mode Definition OpenGL srcblend func OpenGL dst blend func
REPLACE Cy=Cq ONE ZERO
ALPHA ADD Cy=CgAg+Cy SRC_ALPHA ONE
ALPHA Cy=CsAs+Cq(1-Ay SRC ALPHA ONE_M NUS_SRC ALPHA
MODULATE Cyq=CsCqy DST_COLOR ZERO
MODULATE X2 Cy=2CsCy DST_COLOR SRC_COLCR

Implementation guidelines

Depth offset is computed according to section 3.5.5 in the OpenGL 1.3 specification. Per-fragment operations are done
according to sections 4.1 and 4.2, with the following exceptions:

. Thealphatest function is aways GEQUAL;

. Stencil testing and the stencil buffer are not supported;

« The depth test function is aways LEQUAL ;

. Theblend equation is always FUNC_ADD;

. Blend function combinations are limited to the ones listed above;
. The constant blend color is not supported;

. Logical operations are not supported;

. Individual masking of R, G and B is not supported;

. Theaccumulation buffer is not supported.

60

Mobile 3D Graphics API Version 1.1

Multisampling is not supported explicitly, but implementations may use it internally to implement full-scene antialiasing.
The full-scene antialiasing hint can be enabled or disabled in Graphics3D. Similarly, the dithering hint in Graphics3D
may be implemented using the per-fragment dithering feature of OpenGL.

See Also:
Binary format

Field Summary

static int |ALPHA
Selects the apha blend mode.

static int |ALPHA ADD
Selects the additive blend mode.

static int | MODULATE

Selects the basic modulating blending mode; source pixels are multiplied with the destination
pixels.

static int | MODULATE X2
Selects the brighter modulating blending mode.

static int |[REPLACE
Selects the replace mode.

Constructor Summary

Conposi ti nghMode()
Constructs a CompositingM ode object with default values.

Method Summary

float [get Al phaThreshol d()
Retrieves the current alphatesting threshold.

i nt |get Bl endi ng()
Retrieves the current frame buffer blending mode.

float |get Dept hOf f set Fact or ()
Retrieves the current depth offset slope factor.

float |get Dept hOf f set Units()
Retrieves the current constant depth offset.

bool ean |i sAl phaW i t eEnabl ed()
Queries whether alpha writing is enabled.

bool ean |i sCol or Wit eEnabl ed()
Queries whether color writing is enabled.

bool ean |i sDept hTest Enabl ed()
Queries whether depth testing is enabled.

bool ean |i sDept hWi t eEnabl ed()
Queries whether depth writing is enabled.

61

Mobile 3D Graphics API Version 1.1

voi d |set Al phaThreshol d(fl oat threshol d)
Sets the threshold value for apha testing.

voi d |set Al phaW i t eEnabl e(bool ean enabl e)
Enables or disables writing of fragment alpha valuesinto the color buffer.

voi d |set Bl endi ng(i nt node)
Selects a method of combining the pixel to be rendered with the pixel already in the frame buffer.

voi d [set Col or Wit eEnabl e(bool ean enabl e)
Enables or disables writing of fragment color values into the color buffer.

void |set Dept hOf fset (fl oat factor, float units)

Defines avalue that is added to the screen space Z coordinate of a pixel immediately before depth
test and depth write.

voi d [set Dept hTest Enabl e(bool ean enabl e)
Enables or disables depth testing.

voi d [set Dept hWi t eEnabl e(bool ean enabl e)
Enables or disables writing of fragment depth values into the depth buffer.

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mati onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser Qbject

Field Detail

ALPHA
public static final int ALPHA
Selects the apha blend mode. A weighted average of the source and destination pixelsis computed.

See Also:;
Constant Field Values

ALPHA_ADD
public static final int ALPHA ADD

Selects the additive blend mode. The source pixel isfirst scaled by the source apha and then summed with the
destination pixel.

See Also;
Constant Field Values

62

Mobile 3D Graphics API Version 1.1

MODULATE
public static final int MODULATE
Selects the basic modulating blending mode; source pixels are multiplied with the destination pixels.

See Also;
Constant Field Values

MODULATE_X2
public static final int MODULATE X2

Selects the brighter modulating blending mode. Thisis the same as basic modulation, but the results are
multiplied by two (and saturated to 1.0) to compensate for the loss of luminance caused by the component-wise
multiplication.

See Also;
Constant Field Values

REPLACE
public static final int REPLACE
Selects the replace mode. The destination pixel is overwritten with the source pixel.

See Also:
Constant Field Values

Constructor Detail

CompositingMode
publ i ¢ Conpositi nghMde()
Constructs a CompositingM ode abject with default values. The default values are:

blending mode : REPLACE
alphathreshold : 0.0

depth offset : 0.0, 0.0
depth test : enabled

depth write : enabled

color write : enabled
alphawrite : enabled

[} [} [} [} [} [} [}

M ethod Detail

63

Mobile 3D Graphics API Version 1.1

setBlending
public void setBl endi ng(int node)

Selects a method of combining the pixel to be rendered with the pixel aready in the frame buffer. Blending is
applied as the very last step of the pixel processing pipeline.

Parameters:
node - the new blending mode

Throws:
java.lang. ||| egal Argunent Excepti on - if node isnot one of the symbolic constants
listed above

See Also:
get Bl endi ng

getBlending

public int getBlending()
Retrieves the current frame buffer blending mode.

Returns:

the currently active blending mode
See Also:

set Bl endi ng

setAlphaThreshold
public void set Al phaThreshol d(fl oat threshol d)

Sets the threshold value for aphatesting. If the a pha component of a fragment is less than the alphathreshold,
the fragment is not rendered. Consequently, if the threshold is 1.0, only fragments with the maximum alpha
value (1.0) will be drawn, and if the threshold is 0.0, al fragments will be drawn.

Parameters:

t hr eshol d - the new aphathreshold; must be [0, 1]
Throws:

java.lang. ||l egal Argunment Excepti on -ift hr eshol d isnegative or greater than 1.0
See Also:

get Al phaThr eshol d

getAlphaThreshold
public float get Al phaThreshol d()
Retrieves the current alphatesting threshold.

Returns:

64

Mobile 3D Graphics API Version 1.1

the current alphathreshold [0, 1]
See Also:
set Al phaThreshol d

setAlphaWriteEnable
public void set Al phaWit eEnabl e(bool ean enabl e)
Enables or disables writing of fragment al pha values into the color buffer.

Parameters:

enabl e - trueto enable alphawrite; falseto disable it
See Also:

set Col or Wit eEnabl e

isAlphaWriteEnabled
public bool ean i sAl phaWit eEnabl ed()
Queries whether alphawriting is enabled.

Returns:

true if aphawriting is enabled; falseif it's disabled
See Also:

i sCol orWiteEnabl ed

setColorWriteEnable
public void setCol or WiteEnabl e(bool ean enabl e)
Enables or disables writing of fragment color values into the color buffer.

Parameters:

enabl e - trueto enable color write; false to disable it
See Also;

set Al phaW i t eEnabl e

isColorWriteEnabled
public bool ean i sCol or Wit eEnabl ed()
Queries whether color writing is enabled.

Returns:

trueif color writing is enabled; falseif it's disabled
See Also:

i sAl phaW it eEnabl ed

65

Mobile 3D Graphics API Version 1.1

setDepthWriteEnable
public void setDepthWiteEnabl e(bool ean enabl e)

Enables or disables writing of fragment depth values into the depth buffer. If depth buffering is not enabled in
the current Graphics3D, this setting has no effect; nothing will be written anyway.

If both depth testing and depth writing are enabled, and a fragment passes the depth test, that fragment's depth
value is written to the depth buffer at the corresponding position.

If depth testing is disabled and depth writing is enabled, afragment's depth value is always written to the depth
buffer.

If depth writing is disabled, a fragment's depth value is never written to the depth buffer.

Parameters:
enabl e - true to enable depth write; false to disable it

isDepthWriteEnabled
public bool ean i sDept hWit eEnabl ed()
Queries whether depth writing is enabled.

Returns:
trueif depth writing is enabled; false if it's disabled

setDepthTestEnable

public void setDept hTest Enabl e(bool ean enabl e)

Enables or disables depth testing. If depth testing is enabled, a fragment is written to the frame buffer if and only
if its depth component is less than or equal to the corresponding value in the depth buffer. If there is no depth
buffer in the current rendering target, this setting has no effect; the fragment will be written anyway.

Parameters:
enabl e - trueto enable depth test; false to disable it

isDepthTestEnabled
publ i c bool ean i sDept hTest Enabl ed()
Queries whether depth testing is enabled.

Returns:
trueif depth testing is enabled; false if it's disabled

setDepthOffset

66

Mobile 3D Graphics API Version 1.1

public void setDepthOfset(float factor,
float units)

Defines avalue that is added to the screen space Z coordinate of a pixel immediately before depth test and depth
write. The depth offset is computed for each polygon with the following formula:

offset = m* factor + r * units
r = smallest distinguishable depth buffer increment
m = maximum depth slope (Z gradient) of the triangle

Parameters:
f act or - slope dependent depth offset
uni t s - constant depth offset
See Also:
get Dept hOf f set Fact or,get Dept hOff set Unit s

getDepthOffsetFactor
public float getDepthOfsetFactor()
Retrieves the current depth offset slope factor. Thisisthef act or parameter setinset Dept hOF f set .

Returns:

the current depth offset factor
See Also:

set Dept hOF f set

getDepthOffsetUnits
public float getDepthOfsetUnits()
Retrieves the current constant depth offset. Thisistheuni t s parameter setinset Dept hOF f set .

Returns:

the current depth offset in depth units
See Also:

set Dept hOF f set

67

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g

Class Fog

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. nBg. Fog

public class Fog
extends Object3D

An Appearance component encapsulating attributes for fogging.

Implementation guidelines

Fogging is done according to the OpenGL 1.3 specification, section 3.10, with the exception that the EXP2 mode is not
supported. The same approximations in fog computation are allowed asin OpenGL.: Firstly, the fog function may be
evaluated at vertices and then interpolated to obtain the per-fragment values, and secondly, the distance from the camera
to the fragment center may be approximated with the fragment's Z coordinate.

See Also:
Binary format

Field Summary

static int | EXPONENTI AL
A parameter to set Mode, specifying exponential fog.

static int [LI NEAR
A parameter to set Mode, specifying linear fog.

Constructor Summary

Fog()
Constructs a new Fog object with default values.

Method Summary

int [get Col or ()
Retrieves the current color of this Fog.

float |get Density()
Retrieves the fog density of exponential fog.

fl oat |[get Far Di st ance()
Retrieves the linear fog far distance.

i nt [get Mode()
Retrieves the current fog mode.

68

Mobile 3D Graphics API Version 1.1

fl oat |get Near Di st ance()
Retrieves the linear fog near distance.

voi d |set Col or (i nt RGB)
Sets the color of this Fog.

void |setDensity(float density)
Sets the fog density for exponential fog.

void |setLinear(float near, float far)
Sets the near and far distances for linear fog.

voi d |set Mode(i nt node)
Sets the fog mode to either linear or exponential.

Methods inherited from class javax.microedition.m3g.0Object3D

addAni mati onTrack, animate, duplicate, find, getAninmationTrack,
get Ani mati onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Field Detail

EXPONENTIAL
public static final int EXPONENTI AL

A parameter to set Mode, specifying exponential fog. The fog blending factor f is calculated according to the
formula:

f=ed

where z is the distance, in camera coordinates, from the camera origin to the fragment center, and d isthe fog
density setinset Densi t y. Theresult is clamped to the [0, 1] range.

See Also:
Constant Field Values

LINEAR
public static final int LINEAR
A parameter to set Mode, specifying linear fog. The fog blending factor f is calculated according to the formula:
f = (far - 2) / (far - near)

where z is the distance, in camera coordinates, from the camera origin to the fragment center, and near and far
arethedistancessetin set Li near . Theresult is clamped to the [0, 1] range. If far == near, that is, the far and

69

Mobile 3D Graphics API Version 1.1

near distances are equal, the result is undefined.

The smaller the fog blending factor is, the more of the fog color is blended in to the rasterized fragment. The
blending factor reaches its minimum at the far plane, and the maximum at the near plane.

See Also;
Constant Field Values

Constructor Detail

Fog
public Fog()
Constructs a new Fog object with default values. The default values are:
o mode: LI NEAR
o density : 1.0 (exponentia fog only)
o hear distance: 0.0 (linear fog only)
o far distance: 1.0 (linear fog only)
1 color: 0x00000000
Method Detail
setMode

public void setMode(int node)

Sets the fog mode to either linear or exponential.

Parameters:
node - the fog mode to set; one of the symbolic constants listed above
Throws:
java.lang. |11 egal Argunent Excepti on -if node isnot LI NEAR or EXPONENTI AL
See Also:
get Mbde
getMode

public int getMde()

Retrieves the current fog mode.

Returns:

the current fog mode; one of the symbolic constants listed above
See Also:

set Mode

70

Mobile 3D Graphics API Version 1.1

setLinear

public void setLinear(float near,
float far)

Sets the near and far distances for linear fog. Note that the near distance does not have to be smaller than the far
distance, although that is usually the case.

Note that this setting has no effect on rendering unless the type of this Fogis (or is later set to) LI NEAR.

Parameters:
near - distanceto thelinear fog near plane
f ar - distanceto thelinear fog far plane

getNearDistance
public float getNearD stance()
Retrieves the linear fog near distance.

Returns:

the current distance to the linear fog near plane
See Also:
set Li near

getFarDistance
public float getFarD stance()
Retrieves the linear fog far distance.

Returns:

the current distance to the linear fog far plane
See Also:
set Li near

setDensity
public void setDensity(float density)
Sets the fog density for exponential fog.
Note that this setting has no effect on rendering unless the type of this Fog is (or is later set to) EXPONENTI AL.

Parameters:
densi ty - the density to set for this Fog
Throws:

71

Mobile 3D Graphics API

java.lang. ||l egal Argunent Exception-ifdensity < 0

See Also:
getDensity

getDensity

public float getDensity()

Retrieves the fog density of exponential fog.

Returns:

the current density of this Fog
See Also:

setDensity

setColor

public void setCol or(int RGB)

Version 1.1

Sets the color of this Fog. The high order byte of the color value (that is, the alpha component) isignored.

Parameters:

RGB - the color to set for this Fog in OXOORRGGBB format

See Also:
get Col or

getColor

public int getColor()

Retrieves the current color of this Fog. The high order byte of the color value (that is, the apha component) is

guaranteed to be zero.

Returns:

the current color of this Fog in OXOORRGGBB format

See Also;
set Col or

72

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g

Class Graphics3D

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. G aphi cs3D

public class Graphics3D
extends java.lang.Object

A singleton 3D graphics context that can be bound to arendering target. All rendering is done through ther ender
methods in this class, including the rendering of World objects. There is no other way to draw anything in this API.

Quick introduction

Using the Graphics3D is very straightforward. The application only needs to obtain the Graphics3D instance (thereis
only one), bind atarget to it, render everything, and release the target. Thisis shown in the code fragment below.

public class MyCanvas extends Canvas

{
Graphi cs3D myG3D = Graphi cs3D. get | nst ance() ;

public void paint(Gaphics g) {
try {
myG3D. bi ndTar get (Q) ;
/1 ... update the scene ...
/[l ... render the scene ...

} finally {
myG3D. r el easeTar get () ;
}

Immediate mode and retained mode rendering

There are four different r ender methods, operating at different levels of granularity. The first method is for rendering
an entire World. When this method is used, we say that the API operates in retained mode. The second method is for
rendering scene graph nodes, including Groups. The third and fourth methods are for rendering an individual submesh.
When the node and submesh rendering methods are used, the API is said to operate in immediate mode.

Thereisacurrent camera and an array of current lightsin Graphics3D. These are used by the immediate mode rendering
methods only. The retained mode rendering method r ender (Wor | d) uses the camera and lights that are specified in
the World itself, ignoring the Graphics3D camera and lights. Instead, r ender (Wor | d) replaces the Graphics3D
current camera and lights with the active camera and lights in the rendered World. This allows subsequent immediate
mode rendering to utilize the same camera and lighting setup as the World.

Rendering targets

Before rendering anything or even clearing the screen, the application must bind arendering target to this Graphics3D,
using the bi ndTar get method. When finished with rendering aframe, the application must rel ease the rendering target
by calling ther el easeTar get method. Implementations may queue rendering commands and only execute them

73

Mobile 3D Graphics API Version 1.1

when the target is released.

The rendering target can be either a Graphics abject or an Image2D. The type of the Graphics abject is specific to the
Java profile that this API isimplemented on. In case of the MID profile, it must beaj avax. m croedi tion. | cdui .
G aphi cs object, and it may be associated with a Canvas, mutable Image, or Customltem.

Once arendering target is bound to the Graphics3D, al rendering will end up in the color buffer of its rendering target
until r el easeTar get iscaled. If the OVERWRI TE hint flag is not given, the contents of the rendering target, after
releasing it, will be equal to what they were before the target was bound, augmented with any 3D rendering performed
while it was bound. If the hint flag is given, the implementation may substitute undefined data for the original contents of
the rendering target.

There can be only one rendering target bound to the Graphics3D at atime. Also, a bound rendering target should not be
accessed via any other interface than the host Graphics3D. Thisis not enforced, but the results are unpredictable
otherwise. For example, the following scenarios will result in unpredictabl e output:

. 2D graphicsisrendered viaMIDP into a bound Image or Canvas.
. A bound Image is read from by the application or the MIDP implementation.
« A bound Image2D is used by a Graphics3D r ender method.

The contents of the depth buffer are unspecified after bi ndTar get , and they are discarded after r el easeTar get . In
order to clear depth buffer contents (and color buffer contents, if so desired) after binding a rendering target, the
application must call the cl ear method, either explicitly, or implicitly by rendering a World.

Origin translation and clipping

The viewport can be freely positioned relative to the rendering target, without releasing and re-binding the target. The
position of the viewport is specified relative to the origin of the rendering target. For Graphics targets, thisisthe origin in
effect when calling bi ndTar get ; for Image2D targets, the origin is always at the top |eft corner. Changing the origin of
a bound Graphics object has no effect.

All 3D rendering is clipped to visible part of the viewport, that is, the intersection of the viewport specified in
set Vi ewport and the rendering target clip rectangle. Rendering operations (including cl ear) must not touch pixels
falling outside of the visible part of the viewport. Thisisillustrated in the figure below.

74

Mobile 3D Graphics API Version 1.1

Visible part of viewport

Viewport

Rendering target clipping rectangle

For Graphics targets, the clipping rectangle isthe MIDP/AWT clipping rectangle that isin effect when calling
bi ndTar get . Similar to the origin, changing the clipping rectangle of a bound Graphics object will result in
unpredictable behavior. For Image2D targets, the clipping rectangle comprises all pixelsin the target image.

Origin trandlation and clipping are independent of the viewport and projection transformations, as well as rasterization.
All other parameters being equal, rendering calls must produce the same pixels (prior to clipping) into the area bounded
by the viewport regardless of the position of the viewport or the target clipping rectangle.

Note that when we refer to the viewport in this specification, we occasionally mean only the visible part of it. If it is not
obvious from the context whether we mean the full viewport or just the visible portion, we state that explicitly.

Rendering quality hints

In some situations, image quality might be more important for an application than rendering speed or memory usage.
Some applications might also want to increase or decrease the image quality based on device capabilities. Some might go
so far asto dynamically adjust the quality; for instance, by displaying freeze frames or slow-motion sequencesin higher
quality.

There are three global optionsin Graphics3D that allow applications to indicate a preference for higher rendering quality
at the expense of slower speed and/or extra memory usage. The application can specify these rendering quality hints
when binding arendering target (see bi ndTar get), and query their availability using get Pr operti es. Thehintsare

as follows;

. Antialiasing. Specifies that antialiasing should be used to increase the perceived resolution of the screen. No
particular method of antialiasing is mandated. However, it is strongly recommended that the method be
independent of drawing order, and fast enough to operate at interactive frame rates. If the chosen method
requires post-processing per frame, that can bedoneinr el easeTar get .

. Dithering. Specifiesthat dithering should be used to increase the perceived color depth of the screen. No
particular method of dithering is mandated. However, the method should be optimized for animated content (as
opposed to still images) and be able to operate at interactive frame rates. For example, ordered dithering is
recommended over error diffusion. Implementations may choose to do the dithering at rendering time (per pixel)
or as apost-process (uponr el easeTar get).

75

Mobile 3D Graphics API Version 1.1

. Truecolor rendering. Specifies that rendering should be done with an internal color depth higher than what is
supported by the device. For example, on a device with an RGB565 display, rendering could be done into an
RGBAS8 back buffer, truncating the pixelsto 16 bitsonly upon r el easeTar get . True color rendering is
especially useful when combined with dithering.

The fact that a hint is supported does not guarantee that it is supported for all different types of rendering targets. For
example, antialiasing may be supported for Image targets, but not Canvas targets. |mplementations must indicate support
for ahint if that hint is supported for at least one type of rendering target. Furthermore, if more than one hint is
supported, it is not guaranteed that those hints can be used together. For example, antialiasing may preclude dithering,
and vice versa. If the application specifies two or more hints, and that combination is not supported, the implementation
may enable any one (or two) of those hints.

It isonly meaningful for the implementation to support a hint if that allows the application to trade performance for
quality or vice versa. For example, if dithering is built into the display hardware and is always enabled, the
implementation should not indicate support for the dithering hint. Similarly, if the device has a 24 bpp display, the
implementation should not support the true color hint (unless, of course, it uses even higher color precision in the back
buffer).

Implementation guidelines

See the package description for general implementation reguirements, definitions of coordinate systems, and other
background information.

Depth buffer

The format and bit depth of the depth buffer are specific to each implementation and are not known to the application.
However, the depth buffer resolution must be at least 8 bits. The contents of the depth buffer are never exposed through
the API, so implementations may choose not to use a conventional depth buffer at all. However, a conforming
implementation is required to behave as if it were using an ordinary depth buffer.

Color buffer

The resolution of each color channel (R, G, B and A) in the color buffer must be at least 1 bit. Not al color channels are
necessarily present; for example, the apha channel is missing from Canvas and Image targets in MIDP. On adevice with
ablack and white display, there may be only one channel, representing the luminance. In such a situation, the conversion
of RGB colorsinto luminance can be done at any point in the pipeline, provided that the conversion is done according to
the genera rules set forth in the package description.

Thecl ear andr ender (Wor | d) methods impose the restriction that the background image must be in the same
format as the bound rendering target. It is worth highlighting that when bound to a MIDP Graphics object, the effective
format can only be RGB (never RGBA) dueto restrictions in the MIDP specification. It is also true that the MIDP
Graphics object appears to be an RGB target even when the physical display isin fact monochrome. This reduces the
complexity of application development considerably, since an RGB format imageis valid for any binding to aMIDP
target. Other target platforms may or may not be similarly specified.

Back buffer

Itisintentionally unspecified whether a separate back buffer should be alocated for colors or not. Instead, we leave it the
implementation to decide which mode of operation is the most efficient, or which produces the best quality, according to
the screen dimensions and speed versus quality preferences given by the application.

76

Mobile 3D Graphics API Version 1.1

The decision whether to allocate any back buffer memory should be made at the latest when anew rendering target is
first bound to the Graphics3D object. A previously bound rendering target is considered to be "new" when the rendering
quality hints or the dimensions of the clipping rectangle have changed. In the case of a Graphics target, the actual
rendering target is considered to be the Canvas, Image or other surface that the Graphicsis attached to. The mativation
for thisruleisto guarantee that repeated rebinding of arendering target - or several different rendering targets - will not
incur the performance penalty of reallocating back buffer memory.

As an example of when a back buffer may be desired, consider a case where the application specifies

set Di t heri ngEnabl e(t rue) and subsequently binds a Canvas target. If the MIDP native color format is of low
precision (such as RGB444), the implementation may wish to render at a higher color precision to a back buffer, then
dither down to the MIDP native color format.

Example:
A code fragment illustrating the usage of Graphics3D.

public class MyCanvas extends Canvas

{
World nyWwrl d;
int currentTinme = 0;
public MyCanvas() throws | OException {
/1 Load an entire World. Proper exception handling is onmitted
/1l for clarity; see the class description of Loader for a nore
/'l el aborate exanpl e.
bj ect 3D[] objects = Loader.|oad("http://ww. exanpl e. com nyscene. n8g") ;
myWorld = (Wrld) objects[0];
}
/1 The paint nethod is called by MDP after the application has issued
/1 a repaint request. We draw a new frame on this Canvas by binding the
/1 current Graphics object as the target, then rendering, and finally
/'l releasing the target.
protected void paint(Gaphics g) {
/1l Get the singleton Gaphics3D instance that is associated
[/ with this mdlet.
Graphi ¢cs3D g3d = G aphi cs3D. get |l nstance();
/1 Bind the 3D graphics context to the given MDP G aphics
/1 object. The viewport will cover the whole of this Canvas.
g3d. bi ndTarget (g) ;
/1 Apply animations, render the scene and rel ease the G aphi cs.
myWor | d. ani mat e(current Ti ne) ;
g3d. render (nyWorl d) ; /1 render a view fromthe active camera
g3d. rel easeTarget () ; /1 flush the rendered inmage
currentTi ne += 50; /1l assunme we can handl e 20 franmes per second
}
}

77

Mobile 3D Graphics API

Version 1.1

Field Summary

static int

ANTI ALI AS
A parameter to bi ndTar get , specifying that antialiasing should be turned on.

static int |[D THER
A parameter to bi ndTar get , specifying that dithering should be turned on.
static int [OVERWRI TE
A parameter to bi ndTar get , specifying that the existing contents of the rendering target need
not be preserved.
static int |TRUE COLOR

A parameter to bi ndTar get , specifying that true color rendering should be turned on.

Method Summary

i nt

addLi ght (Li ght light, Transformtransform
Binds a Light to use in subsequent immediate mode rendering.

voi d

bi ndTar get (j ava. | ang. Qbj ect target)

Binds the given Graphics or mutable Image2D as the rendering target of this
Graphics3D.

voi d

bi ndTar get (j ava. | ang. Gbj ect target,
int hints)

Binds the given Graphics or mutable Image2D as the rendering target of this
Graphics3D.

bool ean dept hBuffer,

voi d

cl ear (Background background)
Clears the viewport as specified in the given Background object.

Camer a

get Canera(Transform transform
Returns the current camera.

fl oat

get Dept hRangeFar ()
Returns the far distance of the depth range.

fl oat

get Dept hRangeNear ()
Returns the near distance of the depth range.

i nt

get H nts()
Returns the rendering hints given for the current rendering target.

static G aphics3D

get I nstance()
Retrieves the singleton Graphics3D instance that is associated with this application.

Li ght [getLight (int index, Transformtransform
Returns alight in the current light array.
int [get Li ght Count ()

Returns the size of the current light array.

static java.util.
Hasht abl e

get Properties()
Retrieves implementation specific properties.

j ava. | ang. Qbj ect

get Target ()
Returns the current rendering target.

78

Mobile 3D Graphics API

Version 1.1

i nt

get Vi ewport Hei ght ()
Returns the height of the viewport.

get Vi ewpor t W dt h()
Returns the width of the viewport.

i nt

get Vi ewport X()
Returns the horizontal position of the viewport.

i nt

get Vi ewport Y()
Returns the vertica position of the viewport.

bool ean

i sDept hBuf f er Enabl ed()
Queries whether depth buffering is enabled for the current rendering target.

voi d

rel easeTar get ()

Flushes the rendered 3D image to the currently bound target and then releases the
target.

voi d

render (Node node, Transform transform

Renders the given Sprite3D, Mesh, or Group node with the given transformation from
local coordinates to world coordinates.

voi d

render (VertexBuffer vertices, |ndexBuffer triangles,
Appear ance appear ance, Transformtransforn

Renders the given submesh with the given transformation from local coordinates to
world coordinates.

voi d

render (VertexBuffer vertices, |ndexBuffer triangles,
Appear ance appearance, Transformtransform int scope)

Renders the given submesh with the given scope and the given transformation from
local coordinates to world coordinates.

voi d

render (World worl d)
Renders an image of wor | d as viewed by the active camera of that World.

voi d

resetLi ghts()
Clearsthe array of current Lights.

voi d

set Caner a(Canera canera, Transformtransforn
Sets the Camerato use in subsequent immediate mode rendering.

voi d

set Dept hRange(fl oat near, float far)

Specifies the mapping of depth values from normalized device coordinates to window
coordinates.

voi d

setLight(int index, Light light, Transformtransform
Replaces or modifies a Light currently bound for immediate mode rendering.

voi d

setViewport(int x, int y, int width, int height)
Specifies arectangular viewport on the currently bound rendering target.

Field Detail

ANTIALIAS

79

Mobile 3D Graphics API Version 1.1

public static final int ANTIALIAS

A parameter to bi ndTar get , specifying that antialiasing should be turned on. The application may query
from get Pr oper t i es whether thishint is acted upon by the implementation.

See Also:
Constant Field Values

DITHER
public static final int DI THER

A parameter to bi ndTar get , specifying that dithering should be turned on. The application may query from
get Properti es whether this hint is acted upon by the implementation.

See Also:
Constant Field Values

TRUE_COLOR
public static final int TRUE COLOR

A parameter to bi ndTar get , specifying that true color rendering should be turned on. The application may
query from get Pr oper t i es whether this hint is acted upon by the implementation.

See Also;
Constant Field Values

OVERWRITE
public static final int OVERWRI TE

A parameter to bi ndTar get , specifying that the existing contents of the rendering target need not be
preserved. This can improve performance in applications that fully overwrite the rendering target without
necessarily clearing it first.

Since:
M3G 1.1
See Also:
Constant Field Values

M ethod Detail

getinstance

public static final G aphics3D getlnstance()

80

Mobile 3D Graphics API Version 1.1

Retrieves the singleton Graphics3D instance that is associated with this application. The same instance will be
returned every time.

Initially, the state of the Graphics3D instanceis as follows:

viewport : undefined (reset at bi ndTar get)
depth range: [0, 1]

current camera : none

current lights : none

[} [} [} [}

Returns:
the Graphics3D instance associated with this application

bindTarget
public void bindTarget(java.l ang. Cbject target)

Binds the given Graphics or mutable Image2D as the rendering target of this Graphics3D. The type of the
Graphics object depends on the Java profile that this specification isimplemented on, as follows:

o j ava. awmt . G aphi cs on profiles supporting AWT;
o javax. m croedition. | cdui.G aphics on profilessupporting LCDUI;
o either of the above on profiles supporting both AWT and LCDUI.

The state of this Graphics3D after calling this method will be as follows:

rendering target : the given Graphics or Image2D
viewport : covering the target clipping rectangle
depth buffer : enabled

antialiasing : disabled

dithering : disabled

true color : disabled

overwrite : disabled

depth range : as before

current camera: as before

current lights : as before

[} [} [} [} [} [} [} [} [} [}

The dimensions of the given target must not exceed the implementati on-specific maximum viewport size, which
can be queried with get Properti es. Theviewport is set such that itstop left corner is at the top left corner
of the target clipping rectangle, and its dimensions are equal to those of the clipping rectangle.

Note that this method will not block waiting if another thread has aready bound a rendering target to this
Graphics3D. Instead, it will throw an exception. Only one target can be bound at atime, and it makes no
difference whether that target has been bound from the current thread or some other thread.

Parameters:
t ar get - the Image2D or Graphics object to receive the rendered image
Throws:
java. |l ang. Nul | Poi nt er Excepti on-iftarget isnull
java.lang. |11 egal St at eExcepti on - if this Graphics3D aready has a rendering target
java.lang. |l1egal Argunent Excepti on -ift ar get isnot amutable Image2D object or a

81

Mobile 3D Graphics API Version 1.1

Graphics object appropriate to the underlying Java profile

java.lang. ||| egal Argunent Exception-if(target.wi dth >
maxVi ewport Wdth) || (target.height > nmaxVi ewport Hei ght)
java.lang. ||| egal Argunent Excepti on -iftarget isanImage2D with an internal format
other than RGB or RGBA
See Also:
rel easeTar get,get Hi nts,i sDept hBuf f er Enabl ed
bindTarget

public void bindTarget (java.l ang. Cbj ect target,
bool ean dept hBuffer,
int hints)

Binds the given Graphics or mutable Image2D as the rendering target of this Graphics3D. Thismethod is
identical to the simpler variant of bi ndTar get , but alows the depth buffering enable flag and the rendering
hints to be specified. See the class description for more information on these.

If the depth buffer is disabled, depth testing and depth writing are implicitly disabled for all objects, regardiess
of their individual CompositingM ode settings.

Parameters:
t ar get - thelmage2D or Graphics object to receive the rendered image
dept hBuf f er - true to enable depth buffering; false to disable
hi nt s - an integer bitmask specifying which rendering hints to enable, or zero to disable all hints

Throws:
java. |l ang. Nul | Poi nt er Excepti on-iftarget isnull
java.lang. |11 egal St at eExcepti on - if this Graphics3D aready has a rendering target
java.lang. |l 1 egal Argunent Excepti on -if t ar get isnot amutable Image2D object or a
Graphics object appropriate to the underlying Java profile
java.lang. Il 1 egal Argunent Excepti on-iftarget isanImage2D with aninternal format
other than RGB or RGBA
java.lang. |11 egal Argunent Exception-if (target.w dth >
maxVi ewport Wdth) || (target.height > naxVi ewport Hei ght)
java.lang. ||| egal Argunent Excepti on -if hi nt s isnot zero or an OR bitmask of one or
more of ANTI ALI AS, DI THER, TRUE_CCOLOR, and OVERWRI TE

See Also:

rel easeTar get, get Hi nts,i sDept hBuf f er Enabl ed

releaseTarget
public void rel easeTarget()

Flushes the rendered 3D image to the currently bound target and then rel eases the target. This ensures that the
3D image is actually made visible on the target that was set in bi ndTar get . Otherwise, the image may or may
not become visible. If no target is bound, the request to release the target is silently ignored.

See Also:
bi ndTar get

getTarget

82

Mobile 3D Graphics API Version 1.1

public java.l ang. Obj ect get Target ()
Returns the current rendering target.

Returns:

the currently bound rendering target, or nul | if no target is bound
Since:

M3G 1.1
See Also:

bi ndTar get

getHints
public int getHints()

Returns the rendering hints given for the current rendering target. If no target is bound, the return valueis
undefined.

Note that the return value is the hint bitmask set by the application, even if the implementation is not acting
upon al of the hintsinit.

Returns:

the current rendering hint bitmask
Since:

M3G 1.1
See Also:

bi ndTar get

isDepthBufferEnabled
publ i ¢ bool ean i sDept hBuf f er Enabl ed()

Queries whether depth buffering is enabled for the current rendering target. If no target is bound, the return
value is undefined.

Returns:

t r ue if depth buffering is enabled, f al se if not
Since:

M3G 1.1
See Also:

bi ndTar get

setViewport

public void setViewort(int X,
int vy,
int width,
i nt height)

83

Mobile 3D Graphics API Version 1.1

Specifies arectangular viewport on the currently bound rendering target. The viewport is the area where the
view of the current camerawill appear. Any parts of the viewport that lie outside the boundaries of the target
clipping rectangle are silently clipped off; however, this must simply discard the pixels without affecting
projection. The viewport upper left corner (X, y) is given relative to the origin for a Graphics rendering target, or
the upper left corner for an Image2D target. Refer to the class description for details.

The viewport mapping transforms vertices from normalized device coordinates (Xpger Ynge) t0 window
coordinates (X, Yy) asfollows:

Xy~ 0.5 XpgoW + 0y
Yw= -0.5 Yngch + 0y

wherew and h are the width and height of the viewport, specified in pixels, and (o,, oy) is the center of the

viewport, also in pixels. The center of the viewport is obtained from the (x, y) coordinates of the top left corner
asfollows:

0,=Xx+05w
oy=y+0.5h

Parameters:
x - X coordinate of the viewport upper left corner, in pixels
y - Y coordinate of the viewport upper left corner, in pixels
wi dt h - width of the viewport, in pixels
hei ght - height of the viewport, in pixels
Throws:
java.lang. |1 egal Argunent Exception-if (width <= 0) || (height <= 0)
(notethat x and y may have any value)
java.lang. ||l egal Argunent Exception-if (wi dth > maxVi ewportWdth) ||
(hei ght > maxVi ewport Hei ght)
See Also:
bi ndTar get, get Vi ewport X, get Vi ewport Y, get Vi ewport W dt h,

get Vi ewpor t Hei ght

getViewportX
public int getViewortX()
Returns the horizontal position of the viewport.

Returns:

the X coordinate of the upper left corner, in pixels
Since:

M3G 1.1
See Also:

set Vi ewport

getViewportY

public int getViewortY()

84

Mobile 3D Graphics API Version 1.1

Returns the vertical position of the viewport.

Returns:

the Y coordinate of the upper left corner, in pixels
Since:

M3G 1.1
See Also:

set Vi ewpor t

getViewportWidth
public int getViewortWdth()
Returns the width of the viewport.

Returns:

the width of the viewport, in pixels
Since:

M3G 1.1
See Also:

set Vi ewport

getViewportHeight
public int getViewportHeight()
Returns the height of the viewport.

Returns:

the height of the viewport, in pixels
Since:

M3G 1.1
See Also:

set Vi ewpor t

setDepthRange

public void setDept hRange(fl oat near,
float far)

Specifies the mapping of depth values from normalized device coordinates to window coordinates. Window
coordinates are used for depth buffering.

Depth values may range from -1 to 1 in normalized device coordinates (NDC), and from 0 to 1 in window
coordinates. By default, the whole [0, 1] range of window coordinates is used. This method allows the
normalized device coordinates [-1, 1] to be mapped to a "tighter" interval of window coordinates, for example,
(0.5, 1].

Formally, the Z coordinate of avertex in NDC, z,4, is transformed to window coordinates (z,,) as follows:

85

Mobile 3D Graphics API Version 1.1

z,~ 0.5 (far - near) (z,,4c+ 1) + near

wherenear andf ar arethe distances, in window coordinates, to the near and far plane of the depth range,

respectively. Both distances must bein [0, 1]. However, it is not necessary for the near plane to be closer than
the far plane; inverse mappings are also acceptable.

Parameters.

near - distanceto the near clipping plane, in window coordinates

f ar - distanceto the far clipping plane, in window coordinates
Throws:

java.lang. |1l egal Argunent Exception-if(near < 0) || (near > 1)

java.lang. ||l egal Argunment Exception-if(far < 0) || (far > 1)
See Also:

get Dept hRangeNear , get Dept hRangeFar
getDepthRangeNear
public float getDepthRangeNear ()

Returns the near distance of the depth range.

Returns:

distance to the near clipping plane, in window coordinates
Since:

M3G 1.1
See Also:

set Dept hRange

getDepthRangeFar
public float getDepthRangeFar ()
Returns the far distance of the depth range.

Returns:

distance to the far clipping plane, in window coordinates
Since:

M3G 1.1
See Also:

set Dept hRange

clear
public void cl ear(Background background)

Clears the viewport as specified in the given Background object. If the background object is null, the default

settings are used. That is, the color buffer is cleared to transparent black, and the depth buffer to the maximum
depth value (1.0).

86

Mobile 3D Graphics API Version 1.1

render

public

render

Parameters:
backgr ound - aBackground object defining which buffersto clear and how, or null to use the
default settings

Throws:
java.lang. ||| egal Argunent Excepti on - if the background imagein backgr ound isnot

in the same format as the currently bound rendering target
java.lang. ||| egal St at eExcepti on - if this Graphics3D does not have a rendering target

voi d render (VWorld worl d)

Renders an image of wor | d as viewed by the active camera of that World. The node transformation of the
World isignored, but its other attributes are respected.

Contrary to theimmediate mode r ender variants, this method automatically clears the color buffer and the
depth buffer according to the Background settings of the World.

Prior to rendering, the current camera and lights set in this Graphics3D are automatically overwritten with the
active camera and lights of the World. Upon method return, the lights array will contain precisely those Light
nodes whose effective rendering enable flag istrue (see Node. set Render i ngEnabl €). The Lights are

written to the array in undefined order, but such that the first Light is at index 0 and there are no empty slots
interleaved within non-empty slots. As usual, the Camera and Light transformations will be from their local
coordinates to world coordinates (i.e., the coordinate system of wor | d). In other words, the Camera and Lights
are effectively set up asfollows:

Canmera ¢ = worl d. get Acti veCanera();
nyG3D. set Canera(c, c.getTransfornilo(world));
nyG3D. reset Li ght s();
for (<all enabled Lights | in world>) {
nyG3D. addLi ght (I, |.getTransformlo(world));

}

For any node that is rendered, if the transformation from that node's local coordinates to the camera spaceis not
invertible, the results of lighting and fogging are undefined.

Parameters:
wor | d - the World to render
Throws:
java. |l ang. Nul | Poi nt er Excepti on -if worl d isnull
java.lang. ||| egal St at eExcepti on - if this Graphics3D does not have a rendering target

java.lang. |11 egal St at eExcepti on -if wor | d has no active camera, or the active camerais
not in that world

java.lang. |11 egal St at eExcepti on - if the background image of wor | d isnot in the same
format as the currently bound rendering target

java.lang. |l 1 egal St at eExcepti on - if any Mesh that is rendered violates the constraints

defined in Mesh, MorphingMesh, SkinnedMesh, VertexBuffer, or IndexBuffer
java.lang. Arit hnmeti cExcepti on - if the transformation from the active camera of wor | d to
the world space is uninvertible

87

Mobile 3D Graphics API Version 1.1

public

render

public

voi d render (Node node,
Transform transform

Renders the given Sprite3D, Mesh, or Group node with the given transformation from local coordinatesto world
coordinates. The node transformation of the given node isignored, but its other attributes are respected.

Any ancestors of the given node are ignored, as well as their transformations and other attributes. The node's
descendants, if any, are rendered as usual. However, any Camera and Light nodes among the descendants are
ignored and the camera and lights of this Graphics3D are used instead.

The scope masks of the current Lights and Camera are respected, as well as the rendering enable flags of the
Lights. The rendering enable flag of the Cameraisignored, as aways.

Note that Mesh nodes include MorphingMesh and SkinnedM esh nodes, and that Group nodes include World
nodes. If aWorld is passed to this method, it is simply treated like any other Group and therefore any
Background, Camera and Light objects it may have are ignored.

This method does not clear the color and depth buffers; the application must explicitly clear them with the
cl ear method and/or draw any background graphics beforehand.

For any node that is rendered, if the transformation from that node's local coordinates to the camera space is not
invertible, the results of lighting and fogging are undefined.

Parameters:
node - the Sprite3D, Mesh, or Group to render
t r ansf or m- the transformation from the local coordinate system of node to world space, or null to
indicate the identity matrix

Throws:
java. l ang. Nul | Poi nt er Excepti on -if node isnull
java.lang. |1 egal Argunent Excepti on -if node isnot a Sprite3D, Mesh, or Group
java.lang. 111 egal St at eExcepti on - if this Graphics3D does not have a rendering target
java.lang. |11 egal St at eExcepti on - if this Graphics3D does not have a current camera
java.lang. |11 egal St at eExcepti on - if any Mesh that is rendered violates the constraints
defined in Mesh, MorphingMesh, SkinnedMesh, VertexBuffer, or IndexBuffer

voi d render(VertexBuffer vertices,

I ndexBuf fer triangl es,
Appear ance appear ance,
Transform transform

i nt scope)

Renders the given submesh with the given scope and the given transformation from local coordinates to world
coordinates.

The scope masks of the current Lights and Camera are respected, as well as the rendering enable flags of the
Lights. The rendering enable flag of the Cameraisignored, as aways.

If the transformation from local coordinates to the camera space is not invertible, the results of lighting and

88

Mobile 3D Graphics API Version 1.1

fogging are undefined.

Parameters:
verti ces - aVertexBuffer defining the vertex attributes
tri angl es - an IndexBuffer defining the triangle strips
appear ance - an Appearance defining the surface properties
t r ansf or m- the transformation from the local coordinate system of vert i ces to world space, or
null to indicate the identity matrix
scope - the scope of the submesh; this determines whether the submesh isrendered at al, and if it is,
which lights are used; "-1" makes the scope as wide as possible

Throws:
java.lang. Nul | Poi nt er Excepti on-ifverticesisnull
java.l ang. Nul | Poi nt er Excepti on-iftriangl es isnull
java. |l ang. Nul | Poi nt er Excepti on -if appear ance isnull
java.lang. ||| egal St at eExcepti on - if this Graphics3D does not have a rendering target
java.lang. 111 egal St at eExcepti on - if this Graphics3D does not have a current camera
java.lang. ||| egal St at eExcepti on-ifverticesortriangl es violatesthe constraints
defined in VertexBuffer or IndexBuffer

render

public void render(VertexBuffer vertices,
I ndexBuffer triangl es,
Appear ance appear ance,
Transform transform

Renders the given submesh with the given transformation from local coordinates to world coordinates. This
method is exactly the same as the other submesh rendering method, except that the scope isimplicitly set to -1
(the widest possible).

Parameters:
verti ces - aVertexBuffer defining the vertex attributes
tri angl es - an IndexBuffer defining the triangle strips
appear ance - an Appearance defining the surface properties
t r ansf or m- the transformation from the local coordinate system of vert i ces to world space, or
null to indicate the identity matrix

Throws:
java. |l ang. Nul | Poi nter Exception-ifverticesisnull
java. |l ang. Nul | Poi nt er Exception-iftriangl es isnull
java. |l ang. Nul | Poi nt er Excepti on -if appear ance isnull
java.lang. |1 egal St at eExcepti on - if this Graphics3D does not have a rendering target
java.lang. |11 egal St at eExcepti on - if this Graphics3D does not have a current camera
java.lang. 111 egal St at eException-ifvertices ortri angl es violatesthe constraints
defined in VertexBuffer or IndexBuffer

setCamera

public void setCanera(Canera canera,
Transform transformn

Sets the Camerato use in subsequent immediate mode rendering. The given transformation is from the Camera's
local coordinate system (camera space) to the world space. The transformation is copied in, so any further

89

Mobile 3D Graphics API Version 1.1

changesto it will not be reflected in this Graphics3D. The node transformation of the Cameraisignored. If the
Camera has any ancestors, they are also ignored.

The scope of the Cameraiis respected when rendering. The rendering enable flag of the Cameraisignored, as
aways.

The given camera-to-world transformation must be invertible in order that the model-to-camera (or
"modelview") transformation for each rendered object and light source can be computed.

Parameters:
carmer a - the Camerato bind for immediate mode rendering, or null to unbind the current camera
t r ansf or m- the transformation from the local coordinate system of canmer a to world space, or null
to indicate the identity matrix

Throws:
java.lang. Arithneti cExcepti on -iftransf or misnotinvertible
See Also:
get Caner a
getCamera

public Canera get Canera(Transform transform

Returns the current camera.

Parameters:
t r ansf or m- a Transform to store the current cameratransformation in, or nul | to only get the
camera
Returns:
the current camera
Since:
M3G 1.1
See Also:
set Caner a

addLight

public int addLi ght(Light Iight,
Transform transformn

Binds a Light to use in subsegquent immediate mode rendering. The Light isinserted at the end of the current
lights array, regardless of whether there are empty (null) slots at lower indices. The index of the slot in which
the Light isinserted is returned to the application. The returned indices are guaranteed to be strictly increasing,
until r ender (Worl d) orreset Li ght s iscaled.

The given transformation is from the Light's local coordinate system to the world space. Note that the
transformation need not be invertible. The transformation is copied in, so any further changesto it will not be
reflected in this Graphics3D. The node transformation of the Light isignored. If the Light has any ancestors,
they are aso ignored.

Note that the complete transformation is not required for performing lighting computations. |mplementations
may therefore opt to store only the required parts of it.

90

Mobile 3D Graphics API Version 1.1

The index of the added Light is guaranteed to remain the same until the light is either removed using
set Li ght, or thelights array is overwritten by r ender (Wbr | d) , or the array is explicitly cleared with
reset Li ghts.

The scope and rendering enable flag of the Light are respected when rendering. This enables selection of subsets
of the current light array without repeatedly resetting the light array.

Parameters:
I i ght -theLight to add at the end of the array of current lights
t r ansf or m- the transformation from the local coordinate system of | i ght to world space, or null
to indicate the identity matrix
Returns:
the index at which the Light was inserted in the array
Throws:
java. |l ang. Nul | Poi nt er Exception-iflight isnull
See Also:
set Li ght , get Li ght

setLight

public void setLight(int index,
Li ght i ght,
Transform transform

Replaces or modifies a Light currently bound for immediate mode rendering. Thisis similar to addLight, except
that an existing light is replaced and the size of the light array does not change.

Parameters:
i ndex - index of the light to set
['i ght -theLight to set, or null to removethelight at i ndex
t r ansf or m- the transformation from the local coordinate system of | i ght to world space, or null
to indicate the identity matrix
Throws:
java. |l ang. | ndexQut Of BoundsException-if (index < 0) || (index >=
get Li ght Count)
See Also:
addLi ght, get Li ght

resetLights

public void resetLights()
Clearsthe array of current Lights.

getLightCount

public int getLightCount()

Returns the size of the current light array. Thisincludes actual lights as well as any empty slotsin the array.

91

Mobile 3D Graphics API Version 1.1

Returns:
the number of slotsin the current light array
Since:
M3G 1.1
See Also:
addLi ght , set Li ght, get Li ght
getLight

public Light getLight(int index,
Transform transform

Returns alight in the current light array.

Note that implementations are not required to store the complete light transformation passed in addLi ght or
set Li ght . The returned transformation may therefore be different from the transformation passed in, but must
produce the same lighting.

Parameters:

i ndex - index of thelight to get

t r ansf or m- transform to store the light transformation in, or nul | to only get the Light object
Returns:

the light object at i ndex

Throws:
java. |l ang. | ndexQut Of BoundsException-if (index < 0) || (index >=
get Li ght Count)

Since:
M3G 1.1

See Also:

addLi ght, set Li ght, get Li ght Count

getProperties
public static final java.util.Hashtable getProperties()

Retrieves implementation specific properties. The properties are stored in a Hashtable that is keyed by String
values. The Hashtable will always contain the entries listed in the table below, but there may also be other
entries specific to each implementation.

The third column shows for each property the baseline requirement that all implementations must satisfy. The
actual value returned may be equal to or greater than the baseline requirement.

Key (String) Valuetype rgiﬂrrgrl:]rgnt Description
supportAntialiasing Boolean false See above
supportTrueColor Boolean false See above
supportDithering Boolean false See above

92

Mobile 3D Graphics API Version 1.1

supportMipmapping Boolean false See Texture2D
supportPerspectiveCorrection | Boolean false See PolygonMode
supportLocalCameralighting | Boolean false See PolygonMode
maxLights Integer 8 See Light
maxViewportWidth Integer 256 See setViewport
maxViewportHeight Integer 256 See setViewport

The minimum of
maxViewportDimension Integer 256 {maxViewportWidth,
maxViewportHeight}

max TextureDimension Integer 256 See Texture2D

maxSpriteCropDimension Integer 256 See Sprite3D

maxTransformsPerVertex Integer 2 See SkinnedMesh

numTextureUnits Integer 1 See Appearance
Returns:

a Hashtable defining properties specific to this implementation

93

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Group

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi ti on. nBg. Transf or mabl e
I—j avax. m croedi ti on. n8g. Node
I—j avax. m croedi tion. nBg. G oup

Direct Known Subclasses;
World

public class Group
extends Node

A scene graph node that stores an unordered set of nodes asits children.

The parent-child relationship is bidirectional in the sense that if node A is achild of node B, then B isthe (one and only)
parent of A. In particular, the get Par ent method of A will return B. Besides Group nodes, this also concerns
SkinnedM esh nodes: the skeleton group is the one and only child of a SkinnedMesh.

A node can have at most one parent at atime, and cycles are prohibited. Furthermore, a World node cannot be a child of
any node. These rules are enforced by the addChi | d method in this class, as well as the constructor of SkinnedMesh.

See Also:
Binary format

Field Summary

Fieldsinherited from class javax.microedition.m3g.Node

NONE, ORIGN, X AXIS, Y AXIS, Z AXIS

Constructor Summary

G oup()
Constructs a new Group node and initializes it with an empty list of children.

Method Summary

voi d |addChi | d(Node chil d)

Adds the given node to this Group, potentially changing the order and indices of the previously
added children.

Node [get Chi | d(i nt i ndex)
Getsachild by index.

94

Mobile 3D Graphics API Version 1.1

int |get Chil dCount ()
Gets the number of children in this Group.

bool ean |pi ck(int scope, float x, float y, Canera canmera, Raylntersection ri)

Picksthe first Mesh or scaled Sprite3D in this Group that is enabled for picking, isintercepted by
the given pick ray, and isin the specified scope.

bool ean |pi ck(i nt scope, float ox, float oy, float oz, float dx, float dy,
float dz, Raylntersection ri)

Picksthe first Mesh in this Group that is intercepted by the given pick ray and is in the specified
scope.

voi d |renoveChi | d(Node chil d)
Removes the given node from this Group, potentially changing the order and indices of the
remaining children.

Methodsinherited from class javax.micr oedition.m3g.Node

align, getAlignnmentReference, getAlignnmentTarget, getAl phaFactor, getParent,
get Scope, get Transformlo, i sPickingEnabl ed, isRenderingEnabl ed, setAlignnent,
set Al phaFact or, set Pi cki ngEnabl e, set Renderi ngEnabl e, set Scope

Methodsinherited from class javax.micr oedition.m3g.Transfor mable

get ConpositeTransform getOrientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
set Transl ation, translate

Methods inherited from class javax.microedition.m3g.0Object3D

addAni mati onTrack, animate, duplicate, find, getAninmationTrack,
get Ani mati onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserlD, setUser (bject

Constructor Detail

Group
public G oup()

Constructs a new Group node and initializes it with an empty list of children. Properties inherited from
Object3D and Node will have the default values as specified in their respective class descriptions.

Method Detail

addChild

95

Mobile 3D Graphics API Version 1.1

public void addChil d(Node child)

Adds the given node to this Group, potentially changing the order and indices of the previously added children.
The position at which the node is inserted among the existing children is deliberately left undefined. This gives
implementations the freedom to select a data structure that best fits their needs, instead of mandating a particular
kind of data structure.

Parameters:
chi | d - the node to add; must not form aloop in the scene graph
Throws:
java. |l ang. Nul | Poi nt er Exception -ifchil disnull
java.lang. Il 1 egal Argunent Excepti on -if chi | d isthis Group
java.lang. ||l egal Argunment Excepti on -if chi | d isaWorld node
java.lang. Il egal Argunent Excepti on -if chi | d aready has a parent other than this
Group
java.lang. |11 egal Argunent Excepti on -if chi | d isan ancestor of this Group

removeChild

public void renmoveChil d(Node chil d)

Removes the given node from this Group, potentially changing the order and indices of the remaining children.
If the given node is not a child of this Group, or is null, the request to remove it is silently ignored.

Parameters:
chi | d - the node to remove
Throws:
java.lang. Il 1 egal Argunent Excepti on -if removing chi | d would break a connection

between a SkinnedM esh node and one of its transform references
getChildCount
public int getChildCount()
Gets the number of children in this Group.

Returns:
the number of children directly attached to this group

getChild

public Node get Child(int index)

Getsachild by index. Valid indices range from zero up to the number of children minus one. Note that the
index of any child may change whenever a node is added to or removed from this Group. See addChi | d for
more information.

Parameters:
i ndex - index of the child node to get
Returns:

96

Mobile 3D Graphics API Version 1.1

the child node at the given index; can not be null

Throws:
java. |l ang. | ndexQut Of BoundsException-if (i ndex < 0) || (index >=
get Chi | dCount)

pick

publ i c bool ean pick(int scope,
fl oat ox,
fl oat oy,
fl oat oz,
fl oat dx,
fl oat dy,
fl oat dz,
Rayl ntersection ri)

Picks the first Mesh in this Group that is intercepted by the given pick ray and isin the specified scope. Meshes
that are disabled or out of scope areignored. Any ancestors of this Group, including their picking enable flags,

areignored. Winding and culling flags for each Mesh are respected when determining a hit, such that triangles
culled based on their facing with respect to the pick ray areignored.

The pick ray is cast in the given direction from the given location in the coordinate system of this Group. The
direction vector of the ray does not need to be unit length; the distance to the picked object is computed relative
to the length of the given ray.

Information about the picked object, if any, isfilled in to the given Raylntersection object. If no intersection
occurs, the RaylIntersection object is left unmodified.

This method ignores all Sprite3D nodes. Thisis because the camera parameters (that is, the projection matrix)
arerequired in order to compute the size of a sprite (see the Sprite3D class description), and that information is
not available to this method. Developers are advised to use the other pi ck variant if picking of spritesis
desired.

The application should ensure that there are no uninvertible node transformations in this Group. Depending on
how picking is implemented, singular transformations may or may not trigger an ArithmeticException.

Parameters:
scope - aninteger scope specifying which Meshesto test for intersection with the pick ray; "-1"
makes the scope as wide as possible
ox - X coordinate of the ray origin
oy - Y coordinate of the ray origin
0z - Z coordinate of the ray origin
dx - X component of the ray direction
dy - Y component of theray direction
dz - Z component of the ray direction
ri - aRaylntersection object tofill in with information about the intersected Mesh, or null to just find
out whether the ray intersected something or not
Returns:
trueif the ray intersected a Mesh; false otherwise
Throws:
java.lang. ||l egal Argunent Exception-ifdx = dy = dz = 0
java.lang. Il | egal St at eExcepti on - if any Mesh that istested for intersection violates the
constraints defined in Mesh, MorphingMesh, SkinnedMesh, VertexBuffer, or IndexBuffer

97

Mobile 3D Graphics API Version 1.1

java.lang. Arithneti cExcepti on - if theinverse of an uninvertible transformation is required
by the implementation

pick

publ i c bool ean pick(int scope,
fl oat x,
float vy,

Canera canera,
Rayl ntersection ri)

Picks the first Mesh or scaled Sprite3D in this Group that is enabled for picking, isintercepted by the given pick
ray, and isin the specified scope.

This method behavesidentically to the other pi ck variant, except that the pick ray is specified differently and
that scaled sprites can also be picked. Unscaled sprites can not be picked. Thisis because the size of an unscaled
sprite isonly defined in screen space (that is, after viewport transformation), and the viewport parameters are
not available to this method. See the Sprite3D class description for more information on sprite picking.

The pick ray is cast from the given point p = (X, y) on the near clipping plane towards the corresponding point
on the far clipping plane, and then beyond. See the Implementation guidelines below for details.

Note that the origin of the pick ray is not the given Camera, but the point on the near clipping plane.
Consequently the distance to the picked object, returned in Raylntersection, is not the distance from the camera,
but the distance from the point p.

The point p is specified relative to the viewport such that (0, 0) is the upper left corner and (1, 1) isthe lower
right corner. However, the (x, y) coordinates are not restricted to that range and may take on any values. In other
words, objects that do not lie within the viewport can a so be picked.

The given Camera and this Group must be in the same scene graph. Furthermore, the projection matrix of the
Cameramust be invertible. Depending on how picking isimplemented, objects within the Group which have
uninvertible modelview matrices may or may not trigger an Arithmeti cException.

Implementation guidelines

The pick ray is cast towards infinity from the given point p on the near clipping plane, through a point p' on the
far clipping plane. The exact procedure of deriving the pick ray origin and direction from the given point (X, y)
and the given projection matrix P is as follows.

In normalized device coordinates (NDC), the viewport spans the range [-1, 1] in each dimension (X, Y and Z).
Points that lie on the near plane have aZ coordinate of -1 in NDC; points on the far plane haveaZ of 1. The
normalized device coordinates of p and p' are, therefore:

Pnac= (2¢-1, 1-2y, -1, 1)T
P'nac= (2x-1, 1-2y, 1, 1)T

Note that the Y coordinate isinverted when going from NDC to viewport or vice versa, as the viewport upper
left corner mapsto (-1, 1) in NDC (see also the viewport transformation equation in Gr aphi ¢cs3D.
set Vi ewpor t). Applying the inverse projection matrix on the pick points, we obtain their positionsin camera

98

Mobile 3D Graphics API Version 1.1

space:

P P 1Pnge
P'e= P1p'hac

We then scale the resultant homogeneous points such that their W components are equal to 1; that might not
otherwise be the case after the inverse projection. Formally, denoting the W components of the near and far
points by w and w', the final camera space coordinates are obtained as follows:

p=pd w
P=pdw

The origin of the pick ray in camera coordinates is then p while its direction vector isp' - p.

Finaly, the pick ray is transformed from camera space to the coordinate system of this Group. That ray is used
in the actual intersection tests, and is also the one that is returned by the get Ray method in Raylntersection.

Parameters:
scope - aninteger scope specifying which meshes and sprites to test for intersection with the pick ray;
-1 makes the scope as wide as possible
X - X coordinate of the point on the viewport plane through which to cast the ray
y - 'Y coordinate of the point on the viewport plane through which to cast the ray
carmer a - acamerabased on which the origin and direction of the pick ray are to be computed
ri - aRaylntersection object tofill in with information about the intersected Mesh, or null to just find
out whether the ray intersected something or not

Returns:
trueif the ray intersected a Mesh or Sprite3D; false otherwise

Throws:
java. |l ang. Nul | Poi nt er Excepti on -if canmer aisnull
java.lang. ||| egal St at eExcepti on - if any Mesh that is tested for intersection violates the
constraints defined in Mesh, MorphingMesh, SkinnedMesh, VertexBuffer, or IndexBuffer
java.lang. ||| egal St at eExcepti on - if thereisno scene graph path between camer a and
this Group
java.lang. Arithneti cExcepti on - if theinverse of an uninvertible transformation is required
by the implementation

99

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Image2D

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedition. nBg. | mage2D

public class | mage2D
extends Object3D

A two-dimensional image that can be used as a texture, background or sprite image.

There are two kinds of images: mutable and immutable. The contents of a mutable image can be updated at any time by
rendering into it or by using the set method. The changes are immediately reflected to the textures and other objects
where the Image2D is used. The contents of an immutable image, on the other hand, are fixed at construction time and
can not be changed later. Knowing that an image is immutable, the implementation can safely preprocess the image to
optimize it for speed or memory consumption. For example, it may compress the image, reorder the pixels, or reduce the
color depth.

The dimensions of the image are restricted only by the amount of available memory. However, if the image isto be used
as atexture, its dimensions must be non-negative powers of two. Thisrestriction is enforced by Texture2D.

The image contents are copied in from a byte array or from an Image object. All byte data supplied to an Image2D is
treated as unsigned. That is, byte valuesin [-128, -1] are interpreted as valuesin [128, 255], in that order.

See Also:
Binary format

Field Summary

static int [ALPHA
A constructor parameter specifying that this Image2D has an apha component only.

static int [LUM NANCE
A constructor parameter specifying that this Image2D has aluminance component only.

static int |LUM NANCE ALPHA
A constructor parameter specifying that this Image2D has |luminance and alpha components.

static int [RGB
A constructor parameter specifying that this Image2D has red, green and blue color components.

static int |RGBA

A constructor parameter specifying that this Image2D has red, green, blue and alpha components.

Constructor Summary

I mage2D(int format, int width, int height)
Constructs an empty, mutable Image2D with the given dimensions.

100

Mobile 3D Graphics API Version 1.1

I mage2D(int format, int width, int height, byte[] imge)
Constructs an immutable Image2D by copying pixels from a byte array.

I mage2D(int format, int width, int height, byte[] inage, byte[] palette)
Constructs an immutable Image2D by copying palette indices from a byte array, and the pa ette entries from
another byte array.

| mage2D(i nt format, java.lang. Gbject inmage)
Constructs an immutable Image2D by copying pixelsfromaMIDP or AWT Image.

Method Summary

int |get For mat ()
Gets the internal format of this Image2D.

i nt |get Hei ght ()

Gets the height of this Image2D, in pixels.
int ([get Wdth()

Gets the width of thisImage2D, in pixels.

bool ean |i sMut abl e()
Queries whether this Image2D is mutable.

void|set(int x, int y, int width, int height, byte[] inmage)
Updates a rectangular area of this Image2D by copying pixels from a byte array.

Methodsinherited from class javax.micr oedition.m3g.0Object3D

addAni mati onTrack, animate, duplicate, find, getAninmationTrack,
get Ani mati onTrackCount, get Ref erences, getUserl D, getUser Qbject,
renoveAni mati onTrack, setUserl D, setUser (bject

Field Detall

ALPHA

public static final int ALPHA

A constructor parameter specifying that this Image2D has an apha component only. If theimage datais
supplied as abyte array, it must have one byte per pixel, representing the apha value. Thisimage format is
useful for rendering objects with varying opacities, such as clouds. An ALPHA image can not be used as a
rendering target or background.

See Also;
Constant Field Values

LUMINANCE

public static final int LUM NANCE

101

Mobile 3D Graphics API Version 1.1

A constructor parameter specifying that this Image2D has aluminance component only. If theimage datais
supplied as a byte array, it must have one byte per pixel, representing the luminance value. Thisimage format is
a cheaper alternative to RGB in cases where colors are not needed, for instance in light mapping. A

LUM NANCE image can not be used as arendering target or background.

See Also:
Constant Field Values

LUMINANCE_ALPHA
public static final int LUM NANCE ALPHA

A constructor parameter specifying that this Image2D has luminance and a pha components. If theimage datais
supplied as a byte array, it must have two bytes per pixel, representing the luminance and aphavalues, in that
order. Thisimage format is a cheap alternative to RGBA in cases where colors are not needed; for instance in
light mapping. A LUM NANCE AL PHA image can not be used as a rendering target or background.

See Also:;
Constant Field Values

RGB
public static final int RGB

A constructor parameter specifying that this Image2D has red, green and blue color components. If the image
datais supplied as abyte array, it must be in RGB order, one byte per component.

See Also;
Constant Field Values

RGBA
public static final int RGBA

A constructor parameter specifying that this Image2D has red, green, blue and apha components. If the image
datais supplied as a byte array, it must be in RGBA order, one byte per component.

See Also;
Constant Field Values

Constructor Detail

Image2D

public | mage2D(int format,
j ava. |l ang. Qbj ect i mage)

102

Mobile 3D Graphics API Version 1.1

Constructs an immutable Image2D by copying pixelsfrom aMIDP or AWT Image. The type of the Image
object depends on the Java profile that this specification isimplemented on, as follows:

o java. aw . | mage on profiles supporting AWT;
o javax. m croedition.!|cdui.lnage onprofiles supporting LCDUI;
o either of the above on profiles supporting both AWT and LCDUI.

The width and height of the created Image2D are set equal to those of the given Image. If the internal format of
this Image2D is incompatible with the source Image, the pixels are converted to the internal format asthey are
copied in. The conversion is done according to the general rules that are specified in the package description.
Note, in particular, that conversion from RGBA to ALPHA is done by copying in the alphavalues as such and
discarding the RGB values.

Because the internal pixel format of an Image is not exposed in MIDP, this method treats all mutable MIDP
Images as RGB and all immutable Images as RGBA. The actual pixel format is respected on platforms such as
AWT that do expose it to the application.

Parameters:
f or mat - theinternal pixel format of the new Image2D
i mage - pixels and image properties to copy into the new Image2D

Throws:
java. |l ang. Nul | Poi nt er Excepti on -if i mage isnull
java.lang. |11 egal Argunent Excepti on -if f or mat isnot one of the symbolic constants listed
above
java.lang. |11 egal Argunent Excepti on -if i mage isnot an Image object appropriate to the

underlying Java profile

Image2D

public | mage2D(int format,
int width,
i nt height,

byte[] inage)
Constructs an immutable Image2D by copying pixels from abyte array.

Pixelsini mage are ordered from left to right and top to bottom. The number of bytes per pixel and the order of
components are determined by the specified format; see above.

Parameters:
f or mat - theinternal pixel format of the new Image2D
wi dt h - width of the created image in pixels; must be positive
hei ght - height of the created image in pixels, must be positive
i mage - pixel dataasabyte array

Throws:
java. |l ang. Nul | Poi nt er Excepti on -if i mage isnull
java.lang. |11 egal Argunent Exception-ifwidth <= 0
java.lang. |11 egal Argunent Exception-ifheight <= 0
java.lang. Il 1 egal Argunent Excepti on -if f or mat isnot one of the symbolic constants listed
above

java.lang. |l egal Argunment Excepti on-ifi mage. | ength < w dt h*hei ght *bpp, where
bpp isthe number of bytes per pixel

103

Mobile 3D Graphics API Version 1.1

Image2D

public | mage2D(int format,
int wdth,
i nt height,
byte[] inage,

byte[] palette)

Constructs an immutable Image2D by copying palette indices from a byte array, and the palette entries from
another byte array.

Pixelsini mage are ordered from left to right and top to bottom. Each pixel is composed of one byte,
representing a pal ette index.

The palette consists of 256 entries, all with the same number of color components. The number and ordering of
the color components is determined by the specified format; see the symbolic constants listed above. Note that a
palette consisting of only aphaor luminance valuesis also allowed.

The palette entries are copied in from the pal et t e array, starting at index 0. If the array has N entries, N <
256, the remaining entries [N, 255] are left undefined. If the array has more than 256 entries, only the first 256
are copiedin.

Parameters:
f or mat - theinternal pixel format of the new Image2D
wi dt h - width of the created image in pixels; must be positive
hei ght - height of the created image in pixels, must be positive
i mage - pixel dataas abyte array, one byte per pixel
pal et t e - paette entries as a byte array

Throws:
j ava. |l ang. Nul | Poi nt er Excepti on -ifi nage isnull
j ava.l ang. Nul | Poi nt er Excepti on -if pal etteisnull
java.lang. ||l egal Argunment Exception-ifwidth <= 0
java.lang. |1 egal Argunment Excepti on -if height <= 0
java.lang. |l egal Argunent Excepti on -if f or mat isnot one of the symbolic constants listed
above
java.lang. Il 1 egal Argunent Excepti on-ifi nage. | ength < w dt h*hei ght
java.lang. ||l egal Argunment Exception-if (pal ette.length < 256*C) && ((pal ette.
length % C) != 0),whereC isthe number of color components (for instance, 3 for RGB)
Image2D

public | mage2D(int format,
int wdth,
i nt hei ght)

Constructs an empty, mutable Image2D with the given dimensions. All pixelsin theimage are initialized to
opagque white. The image contents can be set later by using the image as a rendering target in Graphics3D, or by
using the set method. Note that only RGB and RGBA images can be used as rendering targets.

Parameters:
f or mat - theinternal pixel format of the new Image2D

104

Mobile 3D Graphics API Version 1.1

wi dt h - width of the created image in pixels; must be positive
hei ght - height of the created image in pixels, must be positive

Throws:
java.lang. ||l egal Argunment Exception-ifwidth <= 0
java.lang. |1 egal Argunment Excepti on -if height <= 0
java.lang. |11 egal Argunent Excepti on -if f or mat isnot one of the symbolic constants listed above
Method Detall
set

public void set(int x,
int vy,
int width,
i nt hei ght,
byte[] inmage)

Updates a rectangular area of this Image2D by copying pixels from a byte array. This method is only available
for mutable images.

The areathat isto be updated is specified in pixels, relative to the upper |eft corner of this Image2D. The area
must lie completely within the bounds of the image.

Pixelsini mage are ordered from left to right and top to bottom. The number of bytes per pixel and the order of
components are determined by the specified internal format; see the symbolic constants listed above.

Parameters:
X - the X coordinate of the areato update, relative to the top left corner
y -the Y coordinate of the areato update, relative to the top left corner
wi dt h - width of the areain the image to update, in pixels
hei ght - height of the areain the image to update, in pixels
i mage - pixel dataas abyte array

Throws:
java. |l ang. Nul | Poi nt er Excepti on -if i mage isnull
java.lang. Il 1 egal St at eExcepti on - if thisImage2D isimmutable
java.lang. ||l egal Argunment Exception-ifx < O
java.lang. ||l egal Argunment Exception-ify < O
java.lang. ||l egal Argunent Exception-ifwidth <= 0

java.lang. ||| egal Argunent Exception-ifheight <= 0

java.lang. |11 egal Argunent Exception-if(x + width) > getWdth
java.lang. ||l egal Argument Exception-if(y + height) > getHei ght
java.lang. ||l egal Argunment Exception-ifi mage.length < width * height *
bpp, where bpp isthe number of bytes per pixel (depends on the internal format specified at
construction)

isMutable

public bool ean i sMut abl e()

Queries whether this Image2D is mutable. The contents of a mutable image can be changed after construction,
while the contents of an immutable image can not.

105

Mobile 3D Graphics API Version 1.1

Returns:
trueif this Image2D is mutable; false if it isimmutable

getFormat
public int getFornat()
Getstheinternal format of this Image2D. Note that the format can not be changed after construction.

Returns:
the internal format of this Image2D; one of the symbolic constants listed above

getWidth
public int getWdth()
Gets the width of this Image2D, in pixels. Note that the width and height can not be changed after construction.

Returns:
the width of thisimage

getHeight
public int getHeight()
Gets the height of this Image2D, in pixels. Note that the width and height can not be changed after construction.

Returns:
the height of thisimage

106

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class IndexBuffer

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi ti on. nBg. | ndexBuf f er

Direct Known Subclasses:
TriangleStripArray

public abstract class | ndexBuffer
extends Object3D

An abstract class defining how to connect vertices to form a geometric object.

Each IndexBuffer object defines a submesh, which isthe basic rendering primitive in this API. In order to be rendered, a
submesh must be associated with a VertexBuffer, defining the vertex attributes, and an Appearance, defining the surface
attributes.

IndexBuffer is an abstract class that only provides functionality for querying the stored vertex indices. The actual index
values as well astheir interpretation are defined in each derived class. Currently, there is only one derived class,
TriangleStripArray, which defines a submesh consisting of triangle strips. Other derived classes may be added in future
revisions of this API, to support, for example, triangle lists, triangle fans, line strips and quad strips.

Deferred exceptions

Theindicesin an IndexBuffer are only validated when rendering or picking. An exception isthrown by ther ender
methods in Graphics3D and the pi ck methodsin Group, if any of the indices are greater than or equal to the number of
vertices in the associated VertexBuffer. The indices cannot be validated earlier, because they are allowed to beinvalid at
all other times except when they are used by the implementation, that is, when rendering or picking.

See Also:
Binary format

Method Summary

int |{getl ndexCount ()
Returns the number of indicesin this buffer.

void|getlndices(int[] indices)
Retrieves vertex indices for the rendering primitives stored in this buffer.

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

107

Mobile 3D Graphics API Version 1.1

M ethod Detail

getindexCount
public int getlndexCount ()

Returns the number of indicesin this buffer. This many indices will bereturned inaget | ndi ces call. The
number of indices returned depends on the type of low-level rendering primitivesin the buffer: Currently, only
triangles are supported, and there are three indices per triangle. Triangles are counted individually, disregarding
triangle strips.

Note that implementations are allowed to optimize the index datainternally. Different implementations may
therefore report slightly different index counts for the same set of input primitives.

Returns:

the number of indices
Since:

M3G 1.1
See Also:

get I ndi ces

getindices
public void getlndices(int[] indices)
Retrieves vertex indices for the rendering primitives stored in this buffer.

The indices returned describe the low-level rendering primitives in this buffer. The only such primitive currently
supported isatriangle.

Triangles are returned individually, and each consecutive triplet of indices describes asingle triangle. Triangle
strips or implicit vs. explicit indices are not represented in the returned data. The triangles need not be in any
particular order, but the order of indices in each triangle must preserve the winding of the triangle.

Parameters:

i ndi ces - array to store the returned vertex indices
Throws:

java. |l ang. Nul | Poi nt er Excepti on -ifi ndi ces isnull

java.lang. |1 egal Argunent Exception-ifindi ces.length < getlndexCount
Since:

M3G 1.1

108

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class KeyframeSequence

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi ti on. nBg. Keyf ranmeSequence

public class K eyframeSequence
extends Object3D

Encapsulates animation data as a sequence of time-stamped, vector-valued keyframes. Each keyframe represents the
value of an animated quantity at a specific time instant.

A KeyframeSequence can be associated with multiple animation targets, that is, animatable object properties, via
multiple AnimationTrack objects. Available animation targets include node and texture transformations, Material
parameters, Camera parameters, and so on. When applying an animation to its target, the actual value for the target is
derived by interpolating the keyframe values in the associated K eyframeSequence object.

The number of vector components per keyframe is specified in the constructor and is the same for all keyframesin the
sequence. Theinterpretation of the keyframesis determined by the animation target(s) the sequence is attached to. For
example, 4-component keyframes are interpreted as quaternions when applied to the ORI ENTATI ON target.

Five different functions are available for interpolating the keyframe values: LI NEAR and SPLI NE, their quaternion
equivalents SLERP and SQUAD; and the simple STEP function. Each of theseis described in the Field Summary. There
are also two repeat modes, LOOP and CONSTANT, that affect the interpolation.

Sequence time vs. world time

Theinternal sequencetimet of a KeyframeSequence is derived from world time by its associated AnimationController
(s). The formula for mapping world times to sequence timesis given in the "Timing and speed control” section of the
AnimationController class description. The sequence time is then used for interpolating between keyframe values as
defined by the chosen interpolation function.

All (valid) keyframes in a KeyframeSequence must fall within a sequence time range of [0, D], where D is the duration
of the keyframe sequence. The duration can be set with the set Dur at i on method. For sequences using the LOOP
repeat mode, the sequence timet isrestricted into this range via a modulo operation, that is, by adding or subtracting a
multiple of D such that 0 <=t < D. For sequences using the CONSTANT mode, the value of t is unrestricted.

Sequence repeat modes

Thefirst valid keyframe in a CONSTANT sequence defines the interpolated value returned before this point in time. That
is, with initial value vg at time tg, the interpolated value v = v for values of timet such that t <t

Thefina valid keyframe in a CONSTANT sequence defines the interpolated value returned after this point in time. That
is, with final value vy_; at time ty.;, theinterpolated value v = v\ _; for values of timet such that t >= ty_;.

A sequence using the LOOP repeat mode isinterpolated as if the keyframes were replicated backward and forward

109

Mobile 3D Graphics API Version 1.1

indefinitely at a spacing equal to the given duration of the sequence. In this case, a keyframe which appears at timet will
be treated asif it also appeared at time t + nD where n is any positive or negative integer and D is the duration of asingle
loop of the animation, givenin set Dur at i on. Note that thisis not achieved by just the modulo operation on the
sequence time described above.

In alooping sequence with N keyframes numbered [0, N-1], the successor of keyframe N-1 is keyframe 0, and the
predecessor to keyframe 0 is keyframe N-1.

Coincident keyframes

The specification allows several keyframes to coexist at the same position in time. This allows discontinuities in the
animation sequences, which can be useful for example in incorporating cuts to camera animation. In the case of severa
keyframes coinciding, the one with the lowest index is always used for the final value of segments ending at that position
in time; for segments starting at that position, the keyframe with the highest index is used for the starting value. For
sequences in LOOP mode, the keyframes from the next or previous repeat of the sequence may also coincide with the
keyframes of the current repeat if they are at the very end or very beginning of the sequence. The keyframesin the
previous repeat are then treated as having lower indices, and the keyframesin the next repeat as having higher indices,
than the keyframes in the current repeat.

Note that although any number of coincident keyframes can be specified, a maximum of four will ever be used in
SPLI NE or SQUAD interpolation; two in LI NEAR or SLERP interpolation; and only the one with the highest index in
STEP interpolation.

Deferred exceptions

The validity of a keyframe sequence can be fully verified only when it is applied to an animation target, that is, in the
ani mat e method of Object3D. Any of the following conditions in a KeyframeSequence will then trigger an
I11egal StateException:

. Duration of sequence not set;
. Duration less than the time of the last valid keyframe;
. Any keyframe times within the valid range in decreasing order.

Implementation guidelines

Although independent of the keyframe values as such, the interpolation type and the repeat mode of a sequence are set
here rather than in the AnimationTrack objects using the sequence. Thisis so that the implementation can sensibly cache
spline tangents or other auxiliary data potentially required at runtime.

See Also:
Binary format, Example, Ani mat i onTr ack, Ani mat i onControl | er

Field Summary

static int | CONSTANT

A parameter to set Repeat Mode, specifying that this sequence is to be played back just once
and not repeated.

static int |LI NEAR
A constructor parameter that specifies linear interpolation between keyframes.

110

Mobile 3D Graphics API Version 1.1

static int |LOOP
A parameter to set Repeat Mode, specifying that this sequence is to be repeated indefinitely.
static int |SLERP
A constructor parameter that specifies spherical linear interpolation of quaternions.
static int |SPLI NE
A constructor parameter that specifies spline interpolation between keyframes.
static int | SQUAD
A constructor parameter that specifies spline interpolation of quaternions.
static int |STEP

A constructor parameter that specifies stepping from one keyframe value to the next.

Constructor Summary

Keyf rameSequence(i nt nunKeyfranes, int numConponents, int interpolation)

Constructs a new keyframe sequence with specified interpolation method, number of components per keyframe,
and number of keyframes.

Method Summary

i nt

get Conponent Count ()
Returns the number of components per keyframe in this sequence.

get Durati on()
Gets the duration of this sequence.

get I nterpol ati onType()
Returns the type of interpolation for this sequence.

get Keyframe(int index, float[] val ue)
Retrieves the time stamp and value of a single keyframe.

get Keyf rameCount ()
Returns the total number of keyframesin this sequence.

get Repeat Mode()
Retrieves the current repeat mode of this KeyframeSequence.

get Val i dRangeFi rst ()
Returns the first keyframe of the current valid range for this sequence.

get Val i dRangelLast ()
Returns the last keyframe of the current valid range for this sequence.

voi d

setDuration(int duration)
Sets the duration of this sequence in sequence time units.

voi d

set Keyframe(int index, int tinme, float[] val ue)
Sets the time position and value of the specified keyframe.

voi d

set Repeat Mbde(i nt node)
Sets the repeat mode of this KeyframeSequence.

voi d

set Val i dRange(int first, int |ast)
Sdlects the range of keyframes that are included in the animation.

111

Mobile 3D Graphics API Version 1.1

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
removeAni mati onTrack, setUserl D, setUser bj ect

Field Detail

LINEAR
public static final int LINEAR
A constructor parameter that specifies linear interpolation between keyframes.

For akeyframe with value v; at timet;, where the following keyframe has avalue v;,, a timet;,,, the
interpolated value v is defined only for values of timet such that t; <=t < t;,4, asfollows:

V= (L-9)vit Vi
where sis an interpolation factor in [0, 1) computed from the keyframe times:
s=(t-t)/ (t+-)

See Also:
Constant Field Values

SLERP
public static final int SLERP
A constructor parameter that specifies spherical linear interpolation of quaternions.

Thistype of interpolation will interpolate at constant speed along the shortest "great circle" path between two
keyframe values along the surface of the hypersphere of unit quaternions.

Spherical linear interpolation between two keyframe values g; and g;,4 is defined as:

slerp(s; q;, Gi+1) = (@;sin((1-5)a) + gj41Sin(sa)) / sin(a)

where ais the angle between the two quaternions and sis the interpolation factor defined for LI NEAR
interpolation.

Note that the shortest path between two quaternions is not the same as the shortest path between the
corresponding 3D orientations. There are always two quaternions corresponding to asingle 3D orientation, each

112

Mobile 3D Graphics API Version 1.1

of which denotes a different direction of interpolation along the great circle; thus, quaternions can encode up to
360 degrees of rotation between adjacent keyframes.

It is common practice in some applications to precondition quaternions prior to slerping so that the shorter
interpolation path in 3D is always chosen. While thisis useful in special cases, it does not yield the same result
in general, and is therefore incompatible with more advanced features such as animation blending. Hence,
implementations are explicitly disallowed from incorporating this practice, and must implement the general
slerp routine instead. Authoring tools, however, are encouraged to present the preconditioning as an option
when exporting keyframe data.

Also note that interpolation between diametrically opposed quaternions in successive keyframesis undefined. It
is recommended that authoring tools should take steps to warn designersif this case is detected.

More details can be found in "Quaternion Algebraand Calculus' by David Eberly [see Related Literature].

See Also;
Constant Field Values

SPLINE
public static final int SPLINE

A constructor parameter that specifies spline interpolation between keyframes. The keyframes will be
interpolated with a Catmull-Rom spline adjusted to accommodate non-constant keyframe intervals.

For each curve segment i, we have the values v; at time t;, and v;,, at timet;,,. We also define tangents at the
end points of the segment: T; at the start point, and T, at the end point.

Using the interpolation factor s defined for LI NEAR interpolation, we can then express the interpolation of the
curve asfollows:

3 |v |
8”1 | 2-2 1 1 | v
_s?] -3 3-2-1 | _in
= H= C 0
s | | 0 0 1 0 | 1™
) | 1.0 0 0 | L
|1 | T

The value v of the curve at position s can be calculated using the formula:
ve=STHC

The only thing left to define is the cal culation of the tangent vectors T{0.1};. A standard Catmull-Rom spline

assumes that the keyframe values are evenly spaced in time, and cal cul ates the tangents as centered finite
differences of the adjacent keyframes:

Ti= (Vi+1- Vi) / 2
We apply additional scaling values to compensate for irregular keyframe timing, and the final tangents are:

113

file:///C|/java/m3g/spec/doc/overview-summary.html#Literature

Mobile 3D Graphics API Version 1.1

Toi: F-iTi
TL=F*T;

where:

Fi=2 (tiva-) / (G4a- tion)
FH=2(-t.0 / (tivg- ti0)
Fo=F*=FN.1=F*Nn.1=0, inaCONSTANTsequence

It isrelatively easy to convert to this representation from piecewise Bezier splines (as used by 3ds max, for
example) as long as the tangents are set up according to the above scheme. Conversion from other interpolating
spline forms may not be exact, although any interpolating spline is guaranteed to pass through the keyframe
values.

See Also;
Constant Field Values

SQUAD
public static final int SQUAD
A constructor parameter that specifies spline interpolation of quaternions.

Thisinterpolation method is similar to the SPLI NE method, but using equivalent quaternion operations. The
tangents for each keyframe are computed as centered finite differences, only this time via quaternion logarithms:

Tn= (log(g;1qi,q) + log(g;.;1a;)) / 2

Note that the operations above are not to be confused with scalar or vector operations. The notation g-1 denotes
the inverse of quaternion g; the multiplications are quaternion multiplications; and the logarithm is a quaternion
logarithm, which essentially yields a 3-vector as aresult.

Keyframe tangents are scaled to compensate for irregular keyframe timing as specified for SPLI NE
interpolation. This yields the "incoming" tangent T9, and the "outgoing" tangent T1;. From the scaled tangents,

intermediate quaternion values a and b are computed for use in interpolating the curve segments starting and
ending at each keyframe:

&= g;exp((TY- log(di1g;+1)) / 2)
b= gjexp((log(d;;1q;) - TY) / 2)

Finally, theinterpolated value q at position s (as defined in LI NEAR) for a curve segment between keyframesii
andi + 1lisobtained by using SLERP interpolation, as follows:

q=derp(2s(1 - s); derp(s; g, di+1), Serp(s; ;, bj+1))
For more information, refer to "Key Frame Interpolation via Splines and Quaternions' by David Eberly [see

114

Mobile 3D Graphics API Version 1.1

Related Literature].

See Also:
Constant Field Values

STEP
public static final int STEP

A constructor parameter that specifies stepping from one keyframe value to the next. The actual value of each
keyframe is used, without further interpolation, from the time position of that keyframe until the time of the next
keyframe.

For akeyframe with value v at time t;, where the following keyframe is at time .., the value v is valid for all
values of timet such that t; <=t < tj,,.

See Also:
Constant Field Values

CONSTANT
public static final int CONSTANT

A parameter to set Repeat Mode, specifying that this sequence is to be played back just once and not repeated.

See Also;
Constant Field Values

LOOP
public static final int LOOP

A parameter to set Repeat Mode, specifying that this sequence is to be repeated indefinitely.

See Also:
Constant Field Values

Constructor Detail

KeyframeSequence

publ i c KeyframeSequence(int nunKeyfranes,
i nt nunConponents,
int interpolation)

Constructs a new keyframe sequence with specified interpolation method, number of components per keyframe,

115

file:///C|/java/m3g/spec/doc/overview-summary.html#Literature

Mobile 3D Graphics API Version 1.1

and number of keyframes. All keyframes are initialized to the zero vector, with atime stamp of zero. The repeat
mode isinitially CONSTANT (not looping), with an undefined duration and the valid range spanning al
keyframes.

A newly constructed sequence cannot be used in animation until the duration of the sequence has been set. The
valid range, that is, the range of keyframes that are included in the animation, can be set with

set Val i dRange. Thismay be desirable if keyframes are generated dynamically or streamed over the
network.

The interpolation method is one of the symbolic constants defined above. The method must be compatible with
the number of componentsin the keyframes. STEP, LI NEAR and SPLI NE can be specified for any type of
keyframes. On the other hand, SLERP and SQUAD can only be specified for 4-component keyframes, which are
then interpreted as quaternions.

Parameters:
nunKeyf r ames - number of keyframesto alocate for this sequence
nunConponent s - number of components in each keyframe vector
i nt er pol ati on - one of the interpolation modes listed above

Throws:
java.lang. Il 1 egal Argunent Excepti on - if nunKeyfranmes < 1
java.lang. ||l egal Argunment Excepti on -if nunConponents < 1
java.lang. |11 egal Argunent Excepti on-ifinterpol ati onisnotoneof LI NEAR, SLERP,
SPLI NE, SQUAD, STEP
java.lang. |11 egal Argunent Excepti on-ifinterpol ati onisnotavalid interpolation mode for
keyframes of size nuntConponent s

Method Detail
getComponentCount

public int get Conponent Count ()
Returns the number of components per keyframe in this sequence.

Returns:

the number of components
Since:

M3G 1.1

getKeyframeCount
public int getKeyfranmeCount ()

Returns the total number of keyframesin this sequence. Note that there may be fewer keyframes currently used
for animation, controlled by the valid range.

Returns:

the number of keyframes
Since:

M3G 1.1

116

Mobile 3D Graphics API Version 1.1

See Also:
set Val i dRange

getinterpolationType
public int getlnterpol ationType()
Returns the type of interpolation for this sequence.

Returns:

the interpolation type; one of LI NEAR, SLERP, SPLI NE, SQUAD, STEP
Since:

M3G 1.1

setKeyframe

public void setKeyframe(int index,
int tine,
float[] val ue)

Sets the time position and value of the specified keyframe. The keyframe valueis copied in from the given
array. The length of the array must be at least equal to the size of akeyframe (numConponent s). Refer to
AnimationTrack documention for the order in which the keyframe components should be stored in the array for
aparticular target property.

If the interpolation type is SLERP or SQUAD, the keyframes are automatically normalized to yield unit
quaternions for interpolation.

Parameters:
i ndex - index of the keyframeto set
t i me - time position of the keyframe, in sequence time units
val ue - float array containing the keyframe value vector

Throws:
java. |l ang. Nul | Poi nt er Excepti on -if val ue isnull
java. |l ang. | ndexQut Of BoundsException-if (i ndex < 0) || (index >=
get Keyf rameCount)
java.lang. ||l egal Argunent Excepti on -ifval ue.l engt h < get Conponent Count
java.lang. ||| egal Argunent Exception-iftinme < 0

See Also:
get Keyf rane

getKeyframe

public int getKeyfrane(int index,
float[] val ue)

Retrieves the time stamp and value of a single keyframe.

Note that if the interpolation typeis SLERP or SQUAD, the keyframes are automatically normalized upon
setting. The values returned here may therefore be different from the original input values.

117

Mobile 3D Graphics API Version 1.1

Parameters:

i ndex - index of the keyframeto retrieve

val ue - float array to store the keyframe value vector, or null to only return the time stamp
Returns:

the time value of the keyframe

Throws:
j ava. | ang. | ndexQut Of BoundsException-if (i ndex < 0) || (index >=
get Keyf rameCount)
java.lang. Il1egal Argunent Exception-if(value !'= null) && (val ue.
| engt h < get Conponent Count)

Since:
M3G 1.1

See Also:

set Keyfrane

setValidRange

public void setValidRange(int first,
int |ast)

Selects the range of keyframes that are included in the animation. Keyframes outside of that range are ignored
by the ani mat e method in Object3D.

Setting the valid range shorter than the whol e sequence enabl es the application to use the sequence as acircular
buffer when generating new keyframe data on the fly, for example. In atypical case, however, the valid range
would span the whole sequence.

Thevaid keyframe range is always interpreted in the direction of ascending indices. If fi rst <= | ast, the
valid keyframes are those at the indices:

first, first+1, ..., |ast
Ifl ast < first,thevalid range wraps around and the valid keyframe indices are:
first, first+l, ..., getKeyframeCount()-1, O, 1, ..., |ast

The time position of each keyframe in the active range must be greater than or equal to that of the preceding
keyframe; if thisis not the case, Obj ect 3D. ani nat e will throw an exception. The time stamps must be in
non-decreasing order, because otherwise the interpolated values between keyframes would be undefined. Note
that having two or more keyframes with the same time stamp is specifically allowed.

Parameters:
first -index of thefirst valid keyframe
| ast - index of thelast valid keyframe

Throws:
java. |l ang. | ndexQut Of BoundsException-if(first < 0) || (first >=
get Keyf raneCount)
java. | ang. | ndexQut Of BoundsException-if(last < 0) || (last >=
get Keyf rameCount)

See Also:

get Val i dRangeFi r st , get Val i dRangelLast

118

Mobile 3D Graphics API Version 1.1

getValidRangeFirst
public int getValidRangeFirst()
Returns the first keyframe of the current valid range for this sequence.

Returns:

the index of thefirst valid keyframe
Since:

M3G 1.1
See Also:

set Val i dRange

getValidRangelLast
public int getValidRangelLast ()
Returns the last keyframe of the current valid range for this sequence.

Returns:

theindex of the last valid keyframe
Since:

M3G 1.1
See Also:

set Val i dRange

setDuration
public void setDuration(int duration)

Sets the duration of this sequence in sequence time units. The duration of a keyframe sequence, asused in
animation playback, is determined by the value set here, irrespective of the time stamps of individual keyframes,
and irrespective of which keyframes happen to bein the valid range at any given time.

The duration D is also used when interpolating looping keyframe sequences. Thetime interval from the last
valid keyframe to the first valid keyframe of the next cycleis calculated as follows:

D - (tast tirst)

where tg, and t) 5 are the time stamps of the first and last keyframe, respectively, in the valid range (see
set Val i dRange). Note that they are not necessarily the first and last keyframe of the whole sequence.

The duration of the sequence must not be less than the time stamp of the last valid keyframe (t,,4), as otherwise

the above formulawould yield a negative time interval. Since the duration and the valid range can both be
changed at any time, this condition is only enforced by the ani mat e method in Object3D.

Parameters:
dur at i on - duration of the valid range of the sequence

119

Mobile 3D Graphics API Version 1.1

Throws:

java.lang. |11 egal Argunent Exception-ifduration <= 0
See Also:

get Durati on

getDuration
public int getDuration()
Gets the duration of this sequence.

Returns:

the duration of this sequence in sequence time units
See Also:

set Duration

setRepeatMode
public void set Repeat Mode(i nt node)
Sets the repeat mode of this KeyframeSeguence. There are two alternatives, LOOP and CONSTANT.

A looping sequence always loops back to the beginning from the end and has an interpolated segment from the
last valid keyframe to the first.

A constant sequence maintains the first valid keyframe value from the beginning of the sequence to the actual
time of that keyframe, and the last valid keyframe value from that keyframe to the end time of the sequence and

beyond.
Parameters:
node - the repeat mode to set
Throws:
java.lang. ||| egal Argunent Excepti on - if node isnot one of CONSTANT, LOOP
See Also:

get Repeat Mbde

getRepeatMode
public int getRepeatMde()
Retrieves the current repeat mode of this KeyframeSequence.

Returns:

the current repeat mode; CONSTANT or LOOP
See Also:

set Repeat Mbde

120

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g

Class Light

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. n8g. Transf or mabl e
I—j avax. m croedi ti on. nBg. Node
I—j avax. m croedi ti on. n8g. Li ght

public class Light
extends Node

A scene graph node that represents different kinds of light sources.

Light sources are used to determine the color of each object according to its Material attributes, as described in more
detail in the Material class documentation.

Light source types

Four types of light sources are available. In the order of increasing computational complexity, these are the ambient light,
directional light, omnidirectional light and spot light. Their characteristics are described below.

. Anambient light source illuminates al objectsin the scene from all directions. The intensity of light coming
from an ambient light source is the same everywhere in the scene. The position and direction of an ambient light
source therefore have no effect.

. A directional light source corresponds to sunlight in the real world. It illuminates al objectsin the scene from
the same direction, and with a constant intensity. Similar to ambient light, the position of adirectional light
source has no effect. The direction of the light is along the negative Z axis of the Light node's local coordinate
system.

. Anomnidirectional light source, also known as a point light, casts equal illumination in all directions from the
origin of the Light node's local coordinate system. The intensity of light coming from an omnidirectional light
source can be attenuated with distance. The orientation of an omnidirectional Light node has no effect; only the
position matters.

. A spot light source casts a cone of light centered around the direction of its negative Z axis. The concentration
of light within the cone can be adjusted with the spot exponent. The intensity of light coming from a spot light
can be attenuated with distance from the source. Both the orientation and the position of the Light node have an
effect with spot lights.

The type of alight source can be changed at any time. Thisis useful for switching to asimpler lighting model when the
distance to an object increases over a certain threshold, for example.

Light color and intensity
The RGB intensity contributed to the lighting calculation by aLight is (IR, IG, I1B), where | isthe intensity of the Light

121

Mobile 3D Graphics API Version 1.1

and (R, G, B) isitscolor. Note that while 1.0 isanominal full intensity, applications may use values higher than that for
more control over highlights, for example. The intensity may also be set to negative to specify an "antilight" or "dark".

In the case of an ambient light source, the final RGB intensity represents the ambient color component only; the diffuse
and specular components are implicitly set to zero. In the case of adirectional, omni or spot light, the final intensity
represents both the diffuse and specular components, while the ambient component is correspondingly set to zero.

Light source selection

The set of meshes affected by a Light can be limited using the scope of the Light and each Mesh. A Light nodeis only
included in the lighting calculations for a mesh if the scope of the mesh matches the scope of the Light. See the Node

class description for more information.

Lights can be turned on and off using Node. set Render i ngEnabl e(bool ean) . The corresponding picking enable
flag has no effect, because Lights are always ignored when picking.

Implementation guidelines

The number of Lights matching with asingle Mesh may be greater than the maximum number of concurrent lights that
the implementation can support (N). In this case, the implementation may choose any N lights, aslong as the selection is
deterministic. For best results, the implementation may use a suitable heuristic to select the N lights that have the most
effect on the rendered appearance of the mesh. The light selection may even be done separately for each submesh. The
maximum number of concurrent lights can be queried from get Pr operti es.

See Also:
Binary format, Mat er i al

Field Summary

static int |AVBI ENT
A parameter to set Mbde, specifying an ambient light source.

static int [Dl RECTI ONAL
A parameter to set Mbde, specifying adirectional light source.

static int |OWI
A parameter to set Mbde, specifying an omnidirectional light source.

static int |SPOT
A parameter to set Mode, specifying a spot light source.

Fieldsinherited from class javax.microedition.m3g.Node

NONE, ORIGN, X AXIS, Y AXIS, Z AX'S

Constructor Summary

Li ght ()
Constructs anew Light with default values.

122

Mobile 3D Graphics API Version 1.1

Method Summary

int |get Col or ()
Retrieves the current color of this Light.

float |get Const ant Att enuati on()
Retrieves the current constant attenuation coefficient for this Light.

float |getlntensity()
Retrieves the current intensity of this Light.

float |getLi nearAttenuation()
Retrieves the current linear attenuation coefficient for this Light.

i nt [get Mode()
Retrieves the current type of this Light.

float [get Quadrati cAttenuation()
Retrieves the current quadratic attenuation coefficient for this Light.

float |get Spot Angl e()
Retrieves the current spot angle of this Light.

float |get Spot Exponent ()
Retrieves the current spot exponent for this Light.

void|set Attenuation(float constant, float linear, float quadratic)
Sets the attenuation coefficients for this Light.

voi d |set Col or (i nt RGB)
Sets the color of thisLight.

void |setintensity(float intensity)
Sets the intensity of this Light.

voi d |set Mbde(i nt node)
Sets the type of this Light.

voi d |set Spot Angl e(fl oat angl e)
Sets the spot cone angle for this Light.

voi d | set Spot Exponent (fl oat exponent)
Sets the spot exponent for this Light.

Methodsinherited from class javax.micr oedition.m3g.Node

align, getAlignnmentReference, getAlignnmentTarget, getAl phaFactor, getParent,
get Scope, get Transformlo, isPickingEnabl ed, isRenderingEnabl ed, setAlignnent,
set Al phaFact or, set Pi cki ngEnabl e, set Renderi ngEnabl e, set Scope

Methods inherited from class javax.microedition.m3g.Transfor mable

get ConpositeTransform getOrientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
setTransl ation, translate

123

Mobile 3D Graphics API

Version 1.1

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
removeAni mati onTrack, setUserl D, setUser bj ect

Field Detail

AMBIENT

public static final int AVBIENT

A parameter to set Mbde, specifying an ambient light source.

See Also;
Constant Field Values

DIRECTIONAL

public static final int DI RECTI ONAL

A parameter to set Mode, specifying a directional light source.

See Also;
Constant Field Values

OMNI

public static final int QOWN

A parameter to set Mode, specifying an omnidirectional light source.

See Also;
Constant Field Values

SPOT

public static final int SPOT

A parameter to set Mbde, specifying a spot light source.

See Also;
Constant Field Values

124

Mobile 3D Graphics API Version 1.1

Constructor Detail

Light
public Light()
Constructs a new Light with default values. The default values are as follows:

mode: DI RECTI ONAL

color : OXOOFFFFFF (1.0, 1.0, 1.0)
intensity : 1.0

attenuation : (1, 0, 0)

spot angle : 45 degrees

spot exponent : 0.0

O O O O O O

M ethod Detail

setMode
public void set Mode(int node)
Sets the type of this Light. See the class description for more information.

Parameters:
node - the mode to set; one of the symbolic constants listed above
Throws:
java.lang. |11 egal Argunent Excepti on - if node isnot one of AMBI ENT,
DI RECTI ONAL, OWNI, SPOT
See Also:
get Mbde

getMode
public int getMde()
Retrieves the current type of this Light.

Returns:

the current mode of this Light; one of the symbolic constants listed above
See Also:

set Mode

setintensity
public void setlntensity(float intensity)
Sets the intensity of this Light. The RGB color of this Light is multiplied component-wise with the intensity

125

Mobile 3D Graphics API Version 1.1

before computing the lighting equation. See the class description for more information.

Parameters:

i nt ensi ty -theintensity to set; may be negative or zero
See Also:

getlntensity

getintensity
public float getlntensity()
Retrieves the current intensity of thisLight.

Returns:

the current intensity of this Light
See Also:

setlntensity

setColor
public void setColor(int RGB)

Sets the color of this Light. Depending on the type of light, this represents either the ambient color or both the
diffuse and specular colors. See the class description for more information. The high order byte of the color
value (that is, the alpha component) isignored.

Parameters:

RGB - the color to set for this Light in OXOORRGGBB format
See Also:

get Col or

getColor
public int getColor()

Retrieves the current color of this Light. The high order byte of the color value (that is, the alpha component) is
guaranteed to be zero.

Returns:

the current color of this Light in OXOORRGGBB format
See Also:

set Col or

setSpotAngle
public void setSpot Angl e(fl oat angl e)

Sets the spot cone angle for this Light. The effect of this Light isrestricted to a cone of angl e degrees around
the negative Z axis of the Light.

126

Mobile 3D Graphics API Version 1.1

Note that this setting has no effect unless the type of thisLight is (or islater set to) SPOT.

Parameters:

angl e - the spot angle to set, in degrees
Throws:

java.lang. ||l egal Argunment Excepti on -if angl e isnotin [0, 90]
See Also:

get Spot Angl e

getSpotAngle
public float get SpotAngl e()
Retrieves the current spot angle of this Light.

Returns:

the current spot angle of this Light
See Also:

set Spot Angl e

setSpotExponent
public void set Spot Exponent (fl oat exponent)

Sets the spot exponent for this Light. The spot exponent controls the distribution of the intensity of this Light
within the spot cone, such that larger values yield a more concentrated cone. The default spot exponent is 0.0,
resulting in auniform light distribution.

Note that this setting has no effect unless the type of thisLight is (or islater set to) SPOT.

Parameters:
exponent - the spot light exponent to set
Throws:
java.lang. 111 egal Argunent Excepti on -if exponent isnotin[0, 128]
See Also:
get Spot Exponent
getSpotExponent

public float get Spot Exponent ()

Retrieves the current spot exponent for this Light.

Returns:

the current spot exponent of this Light
See Also:

set Spot Exponent

127

Mobile 3D Graphics API Version 1.1

setAttenuation

public void setAttenuation(float constant,
float linear,
float quadratic)

Sets the attenuation coefficients for this Light. The attenuation factor is
1/(c+1d+qd?

where d is the distance between the light and the vertex being lighted, and c, I, g are the constant, linear, and
quadratic coefficients. The default attenuation coefficients are (1, 0, 0), resulting in no attenuation.

Note that this setting has no effect unless the type of thisLight is (or is later set to) OVNI or SPOT.

Parameters:
const ant - the constant attenuation coefficient to set
I i near - thelinear attenuation coefficient to set
guadr at i ¢ - the quadratic attenuation coefficient to set
Throws:
java.lang. Il 1 egal Argunent Excepti on - if any of the parameter values are negative
java.lang. ||| egal Argunent Excepti on - if al of the parameter values are zero

getConstantAttenuation
public float getConstantAttenuation()
Retrieves the current constant attenuation coefficient for this Light.

Returns:

the current constant attenuation coefficient
See Also:

set Attenuati on

getLinearAttenuation
public float getLinearAttenuation()
Retrieves the current linear attenuation coefficient for this Light.

Returns:

the current linear attenuation coefficient
See Also:

set Att enuati on

getQuadraticAttenuation

public float getQuadraticAttenuation()

128

Mobile 3D Graphics API Version 1.1

Retrieves the current quadratic attenuation coefficient for this Light.

Returns:

the current quadratic attenuation coefficient
See Also:

set Att enuati on

129

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Loader

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Loader

public class L oader
extends java.lang.Object

Downloads and deserializes scene graph nodes and node components, as well as entire scene graphs. Downloading ready-
made pieces of 3D content from an M3G fileis generally the most convenient way for an application to create and
populate a 3D scene.

Supported data types

The Loader can deserialize instances of any class derived from Object3D. These include scene graph nodes such as
World, Group, Camera and Light; attribute classes such as Material, Appearance and Texture2D; animation classes such
as AnimationTrack and KeyframeSequence; and so on. No other types of objects are supported.

The data to be loaded must constitute avalid M3G file. Alternatively, it may be a PNG image file, in which case asingle,
immutable Image2D object is returned, with the pixel format of the Image2D corresponding to the color type of the PNG.
Some implementations may support other formats as well. If the datais not in a supported format, is otherwise invalid, or
can not be loaded for some other reason, an exception is thrown.

Using the Loader

The Loader class cannot be instantiated, and its only members are the two static | oad methods. The methods are
otherwise identical, but one of them takes in a byte array, while the other takes a named resource, such asa URI or an
individual file in the JAR package. Named resources must always have an absolute path, otherwise the results are
undefined. For example, loading "foobar.m3g" produces undefined results, whereas loading "/foobar.m3g" is well-
defined. Furthermore, named resources are treated as case-sensitive. For example, "foobar.m3g" is not the samefile as
"foobar.M3G".

Any external referencesin the given file or byte array are followed recursively. When using the | oad variant that takes
inaURI, the references may be absolute or relative, but when using the byte array variant, only absolute references are
allowed. External references are also treated as case-sensitive.

Thel oad methods only return once the entire contents of the given file (or byte array) have been loaded, including any
referenced files. This means that displaying content while downloading (progressive loading) is not supported.

Managing the loaded objects

Thel oad methods return an array of Object3Ds. These are the root level objectsin thefile; in other words, those objects
that are not referenced by any other objects. The array is guaranteed not to contain any null objects, but the order of the
objectsin the array is undefined.

The non-root objects (often the majority) can be found by following references recursively, starting from the root objects.
This can be done conveniently with the get Ref er ences method in Object3D. Another way to find a specific object is

130

Mobile 3D Graphics API Version 1.1

to tag it with aknown user ID at the authoring stage, and search for that among the loaded objects using thef i nd
method.. See the class description for Object3D for more information.

Since the root-level objects are returned in an Object3D array, the application must find out their concrete types before
using their full functionality. In the typical case, when the content is developed in conjunction with the application code
and deployed in the same JAR file, the application should know what the root-level objects are. If thisinformation is not
available, or there is a need to check that the objects are as expected, the application can use the run-time type
information that is built into Java. For example, a simple animation player application might want to check that the
downloaded object isindeed a World, and display an appropriate error message otherwise.

Validity of the loaded objects

The set of objects returned by the Loader, comprising the root level objects as well as their descendants, is guaranteed to
be valid and consistent with the API. In other words, it should be possible to construct the same scene graph using the
API with no exceptions being thrown. For example, if a Mesh object is returned, the application can rest assured that it is
in a state that can be reached viathe API.

However, it is not guaranteed that the loaded content is renderable. Conditions that cause deferred exceptions are not
checked for, and may exist within the |loaded objects. This allows fragmentary scene graphs, which are invalid for
rendering, to be loaded and assembled by the application into a valid scene graph.

Implementation guidelines

Implementations must not rely on the file extension (such as".png") to determine the type of the file that is to be loaded.
Instead, if the MIME type is available, that should be used to screen out unrecognized files without examining the
contents. If the MIME type is not available (such as when loading from a byte array), or it does indicate a supported
format, the implementation must ascertain the file type based on its contents. M 3G files can be recognized from the file

identifier, and PNG files from their corresponding signature.

Implementations must conform to the requirements set forth in the PNG specification, section Conformance of PNG
decoders. In addition, the tRNS chunk (transparency information) must be fully supported. The implementation may also

support other ancillary chunks. The pixel format of the resulting Image2D must be determined from the color type and
transparency information contained in the PNG file, as specified in the table below.

PNG color type Image2D pixel format
Greyscale (type 0) LUM NANCE
Greyscale (type 0) + tRNS LUM NANCE ALPHA
Truecolor (type 2) RGB

Truecolor (type 2) + tRNS RGBA

Indexed-color (type 3) RGB

Indexed-color (type 3) + tRNS RGBA

Greyscalewith adpha(type4) LUM NANCE ALPHA
Truecolor with alpha (type 6) RGBA

See Also:
M3G (JSR-184) file format, PNG file format

131

http://www.w3.org/TR/PNG/#5PNG-file-signature
http://www.w3.org/TR/PNG/#15ConformanceDecoder
http://www.w3.org/TR/PNG/#15ConformanceDecoder
http://www.w3.org/TR/PNG/#11tRNS
http://www.w3.org/TR/PNG/#6Colour-values
http://www.w3.org/TR/PNG

Mobile 3D Graphics API Version 1.1

Example:
A code fragment illustrating the use of Loader and f i nd.

bj ect 3D[] roots=null;

try {
/1 Load a World and an individual Mesh over http.

roots = Loader. | oad("http://ww. exanpl e. com myscene. n8g") ;
} catch(l Oexception e) {

/1 couldn't open the connection, or invalid data in the file
}

/1 The root objects nust be cast from Object3D to their imediate types

/1 (Mesh and World) before their full functionality can be used. Since

/'l the relative ordering of the root objects is unspecified, we can't

/1 assume that the World object is always at index 0, for exanple. Instead,
/1 we identify the World by its user ID of 1, which we have assigned to it
/1 at the authoring stage.

World nyWrl d; /'l contains our entire scene graph
Mesh nmyMesh; /1 an individual nmesh for inmediate node

if (roots[0].getUserID() == 1) { /1 our World has a user ID of 1
nyWrld = (Wrld) roots[O0];
nyMesh = (Mesh) roots[1];
} else {
myWorld = (World) roots[1];
nyMesh = (Mesh) roots[O0];
}

/1 Turn on perspective correction for the Mesh

Appearance a = nyMesh. get Appearance(0); // get the appearance of the nesh
Pol ygonMode p = a. get Pol ygonhbde() ; /'l get its polygon attributes
p. set PerspectiveCorrecti onEnabl e(true); // enable perspective correction

/1 Find a specific Canera node in the Wrld, and set it as the currently
/] active canera in the world. W' ve previously assigned the userlD "10"
/1 to that canera node.

Canera nyCanera = (Canera) nyWrl d. find(10);
myWor | d. set Acti veCaner a(myCaner a) ;

// Load an individual PNGfile.

| mage2D t ext urel mage=nul |

try {

texturel mage = (1 nage2D) Loader.| oad("/texture.png")[0];
} catch(l OException e) {

/1 couldn't load the PNG file

}

Method Summary

static Object3D|l oad(byte[] data, int offset)
[Deserializes Object3D instances from the given byte array, starting at the given offset.

132

Mobile 3D Graphics API Version 1.1

static Object3D|l oad(java.lang. String nane)

[] Deserializes Object3D instances from the named resource.

M ethod Detail

load

public static Object3D] |oad(java.lang.String nane)

load

throws java.io. | OException

Deserializes Object3D instances from the named resource. The name of the resource is as defined by Cl ass.

get Resour ceAsSt r ean(nane) , or aURI. The types of data that can be loaded with this method are
defined in the class description.

Parameters:

nanme - name of the resource to load from
Returns:

an array of newly created Object3D instances
Throws:

java. l ang. Nul | Poi nt er Excepti on -if nanme isnull

java.io. | Oexcepti on -if name, or any resource referenced from it, cannot be resolved or
accessed

java.io. | Oexcepti on -if thedatain nanme, or in any resource referenced fromiit, isnot in
accordance with the M3G and PNG file format specifications

j ava. |l ang. Securi t yExcepti on - if the application does not have the security permission to
open a connection to load the data

public static Object3D] |oad(byte[] data,

int offset)
throws java.io. | OException

Deserializes Object3D instances from the given byte array, starting at the given offset. The types of datathat can
be loaded with this method are defined in the class description. The byte array must not contain any relative
references (such as "/pics/texture.png"), but complete URIs are allowed.

Parameters:
dat a - byte array containing the serialized objects to load
of f set -index at which to start reading the dat a array
Returns:
an array of newly created Object3D instances
Throws:
java. l ang. Nul | Poi nt er Excepti on -if dat aisnull
j ava. |l ang. | ndexQut Of BoundsExcepti on - if (of f set <0) || (of f set >=dat a.
| engt h)
java.io. | Oexcepti on -if any externa referencesin dat a cannot be resolved or accessed
java.io. | Oexception -if thedatain dat a, or in any resource referenced fromiit, isnot in
accordance with the M3G and PNG file format specifications

133

Mobile 3D Graphics API Version 1.1

java. l ang. Securi t yExcept i on - if the application does not have the security permission to
open a connection to load an external reference

134

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Material

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedition. nBg. Materi al

public class M aterial
extends Object3D

An Appearance component encapsulating material attributes for lighting computations. Other attributes required for
lighting are defined in Light, PolygonMode and VertexBuffer.

The diagram below illustrates how the final, lit color is obtained for a vertex. Lighting is disabled for a submesh if it has
anull Material, and enabled otherwise. If lighting is disabled, the final vertex color is taken from the associated
VertexBuffer as such. If lighting is enabled, the final color is computed according to the OpenGL 1.3 lighting equation
(p. 48), using the material colors specified here. Finaly, if vertex color tracking is enabled, the AMBI ENT and DI FFUSE
material colors are replaced with the per-vertex colors or the default color obtained from the VertexBuffer.

VertexBuffer VertexBuffer VertexBuffer
Default Color Color Array Normal Array
I |
: y A
VertexBuffer Color
Array Exists? ";Lyn

Vertex Color
Tracking Enable

h 4

Material Lighting Calculation Material

Exists?

- » Diffuse
]
Ambient r\:\ _ '\Ck Rasterizer
—» Ambient ——
> Lit Color p Vertex Color

Emissive » Emissive
Specular » Specular

t t

W PolygonMode
Active Light

135

Mobile 3D Graphics API Version 1.1

Implementation guidelines
Lighting is computed according to the OpenGL 1.3 specification, section 2.13.1, with the following exceptions:

. the secondary color is not supported;

. the same Material isused for both the front face and the back face;
. vertex color tracking is limited to AMBI ENT_AND DI FFUSE;

. for an ambient Light, the diffuse and specular intensities are zero;
. for adirectiona or positional Light, the ambient intensity is zero;

. thediffuse and specular Light intensities can not be set separately;
. theglobal scene ambient color a is not supported;

See Also:
Binary format

Field Summary

static int |AVBI ENT

A parameter to set Col or and get Col or , specifying that the ambient color component isto
be set or retrieved.

static int |Dl FFUSE

A parameter to set Col or and get Col or , specifying that the diffuse color component isto be
set or retrieved.

static int |EM SSI VE

A parameter to set Col or and get Col or , specifying that the emissive color component isto
be set or retrieved.

static int | SPECULAR

A parameter to set Col or and get Col or , specifying that the specular color component isto
be set or retrieved.

Constructor Summary

Mat eri al ()
Creates a Material object with default values.

Method Summary

int |getColor(int target)
Gets the value of the specified color component of this Material.

float |[get Shi ni ness()
Gets the current shininess of this Material.

bool ean |i sVert exCol or Tr acki ngEnabl ed()
Queries whether vertex color tracking is enabled.

voi d |set Col or(int target, int ARGB)
Sets the given value to the specified color component(s) of this Material.

136

Mobile 3D Graphics API Version 1.1

voi d |set Shi ni ness(fl oat shi ni ness)
Sets the shininess of this Material.

voi d |set Ver t exCol or Tr acki ngEnabl e(bool ean enabl e)
Enables or disables vertex color tracking.

Methods inherited from class javax.microedition.m3g.Object3D

addAni mati onTrack, animate, duplicate, find, getAninmationTrack,
get Ani mati onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Field Detail

AMBIENT
public static final int AMBIENT

A parameter to set Col or and get Col or , specifying that the ambient color component isto be set or
retrieved.

See Also:
Constant Field Values

DIFFUSE
public static final int DI FFUSE
A parameter to set Col or and get Col or , specifying that the diffuse color component isto be set or retrieved.

See Also;
Constant Field Values

EMISSIVE
public static final int EM SSIVE

A parameter to set Col or and get Col or , specifying that the emissive color component isto be set or
retrieved.

See Also:
Constant Field Values

SPECULAR

public static final int SPECULAR

137

Mobile 3D Graphics API Version 1.1

A parameter to set Col or and get Col or , specifying that the specular color component isto be set or
retrieved.

See Also:
Constant Field Values

Constructor Detail

Material

public Material ()

Creates a Materia object with default values. The default values are:

vertex color tracking : false (disabled)

ambient color : 0x00333333 (0.2, 0.2, 0.2, 0.0)
diffuse color : OXFFCCCCCC (0.8, 0.8, 0.8, 1.0)
emissive color : 0x00000000 (0.0, 0.0, 0.0, 0.0)
specular color : 0x00000000 (0.0, 0.0, 0.0, 0.0)
shininess: 0.0

[} [} [} [} [} [}

Note that even though the al pha component can be set for all color components, it isignored for al but the
diffuse component.

M ethod Detail

setColor

public void setColor(int target,
i nt ARGB)

Sets the given value to the specified color component(s) of this Material. The color components to set are
specified as an inclusive OR of one or more of the symbolic constants listed above. The color is given in ARGB
format, but the alpha component isignored for al but the diffuse color.

Parameters:
t ar get - abitmask of color component identifiers
ARGB - color for the target property (or properties) in OXAARRGGBB format

Throws:
java.lang. |11 egal Argunent Excepti on -ift ar get hasavalue other than an inclusive OR
of one or more of AMBI ENT, DI FFUSE, EM SSI VE, SPECULAR
See Also:
get Col or
getColor

138

Mobile 3D Graphics API Version 1.1

public int getColor(int target)

Gets the value of the specified color component of this Material. The apha component of the returned value is
guaranteed to be zero for all but the diffuse color component.

Parameters:
t ar get - exactly oneof AMBI ENT, DI FFUSE, EM SSI VE, SPECULAR
Returns:
the current color of the target property in OXAARRGGBB format
Throws:
java.lang. |l 1 egal Argunent Excepti on -if t ar get hasavalue other than one of those
listed above
See Also:
set Col or

setShininess
public void set Shini ness(fl oat shini ness)

Sets the shininess of this Material. Shininessis the specular exponent term in the lighting equation, and it can
take on values between [0, 128]. Large values of shininess make the specular highlights more concentrated, and
small values make them more spread out.

Parameters:

shi ni ness - the specular exponent value to set for this Material
Throws:

java.lang. |11 egal Argunent Excepti on -if shi ni ness isnotin[0, 128]
See Also:

get Shi ni ness

getShininess
public float get Shininess()
Gets the current shininess of this Material.

Returns:

the current specular exponent value of this Material
See Also:

set Shi ni ness

setVertexColorTrackingEnable
public void setVertexCol or Tr acki ngEnabl e(bool ean enabl e)

Enables or disables vertex color tracking. When enabled, the AMBI ENT and DI FFUSE material colors will take
on color values from the associated VertexBuffer on a per-vertex basis. The ambient and diffuse color values of
this Material areignored in that case.

Parameters.

139

Mobile 3D Graphics API Version 1.1

enabl e - trueto turn vertex color tracking on; false to turn it off
isVertexColorTrackingEnabled
publ i c bool ean isVertexCol or Tracki ngEnabl ed()
Queries whether vertex color tracking is enabled.

Returns:
trueif vertex color tracking is enabled; false if it's disabled

140

Mobile 3D Graphics API

javax.microedition.m3g

Class Mesh

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. n8g. Transf or mabl e
I—j avax. m croedi ti on. nBg. Node
I—j avax. m croedi tion. n8g. Mesh

Direct Known Subclasses:
MorphingMesh, SkinnedMesh

public class M esh
extends Node

A scene graph node that represents a 3D object defined as a polygonal surface.

Version 1.1

This class represents a conventional rigid body mesh, while the derived classes MorphingMesh and SkinnedM esh extend
it with capabilities to transform vertices independently of each other. The structure of a basic Mesh is shown in the figure

below.

Mesh VertexBuffer stores
| information about

/i vertex positions,

/| normals, etc.

’
/
7

/
/
/
’

- IndexBuffer | IndexBuffer

——p» Appearance | Appearance |

N
\

’
’
/

| IndexBuffer defines a
—» VertexBuffer | submesh (consisting
/| of triangle strips)

Appearance stores
- information about the
/' surface properties of

/| each submesh

Multiple appearances allow a single
\, mesh to have more than one color or
| texture. There is one Appearance per

submesh.

A Mesh is composed of one or more submeshes and their associated Appearances. A submesh is an array of triangle
strips defined by an IndexBuffer object. The triangle strips are formed by indexing the vertex coordinates and other
vertex attributes in an associated VertexBuffer. All submeshesin a Mesh share the same VertexBuffer. However, in the

case of aMorphingMesh, aweighted linear combination of multiple VertexBuffersis used in place of asingle

VertexBuffer.

141

Mobile 3D Graphics API Version 1.1

Submeshes within a Mesh are rendered in the order of ascending Appearance layers, and such that opague submeshes are
rendered before transparent submeshes on the same layer. Seethe set Layer method in Appearance for more

discussion on layered rendering.

Rendering and picking of a submesh isdisabled if its Appearanceis null.

Deferred exceptions

An exception isthrown if the VertexBuffer or any of the IndexBuffers are in an invalid state when rendering or picking;
see the respective class descriptions for more information. Note that it would be useless to check for these exception
cases at construction time, because the application may freely change the contents of a VertexBuffer or an Appearance at
any time. However, null IndexBuffers and VertexBuffers are blocked at the constructor, as usual, because the application
is not able to change them afterwards.

See Also:
Binary format, Ver t exBuf f er, | ndexBuf f er

Field Summary

Fieldsinherited from class javax.microedition.m3g.Node

NONE, ORIG@ N, X AXIS, Y_AXIS Z AXIS

Constructor Summary

Mesh(VertexBuffer vertices, IndexBuffer[] submeshes, Appearance[] appearances)
Constructs a new Mesh with the given VertexBuffer and submeshes.

Mesh(VertexBuffer vertices, |ndexBuffer submesh, Appearance appearance)
Constructs a new Mesh consisting of only one submesh.

Method Summary

Appear ance [get Appear ance(i nt i ndex)
Getsthe current Appearance of the specified submesh.

I ndexBuffer |get| ndexBuffer(int index)
Retrieves the submesh at the given index.

i nt | get SubmeshCount ()
Gets the number of submeshesin this Mesh.

Ver t exBuf fer |get Vert exBuf fer ()
Getsthe vertex buffer of this Mesh.

voi d |set Appear ance(int index, Appearance appearance)
Sets the Appearance for the specified submesh.

Methodsinherited from class javax.microedition.m3g.Node

142

Mobile 3D Graphics API Version 1.1

align, getAlignnmentReference, getAlignnmentTarget, getAl phaFactor, getParent,
get Scope, get Transformlo, isPickingEnabl ed, isRenderingEnabl ed, setAlignnent,
set Al phaFact or, set Pi cki ngEnabl e, set Renderi ngEnabl e, set Scope

Methodsinherited from class javax.microedition.m3g.Transfor mable

get ConpositeTransform getOrientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
setTransl ation, translate

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mati onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Constructor Detail

Mesh

public Mesh(VertexBuffer vertices,
| ndexBuf f er subnesh,
Appear ance appear ance)

Constructs a new Mesh consisting of only one submesh. Rendering and picking of the Mesh isinitially disabled
if the Appearance is set to null.

Parameters:
verti ces - aVertexBuffer to use for this mesh
submesh - an IndexBuffer defining the triangle strips to draw
appear ance - an Appearance to use for this mesh, or null
Throws:
java.l ang. Nul | Poi nt er Exception-ifverticesisnull
java. l ang. Nul | Poi nt er Excepti on -if submesh isnull

Mesh

public Mesh(VertexBuffer vertices,
I ndexBuffer[] subneshes,
Appear ance[] appear ances)

Constructs a new Mesh with the given VertexBuffer and submeshes. The number of submeshesis set equal to
the length of the subneshes array. The appear ances array isparale to that, and must have at least as
many elements. A null Appearance disables rendering and picking of the corresponding submesh. If the array
itself isnull, all appearances are initialized to null.

Parameters:

143

Mobile 3D Graphics API Version 1.1

verti ces - aVertexBuffer to use for all submeshesin this mesh
subnmeshes - an IndexBuffer array defining the submeshes to draw
appear ances - an Appearance array parallel to subneshes, or null

Throws:
java.l ang. Nul | Poi nt er Excepti on-ifverti ces isnull
j ava. l ang. Nul | Poi nt er Excepti on -if subneshes isnull
j ava. |l ang. Nul | Poi nt er Excepti on -if any element in subnmeshes isnull
java.l ang. Il 1 egal Argunent Excepti on - if subnmeshes isempty
java.lang. ||l egal Argunment Excepti on -if (appearances != null) && (appearances.
| engt h < subneshes. | engt h)

Method Detail
setAppearance

public void set Appearance(int index,
Appear ance appear ance)

Sets the Appearance for the specified submesh.

Parameters:
i ndex - index of the submesh to set the Appearance of
appear ance - Appearance to set for the submesh at i ndex, or null to disable the submesh
Throws:
java. | ang. | ndexQut Of BoundsException-if (i ndex < 0) || (index >=
get SubnmeshCount)
See Also:
get Appear ance

getAppearance
publ i c Appearance get Appear ance(int index)

Gets the current Appearance of the specified submesh.

Parameters:
i ndex - index of the submesh to get the Appearance of
Returns:
current Appearance of the submesh at i ndex
Throws:
j ava. l ang. | ndexQut Of BoundsException-if (i ndex < 0) || (index >=
get SubneshCount)
See Also:

set Appear ance

getindexBuffer

public | ndexBuffer getlndexBuffer(int index)

144

Mobile 3D Graphics API Version 1.1

Retrieves the submesh at the given index.

Parameters:
i ndex - index of the submesh to get
Returns:
current IndexBuffer at i ndex
Throws:
java. | ang. | ndexQut O BoundsException-if (i ndex < 0) || (index >=
get SubmeshCount)

getVertexBuffer

public VertexBuffer getVertexBuffer()

Getsthe vertex buffer of this Mesh. Thisis alwaysthe original VertexBuffer that was supplied at construction.
The VertexBuffer is never written to by the implementation. Specifically, the results of morphing
(MorphingMesh) and skinning (SkinnedMesh) are not written to the VertexBuffer, nor are they exposed to the
application by any other means.

In the case of a MorphingMesh, this VertexBuffer represents the base mesh. The morph target VertexBuffers
can beretrieved with the get Mor phTar get method in MorphingMesh.

Returns:
the (base) VertexBuffer of this Mesh

getSubmeshCount
public int get SubneshCount ()
Gets the number of submeshesin this Mesh. Thisisalways at least 1.

Returns:
the number of submeshesin this Mesh

145

Mobile 3D Graphics API

javax.microedition.m3g

Class MorphingMesh

j ava. |l ang. Obj ect

I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. n8g. Transf or mabl e

I—j avax. m croedi ti on. nBg. Node

I—j avax. m croedi tion. n8g. Mesh

Version 1.1

I—j avax. m croedi ti on. n8g. Mor phi ngMesh

public class M or phingM esh
extends Mesh

A scene graph node that represents a vertex morphing polygon mesh.

MorphingMesh is equivalent to an ordinary Mesh, except that the vertices that are rendered are computed as a weighted
linear combination of the base VertexBuffer and a number of morph target VertexBuffers. The resultant mesh is only
used for rendering, and is not exposed to the application. The structure of a MorphingMesh object is shown in the figure

below.

VertexBuffer | VertexBuffer

—» VertexBuffer

Morphing VertexBuffer
Mesh

IndexBuffer

Appearance

Morph targets

Other
data
same
as for
Mesh

| Array of vertex buffers, one
- for each morph target.
Resultant positions are a

weighted blend of the "base

' mesh" positions in the

' standard vertex buffer, and
| the positions in the morph

' targets.

All morph targets must have the same properties: The same types of arrays, the same number of verticesin each array,
the same number of components per vertex, and the same component size. For example, it is prohibited for one morph
target to contain vertex coordinates and texture coordinates, if some other target only contains vertex coordinates.
Similarly, having 2D texture coordinates in one morph target and 3D texture coordinates in another is not allowed.

The base mesh must be a"superset” of the morph targets. If an array with certain type and dimensions existsin the morph
targets, asimilar array must also exist in the base mesh, but not vice versa. It isillegal, for example, for the morph targets
to have per-vertex colors and 8-bit coordinates if the base mesh has 16-bit coordinates and/or no colors.

146

Mobile 3D Graphics API Version 1.1

Only the VertexBuffer default color and the arrays that are present in the morph targets are actually morphed. The other
arrays, aswell asthe scale and bias values, are copied from the base mesh. Scale and bias values of the morph targets are
ignored.

Morphing equation

Denoting the base mesh with B, the morph targets with T;, and the weights corresponding to the morph targets with w;,
the resultant mesh R is computed as follows:

R= B+ sum [Wi(Ti- B)]

Any values for the weights w; are accepted, including negative values. The sum of the weightsis similarly unconstrained.

This allows having, for example, amodel of aface with aneutral expression as the base mesh, and two morph targets
where one is the base mesh but with a smiling mouth and the other with raised eyebrows. Now, setting the first weight to
1.0 makes the face smile, -0.5 could make it frown, and so on, while the eyebrow raising and lowering can be driven
independent of the mouth movements.

Setting up the morph weights such that the individual weights as well as their sum are between [0, 1] ensures that the
resultant mesh never grows beyond the convex hull of the base mesh and the targets. That, on the other hand, guarantees
that no arithmetic overflows will occur and the results are as expected.

If the application chooses to set up the weights such that they or their sumisnot in the [0, 1] interval, it should by some
other means ensure that the morphed attributes of the resultant mesh will fit into the original numeric range, that is, in the
same number of bitsthat are used in the base mesh and the morph targets. The available range for the results can be
either [0, 255] or [0, 65535], for 8-bit and 16-hit components respectively. If the values do not, however, fit in that range,
the results are undefined when rendering or picking.

Any intermediate values produced during morphing are subject to the dynamic range constraints that are specified in the

package description. In other words, individual weights can be very large or small, aslong as the resultant mesh fitsin
the 8/16-bit range.

The VertexBuffer scale and bias for the resultant mesh are taken from the base mesh as such, without interpolation,
because correct interpolation between (integer) values that are in different (floating point) scales would require the
interpolants to be first multiplied with the scale factor, and only then interpolated. This involves severa floating point
operations per vertex attribute, which would make morphing of anything but the most trivial meshes prohibitively
expensive on current mobile hardware, for very little benefit. Note also that interpolating the scale terms separately from
the values would not produce the correct results.

Deferred exceptions

Any special cases and exceptions that are defined for Mesh also apply for MorphingMesh. An extraexception caseis
introduced due to the requirement that morph targets must be "subsets" of the base mesh, and that they must all have the
same set of vertex attributes with the same dimensions, as specified above. This requirement cannot be enforced until
when the morphing is actually done, that is, when rendering or picking.

See Also:
Binary format

147

Mobile 3D Graphics API Version 1.1

Field Summary

Fieldsinherited from class javax.microedition.m3g.Node

NONE, ORIGN, X AXIS, Y AXIS, Z AXIS

Constructor Summary

Mor phi ngMesh(Vert exBuf fer base, VertexBuffer[] targets, |ndexBuffer
[] subneshes, Appearance[] appearances)
Constructs a new MorphingMesh with the given base mesh and morph targets.

Mor phi ngMesh(Vert exBuf fer base, VertexBuffer[] targets, |ndexBuffer subnesh,
Appear ance appear ance)
Constructs a new MorphingMesh with the given base mesh and morph targets.

Method Summary

Vert exBuf fer |get Mor phTar get (i nt i ndex)
Returns the morph target VertexBuffer at the given index.

int |get Mor phTar get Count ()
Returns the number of morph targets in this MorphingMesh.

voi d |get Wi ghts(float[] weights)
Gets the current morph target weights for this mesh.

voi d [set Wi ghts(float[] weights)
Sets the weights for all morph targets in this mesh.

Methodsinherited from class javax.microedition.m3g.Mesh

get Appear ance, getl ndexBuffer, getSubmeshCount, getVertexBuffer, setAppearance

Methods inherited from class javax.microedition.m3g.Node

align, getAlignnment Reference, getAlignnentTarget, getAl phaFactor, getParent,
get Scope, get Transformlo, isPicki ngEnabl ed, isRenderingEnabl ed, setAlignnent,
set Al phaFact or, set Pi cki ngEnabl e, set Renderi ngEnabl e, set Scope

Methodsinherited from class javax.microedition.m3g.Transfor mable

get ConpositeTransform getOrientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
set Transl ati on, transl ate

Methodsinherited from class javax.micr oedition.m3g.Object3D

148

Mobile 3D Graphics API Version 1.1

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mati onTrackCount, get References, getUserl D, getUserQbject,
renoveAni mati onTrack, setUserl D, setUser (bject

Constructor Detail

MorphingMesh

publ i ¢ Mor phi ngMesh(Vert exBuf fer base,
VertexBuffer[] targets,
| ndexBuf f er subnesh,
Appear ance appear ance)

Constructs a new MorphingMesh with the given base mesh and morph targets. Except for the morph targets, the
behavior of this constructor isidentical to the corresponding constructor in Mesh; refer to that for more
information.

The morph target weights are initially set to zero, meaning that the resultant mesh is equal to the base mesh. The
behavior of a newly constructed MorphingMesh is therefore equivalent to an ordinary Mesh.

Parameters:
base - aVertexBuffer representing the base mesh
t ar get s - aVertexBuffer array representing the morph targets
submesh - an IndexBuffer defining the triangle strips to draw
appear ance - an Appearance to use for this mesh, or null
Throws:
j ava. |l ang. Nul | Poi nt er Excepti on -if base isnull
j ava.l ang. Nul | Poi nt er Excepti on -iftargets isnull
j ava. l ang. Nul | Poi nt er Excepti on -if subnesh isnull
j ava. l ang. Nul | Poi nt er Excepti on -if any elementint ar get s isnull
java.lang. |11 egal Argunent Excepti on -iftargets isempty

MorphingMesh

publ i ¢ Morphi ngMesh(Vert exBuffer base,
VertexBuffer[] targets,
I ndexBuffer[] subneshes,
Appear ance[] appear ances)

Constructs a new MorphingMesh with the given base mesh and morph targets. Except for the morph targets, the
behavior of this constructor isidentical to the corresponding constructor in Mesh; refer to that for more
information.

The morph target weights areinitially set to zero, meaning that the resultant mesh is equal to the base mesh. The
behavior of a newly constructed MorphingMesh is therefore equivalent to an ordinary Mesh.

Parameters:

149

Mobile 3D Graphics API Version 1.1

base - aVertexBuffer representing the base mesh

t ar get s - aVertexBuffer array representing the morph targets
subneshes - an IndexBuffer array defining the submeshes to draw
appear ances - an Appearance array parallel to subneshes, or null

Throws:
j ava. |l ang. Nul | Poi nt er Excepti on -if base isnull
java. |l ang. Nul | Poi nt er Excepti on-iftargetsisnull
j ava.l ang. Nul | Poi nt er Excepti on -if subneshes isnull
j ava. l ang. Nul | Poi nt er Excepti on -if any elementint ar get s isnull
j ava. |l ang. Nul | Poi nt er Excepti on - if any element in subnmeshes isnull
java.lang. |1l egal Argunent Excepti on-iftargets isempty
java.lang. |11 egal Argunent Excepti on - if subneshes isempty
java.lang. |11 egal Argunent Excepti on -if (appearances != null) && (appearances.
| engt h < subneshes. | engt h)

Method Detail
getMorphTarget

public VertexBuffer getMrphTarget(int index)

Returns the morph target VertexBuffer at the given index.

Parameters:
i ndex - theindex of the morph target to get
Returns:
the VertexBuffer object at i ndex
Throws:
java. | ang. | ndexQut Of BoundsException-if (i ndex < 0) || (index >=
get Mor phTar get Count)
See Also:
Mesh. get Vert exBuf f er

getMorphTargetCount
public int getMrphTarget Count ()
Returns the number of morph targetsin this MorphingMesh.

Returns:
the number of morph targets

setWeights
public void setWights(float[] weights)

Sets the weights for all morph targets in this mesh. The number of weights copied in isthe number of target
vertex buffers, as specified at construction time. The source array must have at least that many elements. See the
class description for more information.

150

Mobile 3D Graphics API Version 1.1

Parameters:
wei ght s - weight factors for all morph targets

Throws:
j ava. |l ang. Nul | Poi nt er Excepti on -if wei ght s isnull
java.lang. ||l egal Argunent Exception-ifwei ghts.length <
get Mor phTar get Count

See Also:
get Wi ght s

getWeights
public void getWights(float[] weights)
Gets the current morph target weights for this mesh.

Parameters:
wei ght s - array to be populated with the morph target weights

Throws:
java. l ang. Nul | Poi nt er Excepti on -if wei ght s isnull
java.lang. ||| egal Argunent Exception-ifwei ghts.length <
get Mor phTar get Count

See Also:
set Wi ght s

151

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g

Class Node

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D
I—j avax. m croedi tion. n8g. Transf or mabl e

I—j avax. m croedi ti on. n8g. Node

Direct Known Subclasses:
Camera, Group, Light, Mesh, Sprite3D

public abstract class Node
extends Transformable

An abstract base class for all scene graph nodes.
There are five different kinds of nodes:

. Caner a defines the projection from 3D to 2D, aswell as the position of the viewer in the scene.
. Mesh definesa 3D abject, consisting of triangles with associated material properties.

. Sprit e3Ddefines ascreen-aligned 2D image with aposition in 3D space.

. Li ght definesthe position, direction, color and other attributes of alight source.

. G oup servesasaroot for scene graph branches.

Node transformation

Each node defines alocal coordinate system that can be transformed relative to the coordinate system of the parent node.
The transformation from the local coordinate system of a node to the coordinate system of its parent is called the node
transformation.

The node transformation consists of four parts: a generic matrix M, anon-uniform scale S, an orientation R and a
tranglation T. The bottom row of M must be equal to (0 0 0 1). The methods to manipulate the individual components are
defined in the base class, Transformable.

To transform a point from anode's local coordinatesto its parent's coordinates, the point is multiplied by the
transformation componentsin the order that they are listed above. Formally, a homogeneous vector p = (X, v, z, 1),
representing a 3D point in the local coordinate system, istransformed into p' = (X', y', Z', 1) in the parent coordinate
system as follows:

p=TRSMp

The trandlation, orientation and scale components of the node transformation can be animated independently from each
other. The matrix component is not animatable at all; it can only be changed using the set Tr ansf or mmethod.

152

Mobile 3D Graphics API Version 1.1

Node alignment

A node may be aligned with respect to a sel ected reference node (or nodes). This means that the aligned node is, upon
request, automatically oriented so that its coordinate system matches the reference node's coordinate system in the
specified way. A common use case for node alignment is to create "billboards’ that are always facing the camera; another
isto make the camera always point at a certain object.

When anode is aligned, its original orientation component R is overwritten with an aligned orientation A. (The aligned
orientation is computed as specified below, in the Implementation Guidelines section.) The other components of the node
transformation are not affected by alignment. The transformation from the local coordinate system of an aligned nodeto
its parent node's coordinate system is, therefore,

p=TASMp

The application must explicitly call theal i gn method on a node (or any of its ancestors) when it requires the
alignments of that node and its descendants to be computed. Thisistypically done once per frame, before rendering.
Rendering operations do not resolve any alignments; they simply use whatever orientation each node has at that time.
The same holds true for get Tr ansf or niTo and any other methods whose results depend on the orientation.

The alignment reference node(s) and the method of alignment are selected with set Al i gnent . This does not yet
compute the new aligned orientation, but merely specifies how that isto be done. Optionally, the reference node may be
left unspecified (null) until when al i gn is called; the reference node is then supplied as a parameter to al i gn. Thisis
very useful for billboards, because otherwise the application would haveto call set Al i gnnment separately for every
billboard in the scene whenever the camerais changed.

Inherited node properties

Besides the node transformation, there are three node properties whose effective values are in some manner influenced
by the ancestors of each node. These properties are the alpha factor, the rendering enable flag, and the picking enable flag.

The alpha factor allows (groups of) Mesh and Sprite3D objects to be faded in and out in a convenient way, provided that
certain preconditions related to their Appearance are met. The aphafactor is defined for each Node, and itsvalue is
between [0, 1]. The effective alphafactor for an object is obtained by multiplying itslocal alphafactor with the alpha
factors of its ancestors. The alphafactor isignored for Light and Camera nodes.

When rendering a Mesh, its effective alphafactor is multiplied with the apha component of the diffuse color in each of
the Material objects associated with that Mesh. In absence of a Material object, the alphafactor is applied to the alpha
channel of the VertexBuffer color array, or if the color array is null, the default color alpha component. When rendering a
Sprite3D, its effective apha factor is multiplied with the alpha channel of the sprite image. Note that for both meshes and
sprites, only the alpha values are ever modified. The alphafactor aloneis therefore not sufficient for afade-in/fade-out
effect. Instead, the texture blending mode, the framebuffer blending mode, and the al pha threshold must all be set
appropriately. For meshes, setting texture blending to MODULATE, framebuffer blending to ALPHA, and alphathreshold
to zero will often produce the desired result. Sprites should use a non-zero alpha threshold and ALPHA blending in
CompositingM ode.

The enable flags for rendering and picking allow (groups of) mesh and sprite objects to be made "invisible" from the
point of view of rendering and picking, respectively. The effective enable status of a node isthe logical AND of the
enable flags on that node and all its ancestors. Therefore, setting the enable flag of a node to true does not guarantee that
the node will be rendered or picked. Rather, if any of its ancestors are disabled, the node will be ignored regardless of its
own enable flag.

153

Mobile 3D Graphics API Version 1.1

Note that the scope of a Node is nhot an inherited property; see below for more information.
Scoping

The scope of aNodeis an integer bitmask that allows scene graph nodes to form conceptual groups independent of the
scene graph hierarchy. In other words, nodes that are in a particular Group are not necessarily in the same scope.
Formally, two nodes A and B are defined to be in the same scope if the bitwise AND of their scopesis hon-zero:

scope, & scopeg =0

Scopes are not hierarchic in any way. In particular, the scope of a Group or SkinnedMesh node is not propagated to or
inherited by its children. After all, scopes are intended to be separate from the scene hierarchy.

Scoping serves three purposes:

. Visbility culling. Only those objects are rendered that are in the same scope as the Camera. This gives an
additional means to control the set of visible objects, complementary to the rendering enable flag.

. Lighting. A light source only has an effect on Meshes that are in the same scope with it. This makes it possible
to have avery large number of light sources in a scene graph without having all the lights illuminate all meshes.
Besides being impractical, that would also be prohibitively expensive in terms of processing power.

. Picking. The scope of the pick ray is given as a parameter to the pi ck methodsin Group. Again, only those
objects can be picked that are in the same scope as the pick ray; the others are ignored.

The default scopeis-1, implying that all nodes are in the same scope. By default, all objects are therefore visible to all
cameras, and are lit by all light sources.

Instantiation

Node is an abstract class, and therefore has no public constructor. When a class derived from Node is instantiated, the
attributes defined in Node will have the following default values:

.« parent node : null

. rendering enable: true

. picking enable: true

. aphafactor: 1.0

. scope: -1

. aignment : (NONE, null) for all axes

Implementation guidelines

The alignment rotation A is computed relative to theinitial coordinate system A defined by the T component of the node
transformation alone. All other transformation components of the node being aligned are ignored.

Conceptually, alignment is composed of two cumulative rotations: the shortest rotation R, that takes theinitial Z axisto
the Z alignment target vector, followed by the rotation R,, about the resulting Z vector that minimizes the angle between

theresulting Y axisand the Y alignment target vector. If alignment is set for one axis only, that rotation is performed like
theinitia Z rotation.

154

Mobile 3D Graphics API Version 1.1

Formally, let usdenote by t, and ty the Z and Y alignment target vectors, transformed from their respective reference
nodesto A; note that axis targets transform as vectors, and origin targets as points. The axis for the first rotation R, is
then the cross product of the local Z axis of A and the target vector:

azz(OO].)Tth

and the rotation angle can be computed viathe dot product of the two. Rotating by R, takes us to a new coordinate frame
B wherety isexpressed as:

ty'=Rzs1xty

The axis for the second rotation Ry isthe local Z axis of B, and the angle is the angle between the local Y axis and the
projection of ty' onthe XY plane. The final alignment rotation A is then:

AszRY

There are two cases where arotation axis is undefined. Firstly, if either target vector coincides with the axisthat it isa
target for, the respective rotation must be substituted with an identity rotation. Secondly, if the target vector and the axis
are opposite, the exact rotation path (that is, the resultant direction of the other two axes) is implementation dependent,
but must be deterministic. Note that the latter only matters for unconstrained (single-axis) alignment.

See Also:
Binary format

Field Summary

static int | NONE

Specifiesfor theset Al i gnment method that no alignment should be done for the specified
axis.

static int |ORIG N

Specifies the origin of the reference node as an orientation reference for theset Al i gnrent
method.

static int [X AXI S

Specifiesthe X axis of the reference node as an orientation reference for theset Al i gnent
method.

static int [Y_AXIS

Specifiesthe Y axis of the reference node as an orientation reference for the set Al i gnnent
method.

static int [Z AXI S

Specifies the Z axis of the reference node as an orientation reference for theset Al i gnnent
method.

Method Summary

void|align(Node reference)
Applies aignments to this Node and its descendants.

155

Mobile 3D Graphics API Version 1.1

Node [get Al i gnnment Ref er ence(i nt axi s)
Returns the alignment reference node for the given axis.

int |get Ali gnment Target (i nt axis)
Returns the alignment target for the given axis.

float [get Al phaFact or ()
Retrieves the alpha factor of this Node.

Node | get Par ent ()
Returns the scene graph parent of this node.

int [get Scope()
Retrieves the scope of this Node.

bool ean |get Transf ornifo(Node target, Transformtransform
Gets the composite transformation from this node to the given node.

bool ean |i sPi cki ngEnabl ed()
Retrieves the picking enable flag of this Node.

bool ean |i sRender i ngEnabl ed()
Retrieves the rendering enable flag of this Node.

voi d [set Al i gnnment (Node zRef, int zTarget, Node yRef, int yTarget)
Sets this node to align with the given other node(s), or disables alignment.

voi d [set Al phaFact or (fl oat al phaFact or)
Sets the alpha factor for this Node.

voi d | set Pi cki ngEnabl e(bool ean enabl e)
Sets the picking enable flag of this Node.

voi d [set Renderi ngEnabl e(bool ean enabl e)
Sets the rendering enable flag of this Node.

voi d [set Scope(int scope)
Sets the scope of this hode.

Methodsinherited from class javax.microedition.m3g.Transfor mable

get ConpositeTransform getOrientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
set Transl ati on, transl ate

Methodsinherited from class javax.micr oedition.m3g.0Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
renmoveAni mati onTrack, setUserl D, setUser Qbject

Field Detail

NONE

156

Mobile 3D Graphics API Version 1.1

public static final int NONE
Specifiesfor theset Al i gnment method that no alignment should be done for the specified axis.

See Also;
Constant Field Values

ORIGIN
public static final int ORIAN
Specifies the origin of the reference node as an orientation reference for the set Al i gnnent method.

See Also:
Constant Field Values

X_AXIS
public static final int X AXI S
Specifiesthe X axis of the reference node as an orientation reference for the set Al i gnment method.

See Also:
Constant Field Values

Y_AXIS
public static final int Y_AXS
Specifiesthe Y axis of the reference node as an orientation reference for theset Al i gnnment method.

See Also:
Constant Field Values

Z AXIS
public static final int Z AXIS
Specifies the Z axis of the reference node as an orientation reference for the set Al i gnment method.

See Also:
Constant Field Values

M ethod Detail

157

Mobile 3D Graphics API Version 1.1

setRenderingEnable
publ i c void set Renderi ngEnabl e(bool ean enabl e)

Sets the rendering enable flag of this Node. The effective rendering enable status for this node is the logical
AND of the enable flags on this node and all its ancestors. Therefore, the node is disabled if any of its ancestors
are. The node's own status has an effect only if all the ancestors are enabled.

If the effective status istrue, this node is enabled for rendering; otherwise, it is disabled. Sprite3D, Mesh and
Light nodes are turned on and off with this setting, but on Camera nodesit isignored.

Parameters:
enabl e - true to enable rendering; false to disable

setPickingEnable
public void setPi cki ngEnabl e(bool ean enabl e)

Sets the picking enable flag of this Node. The effective picking enable status for this node is the logical AND of
the enable flags on this node and all its ancestors. Therefore, the node is disabled if any of its ancestors are. The
node's own status has an effect only if all the ancestors are enabled.

If the effective statusistrue, thisnodeis enabled for picking; otherwise, it is disabled. This setting isignored for
Lights and Cameras, because they are unpickable in any case.

Parameters:
enabl e - trueto enable picking; falseto disable

setScope
public void setScope(int scope)

Sets the scope of this node. The scopeis used to limit the set of nodes that are taken into account in rendering,
lighting and picking. See the class description for more information.

Parameters:

scope - the new scope for this node
See Also:

get Scope

setAlphaFactor
public void set Al phaFactor (fl oat al phaFactor)

Sets the alpha factor for this Node. This can be used to fade groups of meshes and spritesin and out. The alpha
factor has no effect on Light and Camera nodes. See the class description for more information.

Parameters.

158

Mobile 3D Graphics API Version 1.1

al phaFact or - the new aphafactor for this node; must be [0, 1]
Throws:

java.lang. ||| egal Argunent Excepti on -if al phaFact or isnegative or greater than 1.0
See Also:

get Al phaFact or

isRenderingEnabled
publ i c bool ean i sRenderi ngEnabl ed()

Retrieves the rendering enable flag of this Node. Note that thisis not the effective rendering enable status, but
only the local status of this Node.

Returns:

the rendering enable flag of this Node
See Also:

set Render i ngEnabl e

isPickingEnabled
publ i ¢ bool ean i sPi cki ngEnabl ed()

Retrieves the picking enable flag of this Node. Note that thisis not the effective picking enable status, but only
thelocal status of this Node.

Returns:

the picking enable flag of this Node
See Also:

set Pi cki ngEnabl e

getScope
public int getScope()
Retrieves the scope of this Node.

Returns:

the current scope of this Node
See Also:

set Scope

getAlphaFactor
public float get Al phaFactor()

Retrieves the alphafactor of this Node. Note that thisis not the effective alphafactor, but only the local apha
factor of this Node. To put it another way, the alphafactors of any ancestors to this Node are not multiplied in.

Returns:

159

Mobile 3D Graphics API Version 1.1

the alphafactor of thisnode; [0, 1]
See Also:
set Al phaFact or

getParent

publ i ¢ Node get Parent ()

Returns the scene graph parent of this node.

Returns:
reference to the parent node, or null if thereis no parent

getTransformTo

publ i c bool ean get Transf or nifo(Node t ar get,
Transform transformn

Gets the composite transformation from this node to the given node. The composite transformation is defined to
be such that it transforms a point in the local coordinate system of this node to the coordinate system of the
given node. For example, the composite transformation from this node to its parent is equal to the node
transformation of this node. Similarly, the composite transformation from this node to its child is equal to the
inverse of the node transformation of the child.

If there is no path from this node to the given node, this method returns false. On the other hand, if thereisa
path but the transformation cannot be computed due to asingular transformation, an ArithmeticException is
thrown. Beware that atransformation that is invertible in one implementation may not be invertible in another,
because of different arithmetic accuracy. To be safe, avoid matrix elements with very small or very large
absolute values. See also the package description.

Parameters:
t ar get - transformation target node
t r ansf or m- transform object to receive the transformation; if there is no path to the target node, the
contents of the object are left undefined
Returns:
trueif the returned transformation is valid; falseif there is no path from this node to the target node
Throws:
java. l ang. Nul | Poi nt er Excepti on-iftarget isnull
java. l ang. Nul | Poi nt er Excepti on -iftransf or misnull
java.lang. Arithneti cExcepti on - if theinverse of atransformation along the path is
required, but can not be computed

align
public final void align(Node reference)

Applies alignments to this Node and its descendants.

The aligned orientation for this node and al its descendants are calculated in an undefined order. The rare case
where there are chains of dependencies between aligned objects is therefore not necessarily taken into account.

160

Mobile 3D Graphics API Version 1.1

The orientation component of the node transformation of each aligned node is overwritten with the aligned
orientation. The pre-existing orientation is not preserved.

A reference node can be passed in to this method, in order to allow alignment of objectsto acommon reference
that is determined at run time. Thisis usually used to align items to the active camera, for use as hillboards or
impostors. Since the active camera can change, areference to it cannot be directly encoded in the scene graph.
Instead, it is passed in as an argument to this method.

See the class description and set Al i gnrent for more information on how to set up and apply alignments.

Parameters:
r ef er ence - anode to serve as acommon aignment reference for nodes that have no fixed reference
in either or both axes, or null to use this node as the common reference

Throws:
java.lang. |11 egal Argunent Excepti on -if r ef er ence isnot in the same scene graph as
this node
java.lang. ||| egal St at eExcepti on -if thezRef or yRef node of any aligned node is not
in the same scene graph as the aligned node
java.lang. |11 egal St at eExcepti on -if any nodeisaligned to itself or its descendant (note:

this appliesto null alignment references, as well)
java.lang. Arithmeti cExcepti on - if atransformation required in the alignment
computations cannot be computed

setAlignment

public void setAlignnent(Node zRef,

i nt zTarget,
Node yRef,

int yTarget)

Sets this node to align with the given other node(s), or disables alignment. Alignment can be used, for example,
for automatic "look at" behavior for the camera or a spot light, and to create "billboards’ that are always facing
the active camera directly.

Alignment can be set or disabled for one or both of the Y and Z axes. If it is set for both, the Z alignment is
applied first, followed by the Y alignment. The Y alignment is constrained by the Z alignment. If alignment is
set for one axis only, it is unconstrained.

Alignment can be disabled for either or both axes by setting the respective alignment targets to NONE. If both
alignments are disabled, the orientation is | eft at its present state. The original unaligned orientation is not
restored.

Parameters:
zRef - the node to use as reference for aligning the Z axis of this node, or null to use instead the
reference node passed as an argument to the al i gn method
zTar get -theaxisof zRef toalign the Z axis of this node with, or ORI G Nto have the Z axis point
at the origin of zRef , or NONE to not align the Z axis at all
yRef -theY axisequivalent of zRef
yTar get -theY axisequivalent of zTar get
Throws:
java.lang. ||l egal Argunment Excepti on -if yTarget orzTar get isnot oneof the

161

Mobile 3D Graphics API Version 1.1

symbolic constants listed above
java.lang. ||| egal Argunent Exception-if (zRef == yRef) && (zTarget ==
yTarget != NONE)

java.lang. ||l egal Argunment Excepti on -if zRef or yRef isthisNode
See Also:

al i gn,get Al i gnnent Tar get, get Al i gnnent Ref erence
Example:

Common use cases for node alignment.

set Al i gnment (nul |, Node. NONE, null, Node. NONE); /1 Disabl ed
set Alignment (null, Node.Z AXIS, null, Node.Y AXIS); /1l "Sprite"
set Alignment (null, Node.ORIA N, world, Node.Y_AXlS); /1 Billboard

set Alignment (target, Node. ORIG N, target, Node. NONE); /| Target |ight
set Ali gnment (target, Node. ORIGA N, world, Node.Y_AXIS); // Target canera

/1 NOTE 1:

/1 The billboard alignnment exanple requires that world space "up"
/1 is Y and billboard space "up" is Z, so that the Z alignnent is
/1l constrained by the Y alignnent and not vice versa. O herw se,
/1 the billboard will not stand upright as the camera passes from
/| above or below, instead, it will |ean over and eventually lie
/1 flat on the ground. The M conponent of the bill board' s node

/1 transformation can be used to rotate the billboard into the

/1 right orientation; the R conponent can not, because it gets

/'l overwritten by the aligned orientation. Another option is to
/1 use an extra G oup node.

/'l NOTE 2

/1 A camera or light is always facing towards its negative Z axis
/1 inits local coordinate system To nake the target canera and
/1 light alignments work as expected, the Z axis nust be nmade to
/1 point in the opposite direction. This can be done by rotating
/1 the node 180 degrees about its local Y axis. This, in turn,

/'l can be done as described in Note 1 (above), or sonmewhat nore
/'l conveniently, using the scale (S) conponent:

canmera.scale(-1, 1, -1); /1l rotate 180 degrees about the Y axis

getAlignmentTarget
public int getAlignmentTarget(int axis)
Returns the alignment target for the given axis.

Parameters:
axi s - the node axisto query thetarget for; oneof Y_AXI SandZ_AXI S

Returns:
the alignment target; one of the symbolic constants allowed for the zTar get andyTar get
parameters of set Al i gnment

Throws:
java.lang. Il 1 egal Argunent Excepti on -if axi s isnot one of the symbolic constants
listed for axi s above

Since:
M3G 1.1

See Also:

set Ali gnment,al i gn

162

Mobile 3D Graphics API Version 1.1

getAlignmentReference

publ i c Node get Ali gnnment Ref erence(int axis)

Returns the alignment reference node for the given axis.
Note that alignment reference nodes are not returned in acall to get Ref er ences.

Parameters:
axi s - the node axisto query the reference node for; oneof Y_AXI SandZ_AXI S
Returns:
the alignment reference node
Throws:
java.lang. ||| egal Argunent Excepti on -if axi s isnot one of the symbolic constants
listed for axi s above
Since:
M3G 1.1
See Also:
set Alignnent,align

163

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g

Class Object3D

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

Direct Known Subclasses:
AnimationController, AnimationTrack, Appearance, Background, CompositingMode, Fog, |mage2D,

IndexBuffer, KeyframeSequence, Material, PolygonMode, Transformable, VertexArray, VertexBuffer

public abstract class Object3D
extends java.lang.Object

An abstract base class for al objects that can be part of a 3D world. Thisincludes the world itself, other scene graph
nodes, animations, textures, and so on. In fact, everything in this API is an Object3D, except for Loader, Transform,
RayIntersection, and Graphics3D.

Animation

Animations are applied to an object and its descendants with the ani mat e method in this class. The objects needed for
animation and their relationships are shown in the figure below.

i Defines time that the
animation is active,

- way they are interpolated.
. Can be shared between
' objects.

same property, in which case the
values they generate are blended.

: — — speed, and weight for
Animated Animation .| Animation | blending. This is often
Object Track » Controller " shared between multiple
— ' tracks, on multiple
Animation ' objects, which are then
Track | Keyframe ' controlled as one unit.
P "| Sequence ‘
Each animation track associates a ' Defi tual k
property of the animated object (e.g. | 3 det HT?E ac L’,’a e{,f :f:me
its position) with a controller and :/ i ata- the valles orine
keyframe data. ! » Keyframe | ' animated property at
Muitiple tracks may animate the Sequence " particular times, and the

Finding objects

Every Object3D can be assigned a user 1D, either at authoring stage or at run time with the set User | D method. User
IDs aretypically used to find a known object in a scene loaded from a data stream.

Thef i nd method searches through all objects that are reachable from this object through a chain of references, and
returns the one with the given user ID. If there are multiple objects with the same 1D, the implementation may return any
one of them.

164

Mobile 3D Graphics API

Version 1.1

An object O is defined to be reachable from itself and from all objects that have a chain of direct referencestoit. The
parent reference and the alignment references in a Node do not count as direct references.

The operation of f i nd isillustrated in the figure below.

Any object derived

from Object3D can be |
given a UserlID, which
can then be used as i

Background

a tag for searching |

UseriDs are arbitrary and

.| need not be unique - in this

example the Background
object also has UserlD=1.

"4" found in two

User objects are not | . places - could
searched, since they | .~ User Object fji‘nd(‘l) return either
are not derived from i~ Pl Sprite3D or Mesh M
Object3D and have no |
UserlD |
! 3
Group C 4 find (C)
~
/
e g \
g \
e
4 < 5 \
\
find (C) Sprite3D Mesh N \
N (\
N \
\\ \
"C" not found: it 6 8 |
exists, butitis :
not reachable | Appearance VertexBuffer |
from here 14 /
/
? U 9 /
—» Image2D —p IndexBuffer [€— //
/’/ / /
-~
_ -~
i A & _ _
Note how Mesh M and Mesh N |) =~
share their components: thisisa | .-~ Appearance S
good way to save space for | \
identical objects. | '
: F /
/
Material <—f—p Fog / Found "C"
/ - -~
‘/ N N
B <
Polygon-
Mode 4—— P Texture2D a
D| —» Image2D
) Texture2D
a Composit-
Objects have a UserlD of 0,/ ing Mode D —
unless it is explicitly set |

165

Mobile 3D Graphics API Version 1.1

Associated user data

Object3D has an attribute called the user object. The user object may contain any arbitrary Object, whose interpretation
and usage are entirely up to each application. The user object is held by reference, and its contents are never accessed by
the implementation.

If an Object3D isloaded from afile by the L oader, the user object may contain a Hashtable that stores byte array values
keyed by Integers. Thisis the case when one or more user parameters are associated with the serialized Object3D; see
also the file format specification. If there are no user parameters, the user object isinitially set to null.

A typical example of using thistype of persistent user datais to include application parameters inside a scene graph, such
asin multi-level games, where a non-player character may have a series of attributes such as hit strength, armor, initial
health, and so on. Although it is possible to have thisinformation in a separate file, it is neater, easier and less error prone
to associate it directly with the Object3D that represents the character.

Instantiation

Object3D is an abstract class, and therefore has no public constructors. When a class derived from Object3D is
instantiated, the attributes inherited from Object3D will have the following default values:

. useriD:0
. User object : null
. animation tracks : none

See Also:
Binary format

Method Summary

voi d |[addAni mat i onTrack(Ani mati onTrack ani mati onTrack)

Adds the given AnimationTrack to this Object3D, potentially changing the order and
indices of the previously added tracks.

int lanimate(int tine)
Updates all animated properties in this Object3D and all Object3Ds that are reachable
from this Object3D.

Qbj ect 3D | dupl i cat e()
Creates a duplicate of this Object3D.

Qoj ect3D|find(int userlD)
Retrieves an object that has the given user ID and is reachable from this object.

Ani mat i onTrack |get Ani mati onTrack(int index)
Gets an AnimationTrack by index.

int |get Ani mati onTrackCount ()
Gets the number of AnimationTracks currently associated with this Object3D.

int [get References((Chj ect3D[] references)

Returns the number of direct Object3D referencesin this object, and fillsin the objectsto
the given array.

166

Mobile 3D Graphics API Version 1.1

int |getUserl X)
Getsthe user ID of this object.

java.lang. |getUser Obj ect ()
Oj ect Retrieves the user object that is currently associated with this Object3D.

voi d |renmoveAni mati onTrack(Ani mati onTrack ani mati onTrack)

Removes the given AnimationTrack from this Object3D, potentially changing the order
and indices of the remaining tracks.

void |set User | D(i nt userl D)
Sets the user ID for this object.

voi d |set User Obj ect (j ava. | ang. Obj ect user Obj ect)
Associates an arbitrary, application specific Object with this Object3D.

M ethod Detail

animate

public final int animate(int tine)

Updates al animated properties in this Object3D and all Object3Ds that are reachable from this Object3D.
Objects that are not reachable are not affected. See the class description for the definition of reachability.

Animated properties are set to their interpolated values pertaining to the time given as a parameter. The pre-
existing values of the target properties are overwritten with the animated values, discarding the pre-existing
values. The original values are not restored even if the animation is terminated.

The unit of time used in animation is defined by the application and does not have to correspond to real timein
any way. Importantly, the animation system does not need to know what the time unit is. Milliseconds are often
used by convention, but any other unit isequally valid.

If aproperty istargeted by an AnimationTrack, but the AnimationTrack is not associated with an active
AnimationController, the property is not updated.

Typically, the application would call this method once per frame, with strictly increasing valuesof t i me. For
example, if the application wishesto draw 20 frames per second, the value of t i me should be increased by 50
between successive calls, assuming atime unit of one millisecond.

Even though strictly increasing values of t i me are often used, thisis not a requirement. The application can
passin any time value. To put it another way, the animation system supports random access. This allows the
application to, for example, rewind or restart the animations easily.

In order to alow the application to throttle the frame rate depending on the characteristics of the animation, this
method returns avalidity interval. Thisisthe amount of time for which the active animations on this object are
guaranteed to make no changes to the reachable animated objects. For an object with no references to other
animatable objects, thisis determined solely from its own animation information. Otherwise, it isthe minimum
of this, and the returned validity interval of all reachable animated objects.

167

Mobile 3D Graphics API Version 1.1

For example, consider a single object with an active animation that starts to change an object's properties only at
t=1000. If we call animate() at t=500, the validity interval returned should ideally be 500. The application can,
in the absence of externa events, then choose not to render another frame for 500 time units. This estimate of
validity must be conservative, so it is acceptable (but not friendly) for an implementation to always return 0
from this method.

If no animations are active on this object, the fact that a conservative estimate is required permits any interval to
be returned, but it is strongly recommended that the value in this case should correspond to the maximum
positive integer.

Parameters:
t i me - world time to update the animations to

Returns:
validity interval; the number of time units until this method needs to be called again for this or any
reachable Object3D

Throws:
java.lang. ||l egal St at eExcepti on - if any active animation violates the constraints defined
in KeyframeSequence

See Also:

Keyf raneSequence, Ani mati onControl | er, Ani mati onTr ack

duplicate
public final Object3D duplicate()

Creates a duplicate of this Object3D.
Duplication has no effect on this abject or any other existing object; it merely creates one or more new objects.

Asageneral rule, aduplicate object will have exactly the same properties as the original object, including
attribute values, references to other objects, and any other contained data. However, if this object is a Node,
duplication is done as follows:

1. ThisNode is always copied. The parent of the duplicate Node is set to null.

2. Any descendants of this Node are themselves duplicated; this includes the skeleton group of a
SkinnedMesh. Any other referenced objects are not duplicated.

3. If any Node in the duplicate set of Nodes refersto any Node in the original set, then that referenceis
updated to the corresponding Node in the duplicate set. All other references are |eft asthey are, even if
thisresultsin a scene graph branch that isin an illegal state.

Note that the duplicate object will also have the same user ID as the original. The application is responsible for
assigning the IDsin thefirst place, so setting the ID of the duplicate object to some unique value, if so desired,
is also the application's responsibility.

Duplication is not supported for user defined classes. That is, if the application extends any class defined in this
AP, any instances of that class will be treated by this method as instances of the base class. For example,
duplicating an instance of MonsterMesh (derived from Mesh) will produce just a Mesh instance, not a
MonsterMesh instance.

168

Mobile 3D Graphics API Version 1.1

This method is similar to the cl one method that is available on the higher end Java platforms, such as J2SE
and 2ME/CDC. This method is likely to be deprecated once the proper j ava. | ang. Obj ect . cl one
method becomes available also on CLDC.

Returns:
anew Object3D that is aduplicate of this object

find
public Qoject3D find(int userlD)

Retrieves an object that has the given user ID and is reachable from this object. If there are multiple objects with
the same ID, the implementation may return any one of them. See the class description for the definition of
reachability.

Parameters:
user | D- theuser ID to search for
Returns:
the first object encountered that has the given user ID, or null if no matching objects were found

getReferences

public int getReferences(Object3D] references)

Returns the number of direct Object3D referencesin this object, and fillsin the objects to the given array. If the
array isnull, only the number of referencesis returned. Duplicate references are explicitly not eliminated, that
is, the same object may appear multiple timesin the array.

The parent reference and the alignment references in a Node do not count as direct references, and are hence not
returned. Also, null references are never returned.

This method is provided to facilitate scene graph traversal, which is otherwise a non-trivial operation; tracking
the links from one object to another requires different code for each type of object. Typical usage of this method
isto first call it with anull array, then use the number of references returned to allocate or resize the target array,
and then call again with the actual target array. Thisisillustrated in the example below.

Parameters:
r ef er ences - an array of Object3D referencesto befilled in, or null to only return the number of
references

Returns:
the number of direct Object3D references in this object (note: the number of unique references may be
smaller)

Throws:
java.lang. |11 egal Argunent Exception-if (references !'= null) &&
(references.length < getReferences(null))

Example:

A recursive method to traver se all descendants of an object.

voi d traverseDescendant s(Cbj ect 3D obj)

{

i nt nunRef erences = obj.get References(null);

169

Mobile 3D Graphics API Version 1.1

i f (nunReferences > 0)
{
bj ect 3D[] obj Array = new Obj ect 3D[nunRef er ences] ;
obj . get Ref er ences(obj Array) ;
for (int i =0; i < nunReferences; i++)
{
processChj ect (obj Array[i]); /'l process object i...
traverseDescendants(obj Array[i]); // ...and its descendants
}
}
}
setUserID

public void setUserl D(int userlD)

Sets the user ID for this object.

Parameters:
user | D-thelD to set
See Also:
get User | M)
getUserlID

public int getUserlX)
Getsthe user ID of this object.

Returns:

the current user ID
See Also:

set User I D(i nt)

setUserObject
public void setUserObject(java.l ang. Obj ect user Qbj ect)

Associates an arbitrary, application specific Object with this Object3D. The given user object replaces any
previously set object. See the class description for more information.

The user object is stored by reference. Its contents are never accessed by the implementation, but the reference
iscopiedinthedupl i cat e operation.

Parameters:
user Obj ect - the Object to associate with this Object3D, or null to remove any existing association

See Also:
get User Qbj ect

getUserObject

170

Mobile 3D Graphics API Version 1.1

public java.lang. Obj ect getUser Cbject ()

Retrieves the user object that is currently associated with this Object3D. If an Object3D is constructed by the
L oader, the user object may initially be a Hashtable containing persistent user datain the form of byte arrays
keyed by Integers.

Returns:

the current user object associated with this Object3D
See Also:

set User Obj ect

addAnimationTrack
public void addAni mati onTrack(Ani mati onTrack ani mati onTrack)

Adds the given AnimationTrack to this Object3D, potentially changing the order and indices of the previously
added tracks. The position at which the track isinserted among the existing tracks is deliberately left undefined.
This gives implementations the freedom to select a data structure that best fits their needs, instead of mandating
aparticular kind of data structure.

The added animation track must be compatible with this Object3D. For example, to animate the diffuse color of
aMaterial, the target property of the AnimationTrack must be DI FFUSE_CCOLOR. Thetarget property is
selected when constructing an AnimationTrack.

Multiple AnimationTracks can target the same property in the same object, in which case the value of the target
property is aweighted linear combination of the individual tracks; see AnimationController for more

information.

Parameters:
ani mat i onTr ack - acompatible animation track to attach to this object

Throws:
java. l ang. Nul | Poi nt er Excepti on-if ani mati onTr ack isnull
java.lang. ||l egal Argunent Excepti on -if ani mati onTr ack isincompatible with this
Object3D
java.lang. |11 egal Argunent Excepti on -if ani mati onTr ack isaready attached to this
Object3D
java.lang. ||l egal Argunent Excepti on -if ani mati onTr ack istargeting the same
property of this Object3D as a previoudy added AnimationTrack, but does not have the same keyframe
size

getAnimationTrack

public Animati onTrack get Ani mati onTrack(int index)

Gets an AnimationTrack by index. Valid indices range from zero up to the value returned by
get Ani mat i onTr ackCount minus one. Note that the index of any AnimationTrack may change whenever
atrack is added to or removed from this Object3D. SeeaddAni mat i onTr ack for more information.

Parameters.
i ndex - index of the AnimationTrack to be retrieved

171

Mobile 3D Graphics API Version 1.1

Returns:
the AnimationTrack at the given index

Throws:
j ava. |l ang. | ndexQut Of BoundsException-ifindex < 0 || index >=

get Ani mat i onTr ackCount

removeAnimationTrack

public void renmoveAni nati onTrack(Ani mati onTrack ani mati onTrack)

Removes the given AnimationTrack from this Object3D, potentially changing the order and indices of the
remaining tracks. If the given animation track is not associated with this object, or is null, the request to remove

itissilently ignored.

Parameters:
ani mati onTr ack - the AnimationTrack to detach from this Object3D

getAnimationTrackCount
public int getAninationTrackCount ()

Gets the number of AnimationTracks currently associated with this Object3D.

Returns:
the number of AnimationTracks bound to this Object3D

172

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g

Class PolygonMode

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. nBg. Pol ygonMode

public class PolygonM ode
extends Object3D

An Appearance component encapsulating polygon-level attributes. This includes settings related to back/front face
culling, polygon winding, lighting computations, perspective correction, and shading.

Winding specifies which side of a polygon is the front face. Winding can be set to either clockwise (CW) or counter-
clockwise (CCW). If the screen-space vertices of apolygon are in the order specified by the winding, then the polygon is
front-facing. If the vertices are in the reverse order, then the polygon is back-facing.

Culling determines which side of a polygon is removed from processing prior to rasterization: the back face, the front
face, or neither. Culling both facesis not allowed, as there are many other ways to make a piece of geometry invisible.

Lighting may operate in either one-sided or two-sided mode. In one-sided mode, a single color is computed for each
vertex, based on the vertex normal, light source parameters, and material parameters. The same color is used in shading
both the front face and the back face of the polygon. In two-sided mode, the colors for the back face of a polygon are
computed separately and with reversed normals (n' = -n). Regardless of the lighting mode, the same set of Material
parametersis used for both sides of the polygon. See the Material class description for more information on lighting.

There are two choices for polygon shading, smooth and flat. Smooth shading means that a color is computed separately
for each pixel. This may be done by linear interpolation between vertex colors (also known as Gouraud shading), but
implementations are also allowed to substitute a more accurate model. Flat shading means that the color computed for the
third vertex of atriangleis used across the whole triangle.

If local camera lighting is disabled, the direction vector from the camerato the vertex being lit is approximated with (0 0
-1). If local camera lighting is enabled, the direction is computed based on the true camera position. This resultsin more
accurate specular highlights. Note that local camera lighting only has an effect on the specular component of the lighting
equation; the ambient and diffuse components remain unaffected. The local cameralighting flag is only a hint, so some
implementations may not respect it. The application may use the get Pr operti es method in Graphics3D to find out if
the hint is supported.

Per spective correction is ageneric term for techniques that eliminate artifacts caused by the screen-space interpolation of
texture coordinates, colors and fog. The lack of perspective correction is especially evident on large textured polygons.
the texture is distorted and seemsto "crawl" on the surface as the viewing angle changes.

The perspective correction flag is only a hint, so some implementations may not respect it. Also, no particular method of
implementing it is mandated or preferred. For example, some implementations may choose to do perspective correction
for texture coordinates only. The application may usethe get Pr operti es method in Graphics3D to find out if the
hint is supported.

See Also:
Binary format

173

Mobile 3D Graphics API Version 1.1

Field Summary

static int

CULL_BACK

A parameter to set Cul | i ng, specifying that the back-facing side of a polygon is not to be
drawn.

static int |CULL_FRONT
A parameter to set Cul | i ng, specifying that the front-facing side of a polygon is not to be
drawn.
static int |CULL_NONE
A parameter to set Cul | i ng, specifying that both faces of a polygon are to be drawn.
static int |SHADE FLAT
A parameter to set Shadi ng, specifying that flat shading isto be used.
static int |SHADE SMOOTH
A parameter to set Shadi ng, specifying that smooth shading isto be used.
static int |W NDI NG CCW
A parameter to set W ndi ng, specifying that a polygon having its vertices in counter-clockwise
order in screen space is to be considered front-facing.
static int |WNDI NG CW

A parameter to set W ndi ng, specifying that a polygon having its vertices in clockwise order
in screen space is to be considered front-facing.

Constructor Summary

Pol ygonMode()
Constructs a PolygonMade object with default values.

Method Summary

int [getCulling()

Retrieves the current polygon culling mode.

i nt | get Shadi ng()

Retrieves the current polygon shading mode.

int |get Wndi ng()

Retrieves the current polygon winding mode.

bool ean |i sLocal Caner aLi ghti ngEnabl ed()

Queries whether local camera lighting is enabled.

bool ean |i sPer specti veCorrecti onEnabl ed()

Queries whether perspective correction is enabled.

bool ean |i sTwoSi dedLi ghti ngEnabl ed()

Queries whether two-sided lighting is enabled.

void|set Cul | i ng(int node)

Sets the polygon culling mode.

174

Mobile 3D Graphics API Version 1.1

voi d [set Local Camer aLi ght i ngEnabl e(bool ean enabl e)
Enables or disables local cameralighting.

voi d |set Perspecti veCorrecti onEnabl e(bool ean enabl e)
Enables or disables perspective correction.

voi d | set Shadi ng(i nt node)
Sets the polygon shading mode.

voi d [set TwoSi dedLi ghti ngEnabl e(bool ean enabl e)
Enables or disables two-sided lighting.

voi d |set Wndi ng(i nt node)
Sets the polygon winding mode to clockwise or counter-clockwise.

Methods inherited from class javax.microedition.m3g.0Object3D

addAni mati onTrack, animate, duplicate, find, getAninmationTrack,
get Ani mati onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Field Detail

CULL_BACK
public static final int CULL_BACK
A parameter to set Cul | i ng, specifying that the back-facing side of a polygon is not to be drawn.

See Also:
Constant Field Values

CULL_FRONT
public static final int CULL_FRONT
A parameter to set Cul | i ng, specifying that the front-facing side of a polygon is not to be drawn.

See Also;
Constant Field Values

CULL_NONE
public static final int CULL_NONE

A parameter to set Cul | i ng, specifying that both faces of a polygon are to be drawn.

175

Mobile 3D Graphics API Version 1.1

See Also;
Constant Field Values

SHADE_FLAT
public static final int SHADE FLAT
A parameter to set Shadi ng, specifying that flat shading is to be used.

See Also;
Constant Field Values

SHADE_SMOOTH
public static final int SHADE SMOOTH
A parameter to set Shadi ng, specifying that smooth shading isto be used.

See Also;
Constant Field Values

WINDING_CCW
public static final int WNDI NG CCW

A parameter to set W ndi ng, specifying that a polygon having its vertices in counter-clockwise order in
screen space is to be considered front-facing.

See Also;
Constant Field Values

WINDING_CW
public static final int WND NG CW

A parameter to set W ndi ng, specifying that a polygon having its verticesin clockwise order in screen space
isto be considered front-facing.

See Also;
Constant Field Values

Constructor Detall

PolygonMode

publ i c Pol ygonhbde()

176

Mobile 3D Graphics API Version 1.1

Constructs a PolygonM ode object with default values. The default values are as follows:

culling : CULL_BACK

winding : W NDI NG_CCW

shading : SHADE_SMOOTH

two-sided lighting: false (disabled)
local cameralighting : false (disabled)
perspective correction : false (disabled)

]]]] [} O

M ethod Detail

setCulling
public void setCulling(int node)

Sets the polygon culling mode. The culling mode defines which sides of a polygon are culled (that is, not
rendered). The winding mode, on the other hand, defines which side is considered to be the front. See the class
description for more information.

Parameters:
node - the culling mode to set: back, front or none
Throws:
java.lang. |11 egal Argunent Excepti on -if node isnot one of CULL_BACK,
CULL_FRONT, CULL_NONE
See Also:
getCul l'ing

getCulling
public int getCulling()

Retrieves the current polygon culling mode.

Returns:
the current culling mode; one of the symbolic constants
See Also:
set Cul l'i ng
setWinding

public void set Wndi ng(int nopde)

Sets the polygon winding mode to clockwise or counter-clockwise. The winding mode defines which side of a
polygon is considered to be the front. This and the culling mode together determine which sides of a polygon are
rendered. The winding mode has consequences on lighting, as well, if two-sided lighting is enabled. See the
class description for more information.

Parameters:

177

Mobile 3D Graphics API Version 1.1

node - the winding mode to set: clockwise or counter-clockwise
Throws:
java.lang. |11 egal Argunent Excepti on - if node isnot one of W NDI NG_CCW
W NDI NG_CW
See Also:
get W ndi ng

getWinding
public int getWnding()
Retrieves the current polygon winding mode.

Returns:

the current winding mode; one of the symbolic constants
See Also:

set W ndi ng

setShading
public void set Shadi ng(int node)

Sets the polygon shading mode. The shading mode defines whether asingle color is assigned to the whole
polygon (flat shading) or if acolor is computed separately for each pixel (smooth shading). See the class
description for more information.

Parameters:
node - the shading mode to set: flat or smooth
Throws:
java.lang. ||| egal Argunent Excepti on - if node isnot one of SHADE FLAT,
SHADE_SMOOTH
See Also:
get Shadi ng

getShading
public int getShadi ng()
Retrieves the current polygon shading mode.

Returns:

the current shading mode: flat or smooth
See Also:

set Shadi ng

setTwoSidedLightingEnable

public void set TwoSi dedLi ghti ngEnabl e(bool ean enabl e)

178

Mobile 3D Graphics API Version 1.1

Enables or disables two-sided lighting. If two-sided lighting is enabled, the lit colors for the front and back faces
of apolygon are computed differently. Otherwise, both faces are assigned the same color. See the class
description for more information.

Parameters:

enabl e - true to enable two-sided lighting; false to use one-sided lighting
See Also:

i sTwoSi dedLi ghti ngEnabl ed

isTwoSidedLightingEnabled
public bool ean i sTwoSi dedLi ghti ngEnabl ed()
Queries whether two-sided lighting is enabled.

Returns:

trueif two-sided lighting is enabled; false if not
See Also:

set TwoSi dedLi ghti ngEnabl e

setLocalCameraLightingEnable
public void setLocal CaneralLi ghti ngEnabl e(bool ean enabl e)

Enables or disables local cameralighting. Note that thisis only a hint: the implementation may or may not obey
it. See the class description for further discussion on local camera lighting.

Parameters:

enabl e - trueto enable local cameralighting; false to disable it
See Also:

i sLocal Caner aLi ghti ngEnabl ed

isLocalCameraLightingEnabled
publ i c bool ean isLocal Caner aLi ghti ngEnabl ed()

Queries whether local cameralighting is enabled. Note that the set value is returned, regardless of whether the
implementation obeysit or not.

Returns:

trueif local cameralighting is enabled; falseif not
Since:

M3G 1.1
See Also:

set Local Caner aLi ghti ngEnabl e

setPerspectiveCorrectionEnable

public void setPerspectiveCorrecti onEnabl e(bool ean enabl e)

179

Mobile 3D Graphics API Version 1.1

Enables or disables perspective correction. Note that thisis only a hint: the implementation may or may not
obey it. See the class description for further discussion on perspective correction.

Parameters:

enabl e - true to enable perspective correction; false to disable it
See Also:

i sPerspectiveCorrectionEnabl ed

isPerspectiveCorrectionEnabled
publ i c bool ean i sPerspectiveCorrectionEnabl ed()

Queries whether perspective correction is enabled. Note that the set value is returned, regardless of whether the
implementation obeys it or not.

Returns:

true if perspective correction is enabled; false if not
Since:

M3G 1.1
See Also:

set Per specti veCorrectionEnabl e

180

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class RaylIntersection

j ava. |l ang. Qbj ect
I—j avax. m croedition. n8g. Rayl ntersection

public class Rayl nter section
extends java.lang.Object

A RaylIntersection object isfilled in by the pi ck methodsin Group. Raylntersection stores a reference to the intersected
Mesh or Sprite3D and information about the intersection point. Raylntersection is strictly a run-time object; it cannot be
loaded from afile by Loader.

Constructor Summary

Rayl nt er secti on()
Constructs a new RayIntersection object with default values.

Method Summary

float |get Di stance()
Retrieves the distance from the pick ray origin to the intersection point.

Node |get I nt er sect ed()
Retrieves the picked Mesh or Sprite3D object.

float |get Nor mal X()
Retrieves the X component of the surface normal at the intersection point.

float |get Normal Y()
Retrievesthe Y component of the surface normal at the intersection point.

float |get Nor mal Z()
Retrieves the Z component of the surface normal at the intersection point.

void |get Ray(float[] ray)
Retrieves the origin (ox oy 0z) and direction (dx dy dz) of the pick ray, in that order.

i nt |get Subnmeshl ndex()
Retrieves the index of the submesh where the intersection point is located within the intersected Mesh.

float |get TextureS(int index)
Retrieves the S texture coordinate at the intersection point on the picked Mesh or Sprite3D.

float |get TextureT(int index)
Retrieves the T texture coordinate at the intersection point on the picked Mesh or Sprite3D.

Constructor Detail

RaylIntersection

181

Mobile 3D Graphics API Version 1.1

public Raylntersection()

Constructs a new Ray|ntersection object with default values. The default values are as follows:

ray origin: (000)

ray direction: (001)

intersected node : null

intersected submesh index : 0
distance to intersection point : 0.0
al texture coordinates: 0.0
normal vector: (00 1)

[[[[[[[

M ethod Detail

getintersected

publ i c Node getlntersected()

Retrieves the picked Mesh or Sprite3D object. Other types of Nodes are not pickable and hence can not be
returned by this method.

Returns:
the picked Mesh or Sprite3D object

getRay

public void getRay(float[] ray)

Retrieves the origin (ox oy 0z) and direction (dx dy dz) of the pick ray, in that order. Theray origin and
direction vector are specified in the coordinate system of the Group node where the pi ck method was called
from. The returned direction vector is the same that is used to compute the distance measure from the pick point
tothe objectinget Di st ance.

Note that if the application itself provides the pick ray origin and direction to the pi ck method, this method
simply returns the same information; in particular, the direction vector isreturned asis, not normalized. On the
other hand, if the application uses the other pi ck method, where only a Camera and a point on the viewing
plane are specified, the ray origin and direction would not otherwise be readily available.

This method together with get Di st ance enables the point of intersection to be computed conveniently, as
shown in the example below.

Parameters:

ray - afloat array tofill in with the pick ray origin and direction, in that order
Throws:

java. |l ang. Nul | Poi nt er Excepti on -if ray isnull

java.lang. |l1egal Argunent Exception-ifray.length < 6
Example:

Computing theray intersection point.

182

Mobile 3D Graphics API Version 1.1

float x, y, z; /'l the intersection point
float [] ray = new float[6]; /1l ray origin and direction
Rayl ntersection ri = new Raylntersection();

/1 Pick through the center of the viewport

if (myGoup.pick(-1, 0.5f, 0.5f, nmyCanera, ri) == true)

{
ri.getRay(ray);
X = ray[0] + ray[3] * ri.getD stance();
y = ray[l] + ray[4] * ri.getD stance();
z =ray[2] + ray[5] * ri.getDi stance();
}

getDistance

public float getDi stance()

Retrieves the distance from the pick ray origin to the intersection point. The distance is hormalized to the length
of the given pick ray (1.0 = ray length). The length of the pick ray is defined as sgrt(dx2 + dy2 + dz2), where (dx
dy dz) isthe direction vector of the ray. The direction vector itself can be obtained using get Ray.

The normalized distance is convenient, because it is independent of the transformations of the intersected Node
and its ancestors, including any non-uniform scales and other non-length preserving transformations. The
distance to the intersection point can be used for simple collision detection, for instance.

Returns:
normalized distance from the pick ray origin to the intersection point

getSubmeshindex

public int getSubneshlndex()

Retrieves the index of the submesh where the intersection point is located within the intersected Mesh. This
allows the application to identify, for example, the texture image that is displayed at the intersection point. The
submesh index is only applicable to Meshes; its value is aways set to zero if the picked object isa Sprite3D.

Returns:
index of the intersected submesh (always O for sprites)

getTextureS
public float getTextureS(int index)

Retrieves the S texture coordinate at the intersection point on the picked Mesh or Sprite3D. For meshes, there
can be between zero and N texture coordinates, where N is the number of texturing units supported by the
implementation. If atexturing unit is disabled, the corresponding texture coordinates are undefined. For sprites,
thereis always exactly one pair of valid texture coordinates (at index zero); the rest of the coordinates are

undefined.

183

Mobile 3D Graphics API Version 1.1

If the picked object is aMesh, the returned coordinates represent the texture coordinates after applying the
texture transformation and projection, but before possible clamping. In the case of a Sprite3D, the returned
coordinates are always between [0, 1], where (0, 0) isthe upper |eft corner of the sprite image. Note that the
sprite crop rectangle has no effect on the returned val ues.

Parameters:
i ndex - index of the texturing unit to get the texture coordinate of

Returns:
the S texcoord of the specified texturing unit at the intersection point

Throws:
j ava. l ang. | ndexQut Of BoundsException-ifindex !'= [0, N whereNisthe
implementation specific maximum texturing unit index

getTextureT
public float getTextureT(int index)

Retrieves the T texture coordinate at the intersection point on the picked Mesh or Sprite3D. See
get Text ur eS for more information.

Parameters:

i ndex - index of the texturing unit to get the texture coordinate of
Returns:

the T texcoord of the specified texturing unit at the intersection point
Throws:

j ava. |l ang. | ndexQut Of BoundsException-ifindex != [0, N whereNisthe
implementation specific maximum texturing unit index

getNormalX
public float getNormal X()

Retrieves the X component of the surface normal at the intersection point. The normal is specified in the
coordinate system of the intersected Node, and is aways unit length. If the picked object is a Sprite3D, the
normal vector isalways (0 0 1). If the object is a Mesh with no vertex normals, the returned normal is undefined.

Returns:
the X component of the surface normal at the intersection point

getNormalY
public float getNormal Y()

Retrievesthe Y component of the surface normal at the intersection point. See get Nor mal X for more
information.

Returns:
the Y component of the surface normal at the intersection point

getNormalZ

184

Mobile 3D Graphics API Version 1.1

public float getNornal Z()

Retrieves the Z component of the surface normal at the intersection point. See get Nor mal X for more
information.

Returns:
the Z component of the surface normal at the intersection point

185

Mobile 3D Graphics API

javax.microedition.m3g

Class SkinnedMesh

j ava. |l ang. Qbj ect

I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. n8g. Transf or mabl e

I—j avax. m croedi ti on. nBg. Node

I—j avax. m croedi tion. n8g. Mesh

I—j avax. m croedi ti on. n8g. Ski nnedMesh

public class SkinnedM esh
extends Mesh

A scene graph node that represents a skeletally animated polygon mesh.

Version 1.1

Vertex positions in a SkinnedM esh can be associated with multiple separately transforming Nodes, with aweight factor
specified for each. This enables groups of vertices to transform independently of each other while smoothly deforming

the polygon mesh "skin" with the vertices. This style of animation is highly efficient for animated characters.

The structure of a SkinnedMesh is shown in the figure below.

Skinned

—» VertexBuffer

—® | IndexBuffer s

—® | Appearance

Arbitrary nodes - not only
groups - can be used as
bones in the skeleton. They
are rendered and otherwise
treated as usual.

-
N

A top level group is defined

Other
data

same
as for
Mesh

as the "skeleton" - the root
of the bone hierarchy.

~
RN S

Morphing
Mesh

Nodes are used to define the | |
bone hierarchy. Each node is |/
associated with a set of vertices f
in the VertexBuffer. These |

vertices will move with the node.

186

Mobile 3D Graphics API Version 1.1

A SkinnedMesh node is the parent of its skeleton group, and vice versa, the skeleton is the only child of the
SkinnedMesh. In other words, t hi s. get Skel et on() . get Parent () == t hi s. The skeleton group and its
descendants congtitute a branch in the scene graph, and that branch is traversed just like any other branch during
rendering and picking. Any sprites and meshes, including skinned meshes, contained in the skeleton group are therefore

rendered as usual. This allows, for example, a game character to have aweapon in its hand, such that the weaponisa
separate node that can be easily interchanged with another.

Vertex transformation

Each vertex is transformed once for each Node affecting it. The results are then blended together according to the weight
factors of each node. To get an initial idea of how this works, see the figure below. A more formal definition follows.

Neutral pose, bones at rest Bone B rotated 90 degrees

shared vertex,

vskin” non-shared
weights = (0.5, 0.5) .

| vertex | o
| position in A's

\ " coordinate system
 — S o o

+ | interpolated

* " position
[I—> Bone A [% Bone B) (|—> Bone A ‘\:: |

J '-C ., position in B's
w

)

=

®

W

| coordinate system

[
]
]
(]
.
[
.
)
L)
L]
L]
1
\
L
.

w.

L et us denote the set of nodes (bones) associated with avertex by { Ny, No, ..., Ny }. Let us aso denote by M; the
transformation from the local coordinate system of node N; to areference coordinate system. The choice of the reference

coordinate system is not critical; depending on the implementation, good choices may include the world coordinate
system, the coordinate system of the SkinnedMesh node, or the coordinate system of the current camera. Finally, let us

denote the weight associated with node N; as W;. The blended position of a vertex in the reference coordinate system is
then:

V' =sum [w;M;B;v]
where

. 0<=i< N, whereN isthe number of bones associated with v;
. Vvistheorigina vertex position in the source VertexBuffer;
. Bjisthe"at rest" transformation from the SkinnedMesh node to bone N;;

M; isthe transformation from bone N; to the chosen reference coordinate system (e.g. world coordinates);
. W; isthe normalized weight of bone N;, computed asw; = W, / (W4 + ... + Wy)).

Finally, the blended vertex position v' is transformed from the chosen reference coordinate system to the camera space as
usual. Note that when computing the normalized weightsw;, 0/ 0= 0.

If avertex v has no transformations associated with it, asis the case for all verticesin anewly constructed SkinnedMesh,

187

Mobile 3D Graphics API Version 1.1

the vertex liesimplicitly in the coordinate system of the SkinnedMesh node itself. That is, a SkinnedMesh in itsinitial
state is equivalent to an ordinary Mesh. When a vertex is explicitly associated with any bone in the skeleton, the implicit
association with the SkinnedM esh node is removed.

The transformation of verticesisillustrated in the figure below.

Bones Example: A Simplified Bird Body with Wings

Left Wing Bone Right Wing Bone

All the vertices are transformed to the World
coordinate system via the Skinned Mesh node.
Moving or rotating the Skinned Mesh will

I therefore affect the transfomation of all
vertices equally, moving or rotating the mesh
as a whole without deformation.

A
N
N N
- S ~
N

Ranges of vertices are associated
| with bones, by the loader or by
' using the addTransform method

Skeleton /' on SkinnedMesh. More than one

' ; | range can be associated with a
' / /| particular bone (not shown here).
' Skeleton / ;o
¥ Root P > Vertex Positions
- .

VertexBuffer

0 X y z

v <1 X y z

Left Wing Right Wing | - . 2 X y z
Group Group > 3 X y >

| _— < 4 X y z

"' 5 x y z

Only Vertices 0..2 are transformed to the
il World coordinate system via the Left /
Wing group. Moving or rotating this
i group will therefore affect only Vertices i
0..2, and not 3..5, deforming the mesh.

Vertices 3..5 (but not 0..2) are |
similarly transformed via the Right |
Wing group. |

Deferred exceptions

Any special cases and exceptions that are defined for Mesh also apply for SkinnedMesh. An extra exception caseis

188

Mobile 3D Graphics API Version 1.1

introduced due to the vertex indices set by addTr ansf or m If any part of the skinned mesh is needed for picking or
rendering, then every bone in that mesh must refer to avalid range of vertex indices, otherwise an I1legal StateException
will be thrown. The indices cannot be validated until when they are actually needed, that is, when rendering or picking.
This is because the application may change the length of the associated VertexBuffer, and consequently make the indices
invalid or valid, at any time.

See Also:
Binary format

Field Summary

Fieldsinherited from class javax.microedition.m3g.Node

NONE, ORIG@ N, X AXIS, Y_AXIS Z AXIS

Constructor Summary

Ski nnedMesh(Vert exBuffer vertices, IndexBuffer[] subneshes, Appearance
[] appearances, G oup skel et on)
Constructs a new SkinnedM esh with the given vertices, submeshes and skeleton.

Ski nnedMesh(Vert exBuf fer vertices, |ndexBuffer subnesh, Appearance appearance,
G oup skel et on)
Constructs a new SkinnedM esh with the given vertices, submesh and skeleton.

Method Summary

voi d |addTr ansf or m{ Node bone, int weight, int firstVertex, int nunVertices)
Associates a weighted transformation, or "bone", with arange of verticesin this SkinnedMesh.

voi d |get BoneTr ansf or n{ Node bone, Transform transforn)
Returns the at-rest transformation for a bone node.

int |get BoneVertices(Node bone, int[] indices, float[] weights)
Returns the number of vertices influenced by the given bone, filling in the vertices and their weightsto
the given arrays.

G oup |get Skel et on()
Returns the skeleton Group of this SkinnedMesh.

Methodsinherited from class javax.microedition.m3g.Mesh

get Appear ance, getl ndexBuffer, getSubneshCount, getVertexBuffer, setAppearance

Methodsinherited from class javax.micr oedition.m3g.Node

align, getAlignnment Reference, getAlignnmentTarget, getAl phaFactor, getParent,
get Scope, get Transformlo, isPickingEnabl ed, isRenderingEnabl ed, setAlignnent,
set Al phaFact or, set Pi cki ngEnabl e, set Renderi ngEnabl e, set Scope

189

Mobile 3D Graphics API Version 1.1

Methodsinherited from class javax.microedition.m3g.Transfor mable

get ConpositeTransform getOrientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
set Transl ation, transl ate

Methodsinherited from class javax.micr oedition.m3g.0Object3D

addAni mati onTrack, animate, duplicate, find, getAninmationTrack,
get Ani mati onTrackCount, get Ref erences, getUserl D, getUser Qbject,
renoveAni mati onTrack, setUserlD, setUser Qbject

Constructor Detail

SkinnedMesh

public Ski nnedMesh(VertexBuffer vertices,
I ndexBuf f er subnesh,
Appear ance appear ance,
G oup skel et on)

Constructs a new SkinnedMesh with the given vertices, submesh and skeleton. Except for the skeleton, the
behavior of this constructor isidentical to the corresponding constructor in Mesh; refer to that for more
information.

No transformations are initially associated with the vertices. The behavior of a newly constructed SkinnedMesh
istherefore equivalent to an ordinary Mesh.

Parameters:
verti ces - aVertexBuffer to use for this mesh
submesh - an IndexBuffer defining the triangle strips to draw
appear ance - an Appearance to use for this mesh, or null
skel et on - aGroup containing the skeleton of this SkinnedMesh
Throws:
java. |l ang. Nul | Poi nt er Exception-ifvertices isnull
j ava. l ang. Nul | Poi nt er Excepti on -if subnesh isnull
j ava. l ang. Nul | Poi nt er Excepti on -if skel et onisnull
java.lang. |11 egal Argunent Excepti on -if skel et on isaWorld node
java.lang. Il 1 egal Argunent Excepti on -if skel et on aready has a parent

SkinnedMesh

publ i ¢ Ski nnedMesh(Vert exBuffer vertices,
I ndexBuffer[] subneshes,
Appear ance[] appear ances,
G oup skel et on)

190

Mobile 3D Graphics API Version 1.1

Constructs a new SkinnedMesh with the given vertices, submeshes and skeleton. Except for the skeleton, the
behavior of this constructor isidentical to the corresponding constructor in Mesh; refer to that for more
information.

No transformations are initially associated with the vertices. The behavior of a newly constructed SkinnedMesh
istherefore equivalent to an ordinary Mesh.

Parameters:
verti ces - aVertexBuffer to use for al submeshesin this mesh
submeshes - an IndexBuffer array defining the submeshes to draw
appear ances - an Appearance array parallel to subneshes, or null
skel et on - aGroup containing the skeleton of this SkinnedMesh

Throws:
j ava.l ang. Nul | Poi nt er Excepti on-ifvertices isnull
j ava. l ang. Nul | Poi nt er Excepti on -if subneshes isnull
j ava. l ang. Nul | Poi nt er Excepti on - if any element in subnmeshes isnull
j ava. |l ang. Nul | Poi nt er Excepti on -if skel et onisnull
java.l ang. Il 1 egal Argunent Excepti on - if subnmeshes isempty
java.lang. ||l egal Argunment Excepti on -if (appearances != null) && (appearances.
| engt h < subneshes. | engt h)
java.lang. |11 egal Argunent Excepti on -if skel et on isaWorld node
java.lang. |11 egal Argunent Excepti on -if skel et on aready has a parent

Method Detail

getSkeleton

public G oup get Skel et on()

Returns the skeleton Group of this SkinnedMesh. The skeleton group is set in the constructor and can not be
removed or replaced with another Group afterwards. All transform reference nodes (bones) must be descendants
of the skeleton group; thisis enforced by addTr ansf orm

Returns:
the skeleton Group of this SkinnedMesh

addTransform

public void addTransforn{Node bone,
i nt weight,
int firstVertex,
i nt nunVertices)

Associates aweighted transformation, or "bone", with arange of verticesin this SkinnedMesh. See the
transformation equation in the class description for how the transformations are applied on vertices.

Aninteger weight is supplied as a parameter for each added transformation. Prior to solving the transformation
eguation, the weights are automatically normalized on a per-vertex basis such that the individual weights are
between [0, 1] and their sum is 1.0. Thisis done by dividing each weight pertaining to a vertex by the sum of al
weights pertaining to that vertex. For example, if two bones with any equal weights overlap on avertex, each

191

Mobile 3D Graphics API Version 1.1

bone will get afina weight of 0.5.

Automatic normalization of weights is convenient because it significantly reduces the number of times that this
method must be called (and hence the amount of data that must be stored and transmitted) in cases where more
than one bone is typically associated with each vertex.

The same Node may appear multiple times among the bones. Thisisto allow multiple digjoint sets of verticesto
be attached to the same bone.

The number of bones that can be associated with a single vertex is unlimited, except for the amount of available
memory. However, there is an implementation defined limit (N) to the number of bones that can actually have
an effect on any single vertex. If more than N bones are active on a vertex, the implementation is required to
select the N bones with highest weights. In case of atie (multiple bones with equal weights competing for the
last slot), the selection method is undefined but must be deterministic. The limit N can be queried from

get Properti es.

The "at-rest" transformation from this SkinnedMesh to the given boneis set equal tot hi s.

get Tr ansf or mlo(bone) . If the at-rest transformation cannot be computed, an ArithmeticException is
thrown; see Node. get Tr ansf or mTo for moreinformation. If addTr ansf or mis called more than once for
the same bone, the final at-rest transformation of that bone can become any of the at-rest transformations that
were in effect during those calls.

Parameters:
bone - anode in the skeleton group to transform the vertices with
wei ght - weight of bone; any positive integer is accepted
firstVertex -index of thefirst vertex to be affected by bone
nunVerti ces - number of consecutive vertices to attach to the bone node

Throws:
java. l ang. Nul | Poi nt er Excepti on -if bone isnull
java.lang. 111 egal Argunent Excepti on - if bone isnot the skeleton Group or one of its
descendants
java.lang. ||l egal Argunment Exception-ifweight <=0
java.lang. ||l egal Argument Exception-if nunVertices <= 0

java. |l ang. | ndexQut Of BoundsException-iffirstVertex < 0

j ava. |l ang. | ndexQut Of BoundsException-iffirstVertex + nunVertices >
65535

java.lang. Arithmeti cExcepti on - if the at-rest transformation cannot be computed

getBoneTransform

public void get BoneTransf orn{Node bone,
Transform transform

Returns the at-rest transformation for a bone node. Thisisthe transformation stored in addTr ansf or mas
described in the documentation there.

If the given node isin the skeleton group of this Mesh, but has no vertices associated with it according to
get BoneVerti ces, thereturned transformation is undefined.

Parameters:
bone - the bone node
t r ansf or m- the Transform object to receive the bone transformation

192

Mobile 3D Graphics API Version 1.1

Throws:

java. l ang. Nul | Poi nt er Excepti on -if bone isnull

java. |l ang. Nul | Poi nt er Excepti on -iftransf or misnull

java.lang. Il1 egal Argunent Excepti on - if bone isnot in the skeleton group of this mesh
Since:

M3G 1.1
See Also:

get BoneVerti ces,addTransform

getBoneVertices

public int getBoneVertices(Node bone,
int[] indices,
float[] weights)

Returns the number of vertices influenced by the given bone, filling in the vertices and their weights to the given
arrays. If either or both of the arrays are null, only the number of verticesis returned.

Each bone node may be associated with disjoint sets of vertices viamultipleaddTr ansf or mcalls. The
vertices are therefore returned as explicit vertex indices with corresponding per-vertex bone weights. The order
of the returned index-weight pairs is implementation-dependent. Duplicate indices and indices with zero weight
are not returned. The returned weights are normalized so that all weights (from all contributing bones)
corresponding to asingle vertex sum to one.

Implementations are only required to associate with a vertex the N bones with the highest weights, where N is
the maximum number of transformations per vertex as queried from Gr aphi cs3D. get Pr operti es. For
the other bones, aweight of zero can be assumed. The returned weights for each vertex must still sum to one.

The minimum precision requirements for vertex weights are less than the general requirements given in the
package description. The returned weights must have a precision equivalent to a minimum internal precision of
8-hit fixed point.

Parameters:
bone - the bone node
i ndi ces - an array to store the vertex indices, or null to only query the number of vertices that will
be returned
wei ght s - an array to store the vertex weights, or null to only query the number of vertices that will
be returned

Returns:
the number of vertices influenced by bone

Throws:
java. |l ang. Nul | Poi nt er Excepti on -if bone isnull
java.lang. Il1 egal Argunent Excepti on - if bone isnot in the skeleton group of this mesh
java.lang. ||| egal Argunent Excepti on -if neither of i ndi ces andwei ght s isnull, and
the length of either isless than the number of vertices queried

Since:
M3G 1.1

See Also:
addTr ansf or m get BoneTr ansf orm

193

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g

Class Sprite3D

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. n8g. Transf or mabl e
I—j avax. m croedi ti on. nBg. Node
L avax. mi croedi tion. nBg. Spri t e3D

public class Sprite3D
extends Node

A scene graph node that represents a 2-dimensional image with a 3D position.

Sprite3D isafast, but functionally restricted alternative to textured geometry. A Sprite3D isrendered as a screen-aligned
rectangular array of pixels with a constant depth. The apparent size of a sprite may be specified directly in pixels (an
unscaled sprite) or indirectly using the transformation from the Sprite3D node to the camera space (a scaled sprite).

The structure of a Sprite3D object is shown in the figure below.

Contains the compositing and
fogging attributes for this
S

prite. The other Appearance
Sprite3D Appearance | | components are ignored.

mage used to draw the sprite

‘1 on screen.

g
s
.

Image2D

Sprite image data

The sprite image is stored as a reference to an Image2D. The image may be in any of the formats defined in Image2D.
The width and height of the image are not limited in any way; in particular, they need not be powers of two. However,
there is an implementation defined maximum size for the crop rectangle (the area of the sprite that is actually displayed).
This can be queried with get Properti es.

The displayed sprite image can be mirrored with respect to the X and/or Y axes by specifying a crop rectangle with a
negative width and/or height, respectively.

If the referenced Image2D is mutable and is modified while it is bound to a Sprite3D, or a new Image2D is bound as the
sprite image, the modifications are immediately reflected in the Sprite3D. Be aware, however, that changing or updating
the sprite image may trigger time-consuming operations.

Sprite positioning and scaling
The position of a sprite on screen is determined by projecting the origin of its coordinate system to screen coordinates.

194

Mobile 3D Graphics API Version 1.1

The resulting 2D position is used as the center of the displayed pixel array. If this causes any part of the spriteto be
placed off screen, then the spriteis clipped to the visible portion of the viewport as usual (refer to Graphics3D).

The depth value of a sprite is constant across the image, and is the depth of the origin of the Sprite3D coordinate system.

The width and height of an unscaled sprite on screen are measured in pixels, and they are equal to the (absolute) width
and height of the crop rectangle. Recall that the crop rectangle dimensions may be negative to flip the pixels; this has no
effect on the size of the sprite.

The width and height of a scaled sprite on screen are computed basically asif the sprite were a rectangle with unit-length
sides, lying on the XY plane of itslocal coordinate system and centered at its origin. The contents of the crop rectangle
are scaled to fill the projected unit rectangle. See the Implementation guidelines below for the details.

Because a sprite is always displayed as a screen-aligned rectangle, the effects of other than rigid-body transformations on
sprites may not be immediately intuitive, even though they are well-defined. It is advised that, for example, non-uniform

scaling and skewing be avoided in sprite modelview matrices. Similarly, oblique projections should be used with caution
when sprites are present in the displayed scene.

Sprite rendering attributes

The rendering attributes for a Sprite3D are determined by its Appearance, as is the case with Mesh objects. There area
number of propertiesin Appearance, however, that do not have a meaningful interpretation in this context. Thus, only the
CompositingM ode and Fog components and the layer index are taken into account when rendering a sprite. The rest of
the components are ignored. Thisimplies, in particular, that lighting does not apply for sprites.

Sprite picking

Only scaled sprites can be picked. Thisis because the dimensions of an unscaled sprite are only defined in screen space,
that is, after the viewport transformation. Since the viewport parameters are not availabl e to the pick method, the
dimensions of an unscaled sprite can not be computed.

Picking of scaled sprites is analogous to how they are rendered. Picking is done in normalized device coordinates (after
projection, before viewport transformation), where the position, depth value and dimensions of scaled sprites are well
defined. See the Implementation guidelines for how to calculate these.

Since the sprite size calculation requires a Camera, sprites are only pickable through the viewing plane, not from an
arbitrary position in the scene. That is, of the two pi ck variantsin Group, only the one that takesin a Cameraas a
parameter can be used in sprite picking. The other variant simply ignores all sprite nodes.

If aspriteisintersected by the pick ray, the pixel in the sprite image at the intersection point will be further tested for
transparency. If the pixel isfully transparent, the sprite is not picked and the pick ray will continue towards objects that
are further away. If the pixel is not fully transparent, the sprite is picked. A pixel isdefined to be fully transparent if and
only if it fails the alphatest (see Conposi ti ngMode. set Al phaThr eshol d) prior to applying the apha factor.

Implementation guidelines

Sprites do not provide any functionality that would not be available otherwise; they can always be substituted with
textured meshes. However, the existence of the sprite primitive acts as a signal to the renderer that a very specific subset
of functionality is required. This allows the rendering pipeline to avoid the overhead of transforming and lighting full
geometry. It also allows the rasterizer to select an optimized drawing routine to place the pixels on the screen, without the
potentially complex interpolation of parameters across the rectangle. This can be used to make sprites very much faster

195

Mobile 3D Graphics API Version 1.1

than textured meshes (especially in software) which in turn increases the richness of content that can be offered at the
low end.

Filtering of scaled sprites can be implemented with the simple nearest neighbor algorithm, but implementations are
recommended to apply a more sophisticated scheme, such as bilinear filtering with mipmapping. No application control
over the filtering behavior is provided, however; if that is required, the application should use textured rectangles instead.
For unscal ed sprites, the implementation should ensure that rounding errors or similar do not yield unwelcome artifacts,
such as pixel columns appearing and disappearing depending on the screen paosition of the sprite. Thisis particularly
important for text labels.

Implementing with textures

Sprite3D can be implemented with textured rectangles. To facilitate that, implementations are allowed to upscale or
downscale the sprite image to power-of-two dimensions, preferably using bilinear filtering or better. Images exceeding
the maximum texture size may be downscaled to the maximum size. However, implementations striving for best image
quality would keep the large original image around, texturing the rectangle with the crop rectangle contents only. Note
that if the sprite image is mutable, the original image must be kept around in any case.

The sprite alphafactor can be trivially implemented with the MODUL ATE texture blending mode, by setting the fragment
alpha equal to the effective alpha factor and the fragment color componentsto 1.0. Another option is to premultiply the
alphafactor into the alpha channel of the sprite image; however, the implementation must then make sure that the
original aphavalues can aways be recovered intact.

Computing the position and size

The position of a sprite on the viewport is simply the projected |ocation of the Sprite3D node's origin. Similarly, the
depth of the sprite is the projected depth of the origin.

The size of a sprite, in pixels, depends on whether the spriteis scaled or not. An unscaled sprite isthe same size asits
crop rectangle. Calculating the size of ascaled spriteis slightly more complicated. In principle, it only involves
projecting the Sprite3D node's X and Y axes into screen space and computing their length, but to make the calculation
well defined under arbitrary transformations, a few additional steps are required. The exact formulais given below.

Let usdefine M and P as the current modelview and projection matrices. The modelview matrix M is the concatenated
transformation from the Sprite3D node into camera space (taking into account all of the transformation components of
the Sprite3D, including the user-settabl e static matrix), and P is the projection matrix of the current camera.

Let usfirst transform the origin and two reference points, corresponding to the X and Y axes, from the Sprite3D node's
coordinate system into camera space:

0'=M(0, 0,0, 1)T
X' =M(1, 0,0, 1)T
y'=M(0, 1,0,)T

We then compute the distances from the origin to the X and Y reference points. If the bottom row of the modelview
matrix isnot (00 0 1), the transformed points may have W values different from each other. The points are thus brought
into an equal scale (W = 1) before computing the distance.

dx = | X'/X'y,- 00|
dy =|y'ly'\- 0/0\|

196

Mobile 3D Graphics API Version 1.1

Note that the W components of the homogeneous points cancel out in the subtraction, and the lengths computed are those
of the 3D vectors. We then define (new) X and Y reference points that lie on the X and Y axes of the camera and whose
distances from the origin are dx and dy, respectively. Applying the projection matrix, we transform the origin and the
reference pointsinto clip space:

0" =P0o'
x"=P[o' + (dx, 0, O, O)T]
y" = P[0’ + (0, dy, 0, 0)T]

Again, we compute the distances from the origin to the X and Y reference points. This gives us the dimensions of the
sprite in normalized device coordinates.

x = | X"Ix",- 0"/0"|
sy = |y"ly"- 0"/0"y]

These dimensions are used when testing the sprite for an intersection with a pick ray. For rendering the sprite, we need to
apply the viewport transformation (see Graphics3D) to obtain the final on-screen sizein pixels:

w = 0.5 sx wyp,
h=05syhy,

wherew,, and h,, are the dimensions of the viewport.

The pixels within the crop rectangle are mapped onto the resulting rectangle. If both the crop width and height are
positive, then the top |eft pixel of the crop rectangle maps to the top left pixel of the rectangle as displayed. Negating the
height or width will flip or mirror the sprite as described in set Cr op.

Note that this formula may produce unintuitive results if the modelview matrix M incorporates, for example, non-
uniform scaling and/or skewing components. However, the size computation is well-defined and predictable.

Also note that in the equations above, we transform and project the X and Y axes of the sprite node as two homogeneous
points each; implementations may obtain the same result by transforming them differently.

See Also:
Binary format

Field Summary

Fieldsinherited from class javax.microedition.m3g.Node

NONE, ORIGN, X AXIS, Y AXIS, Z AXIS

Constructor Summary

Sprite3D(bool ean scal ed, | nage2D i mage, Appear ance appearance)
Constructs a new Sprite3D with the given scaling mode, image and appearance.

197

Mobile 3D Graphics API Version 1.1

Method Summary

Appear ance | get Appear ance()
Getsthe current Appearance of this Sprite3D.

i nt [get CropHei ght ()
Gets the current cropping rectangle height within the source image.

int |get CropW dt h()
Gets the current cropping rectangle width within the source image.

int [get CropX()
Retrieves the current cropping rectangle X offset relative to the source image top left corner.

int [get CropY()
Retrieves the current cropping rectangle Y offset relative to the source image top left corner.

I mage2D |get | mage()
Getsthe current Sprite3D image.

bool ean |i sScal ed()
Returns the automatic scaling status of this Sprite3D.

voi d | set Appear ance(Appear ance appear ance)
Sets the Appearance of this Sprite3D.

void|setCrop(int cropX, int cropY, int width, int height)
Sets a cropping rectangle within the source image.

voi d |set | mage(| mage2D i nage)
Sets the sprite image to display.

Methods inherited from class javax.microedition.m3g.Node

align, getAlignnment Reference, getAlignnentTarget, getAl phaFactor, getParent,
get Scope, get Transformlo, isPickingEnabl ed, isRenderingEnabl ed, setAlignnent,
set Al phaFact or, set Pi cki ngEnabl e, set Renderi ngEnabl e, set Scope

Methodsinherited from class javax.microedition.m3g.Transfor mable

get ConpositeTransform getOrientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
set Transl ati on, transl ate

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
renmoveAni mati onTrack, setUserl D, setUser Qbject

Constructor Detail

198

Mobile 3D Graphics API Version 1.1

Sprite3D

public Sprite3D(bool ean scal ed,
| mage2D i nage,
Appear ance appear ance)

Constructs a new Sprite3D with the given scaling mode, image and appearance. The sprite image and
appearance can be changed at any time, but the scaling mode is fixed at construction. If the appearanceis null,
rendering and picking of the spriteis disabled.

The crop rectangle is set such that itstop left corner is at the top left corner of the image, and its width and
height are equal to the dimensions of the image. However, if the width (or height) of the crop rectangle would
exceed the implementation defined maximum, the width (or height) is set to the maximum value instead. The
maximum crop rectangle size can be queried with get Properti es.

Parameters:

scal ed - trueto make this Sprite3D scaled; false to disable scaling

i mage - pixel dataand image properties to use to draw this Sprite3D

appear ance - the Appearance to use for this Sprite3D, or null to disable this spriteinitially
Throws:

j ava. |l ang. Nul | Poi nt er Excepti on -ifi nage isnull

M ethod Detail

isScaled
public bool ean isScal ed()

Returns the automatic scaling status of this Sprite3D. Note that the scaling mode cannot be changed after
construction.

Returns:
trueif this spriteis scaled; false if it is unscaled

setAppearance
public void set Appearance(Appearance appearance)

Sets the Appearance of this Sprite3D. Note that the PolygonMode, Texture and Material components of the
Appearance are ignored.

Parameters:

appear ance - the Appearance to set, or null to disable this sprite
See Also:

get Appear ance

getAppearance

199

Mobile 3D Graphics API Version 1.1

publ i c Appearance get Appear ance()

Gets the current Appearance of this Sprite3D.

Returns:

the current Appearance of this sprite
See Also:

set Appear ance

setimage
public void setlmge(l mage2D i nage)

Sets the sprite image to display. The crop rectangle isreset in the same way as in the constructor.

Parameters:
i mage - pixel dataand image properties to use to draw this sprite
Throws:
java. |l ang. Nul | Poi nt er Excepti on -if i mage isnull
See Also:
get | mage
getimage

public I mage2D get | mage()

Gets the current Sprite3D image.

Returns:
the Image2D object used to draw this sprite
See Also:
set | rage
setCrop

public void setCrop(int cropX,
i nt cropy,
int width,
i nt height)

Sets a cropping rectangle within the source image. This allows a subsection of the image to be used as the
source for the pixels of the sprite. This can be used for selection of individual frames of animation, scrolling of
captions, or other effects.

The position of the upper left corner of the crop rectangle is given in pixels, relative to the upper left corner of
the Image2D. Note that the relative position may be negative in either or both axes.

If the crop rectangle has zero width or height, the sprite is not rendered or picked. If, on the other hand, the
width and/or height are negative, the sprite imageisflipped in the X and/or Y axes, respectively. Note that the

200

Mobile 3D Graphics API Version 1.1

crop rectangle remains in the same position within the source image regardless of the signs of the width and
height; only the drawing order of the pixelsis changed.

The absolute values of the crop width and height are limited to an implementation defined maximum that can be
gueried from Graphics3D.

Wrapping of the source image is not supported. If the crop rectangle lies completely or partially outside of the
image boundaries, the (imaginary) pixels outside of the image are treated as if failing the alphatest. In other
words, they are not rendered, but the on-screen size and pixel zoom factor of the sprite remain the same asif the
crop rectangle were completely inside the image.

Parameters:
cr opX - the X position of the top left of the crop rectangle, in pixels
cropY - theY position of the top left of the crop rectangle, in pixels
wi dt h - the width of the crop rectangle, in pixels
hei ght - the height of the crop rectangle, in pixels
Throws:
java.lang. |11 egal Argunent Excepti on -if wi dt h or hei ght exceedsthe implementation
defined maximum

getCropX
public int getCropX()
Retrieves the current cropping rectangle X offset relative to the source image top left corner.

Returns:

the X offset of the cropping rectangle
See Also:

set Crop

getCropY
public int getCropY()
Retrieves the current cropping rectangle Y offset relative to the source image top left corner.

Returns:

the Y offset of the cropping rectangle
See Also:

set Crop

getCropWidth
public int getCropWdth()

Gets the current cropping rectangle width within the source image. The width may be negative, in which case
theimage datais flipped in the X axis.

Returns:

201

Mobile 3D Graphics API Version 1.1

the width of the cropping rectangle
See Also:
setCrop

getCropHeight
public int getCropHeight()

Gets the current cropping rectangle height within the source image. The height may be negative, in which case
the image dataisflipped inthe Y axis.

Returns:

the height of the cropping rectangle
See Also:

set Crop

202

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Texture2D

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. n8g. Transf or mabl e

I—j avax. m croedi tion. n8g. Texture2D

public class Texture2D
extends Transformable

An Appearance component encapsulating a two-dimensional texture image and a set of attributes specifying how the
image isto be applied on submeshes. The attributes include wrapping, filtering, blending, and texture coordinate
transformation.

Texture image data

The texture image is stored as a reference to an Image2D. The image may be in any of the formats defined in Image2D.
The width and height of the image must be non-negative powers of two, but they need not be equal. The maximum
allowed size for atexture image is specific to each implementation, and it can be queried with Gr aphi cs3D.

get Properties().

Mipmap level images are generated automatically by repeated filtering of the base level image. No particular method of
filtering is mandated, but a 2x2 box filter is recommended. It is not possible for the application to supply the mipmap
level images explicitly.

If the referenced Image2D is modified by the application, or a new Image2D is bound as the texture image, the
modifications are immediately reflected in the Texture2D. Be aware, however, that switching to another texture image or
updating the pre-existing image may trigger expensive operations, such as mipmap level image generation or (re)
allocation of memory. It is therefore recommended that texture images not be updated unnecessarily.

Texture mapping
Transformation

Thefirst step in applying a texture image onto a submesh is to apply the texture transformation to the texture coordinates
of each vertex of that submesh. The transformation is defined in the Texture2D object itself, while the texture coordinates
are abtained from the VertexBuffer object associated with that submesh.

The incoming texture coordinates may have either two or three components (see VertexBuffer), but for the purposes of
multiplication with a4x4 matrix they are augmented to have four components. If the third component is not given, it is
implicitly set to zero. The fourth component is always assumed to be 1.

The texture transformation is very similar to the node transformation. They both consist of trandation, orientation and
scale components, as well as a generic 4x4 matrix component. The order of concatenating the componentsis the same.
The only difference isthat the bottom row of the matrix part must be (0 0 0 1) in case of anode transformation but not in
case of atexture transformation. The methods to manipulate the individual transformation components of both node and

203

Mobile 3D Graphics API Version 1.1

texture transformations are defined in the base class, Transformable.

Formally, a homogeneous vector p = (s, t, r, 1), representing a point in texture space, is transformed to a point p' = (s, t',
r',) asfollows:

p'=TRSMp
where T, R and S denote the trandlation, orientation and scale components, respectively, and M is the generic 4x4 matrix.

The trandation, orientation and scale components of the texture transformation can be animated independently from each
other. The matrix component is not animatable at all; it can only be changed using the set Tr ansf or mmethod.

Projection

The texture transformation described above yields the transformed texture coordinates (s, t', ',) for each vertex of a
triangle. The final texture coordinates for each rasterized fragment, in turn, are computed in two steps: interpolation and
projection.

. Interpolation. The per-vertex texture coordinates are interpol ated across the triangle to obtain the "un-
projected” texture coordinate for each fragment. If the implementation supports perspective correction and the
perspective correction flag in PolygonMode is enabled, this interpolation must perform some degree of
perspective correction; otherwise, simple linear interpolation may (but does not have to) be used.

. Projection. Thefirst three components of the interpolated texture coordinate are divided by the fourth
component. Formally, the interpolated texture coordinate p' = (s, t', r',) istransformed into p" = (s", t", r", 1)
asfollows:

p"=p'q = (s/q, t/q, r'lq, 1)

Again, if perspective correction is either not supported or not enabled, the implementation may do the projection
on a per-vertex basis and interpolate the projected values instead of the original values. Otherwise, some degree
of perspective correction must be applied. Ideally, the perspective divide would be done for each fragment

separately.

The r" component of the result may be ignored, because 3D texture images are not supported in this version of the API;
only the first two components are required to index a 2D image.

Texel fetch

The transformed, interpolated and projected s* and t" texture coordinates of afragment are used to fetch texel(s) from the
texture image according to the selected wrapping and filtering modes.

The coordinates " and t" relate to the texture image such that (0, 0) is the upper left corner of theimage and (1, 1) isthe
lower right corner. Thus, s" increases from left to right and t" increases from top to bottom. The REPEAT and CLAMP
texture wrapping modes define the treatment of coordinate values that are outside of the [0, 1] range.

Note that the t" coordinate is reversed with respect to its orientation in OpenGL; however, the texture image orientation is
reversed aswell. As anet result, there is no difference in actual texture coordinate val ues between this APl and OpenGL
in common texturing operations. The only difference arises when rendering to atexture image that is subsequently
mapped onto an object. In that case, the t texture coordinates of the abject need to bereversed (t' = 1 - t). If thisis not
done at the modeling stage, it can be done at run-time using the texture transformation. Of course, the whole issue of
texture coordinate orientation is only relevant in cases where existing OpenGL code and meshes are ported to this API.

204

Mobile 3D Graphics API Version 1.1

Texture filtering

There are two independent components in the texture filtering mode: filtering between mipmap levels and filtering within
amipmap level. There are three choices for level filtering and two choices for image filtering, yielding the six
combinations listed in the table below.

Levd filter Imagefilter Description OpenGL equivalent

BASE LEVEL NEAREST Point sampling within the base level NEAREST

BASE_LEVEL LI NEAR Bilinear filtering within the base level LI NEAR

NEAREST NEAREST Point sampling within the nearest mipmap level NEAREST M PMAP_NEAREST
NEAREST LI NEAR Bilinear filtering within the nearest mipmap level LI NEAR_M PNVAP_NEAREST
LI NEAR NEAREST Point sampling within two nearest mipmap levels NEAREST_M PNMAP_LI NEAR

Bilinear filtering within two nearest mipmap levels

LINEAR LENEAR - rilinear filtering)

LI NEAR_M PMAP_LI NEAR

Only the first combination (point sampling within the base level) must be supported by all implementations. Any of the
other five options may be silently ignored.

Texture blending

The texture blending mode specifies how to combine the filtered texture color with the incoming fragment color in a
texturing unit. Thisis equivalent to the texture environment mode in OpenGL.

The incoming fragment color C¢ = (R¢, Gy, By) and alpha A for each texture unit are the results of texture application in
the previous texture unit, or for texture unit O, the interpolated vertex color. Similarly, the texture values C; and A; are the
results of texture sampling and filtering as specified above. For luminance textures, the filtered luminance value L; is
converted to an RGB color as C; = (L, L, Lt). Inthe BLEND mode, the texture blend color C, set by set Bl endCol or,
isalso used.

The input values are combined to output values C,, and A,, depending on the source texture format and the current texture
blend maode as shown in the table below.

Blending mode

Texture format

REPLACE MODULATE DECAL BLEND ADD
ALPHA i‘;ift i‘\’;ZAt undefined i"VZZAt i\\//ziffAt
L T TS etine VA B e
LUMALPHA i\\l,zz i\:zitt undefined ’i\\/;iff(:t' C)+Cc G i\\,lziff;tq

205

Mobile 3D Graphics API Version 1.1

RGBA

C=CG GGG C=G Cr=Cr(1-CY+CeC Cy=Ci+ G
Ay = As Ay = As Ay = Ag Ay = A¢ Ay = Ag

C,=C G=CGiC G=Cr(l-A)+CiA C,=Cr(1-C)+CoC C=Ci+Gy
Av=Ar Av=AAL Ay=As Ay =As A Ay =As Ay

Implementation guidelines

Texturing is done according to the OpenGL 1.3 specification, section 3.8, with the following exceptions:

. 1D, 3D, and cube texture maps are not supported;

. texture borders are not supported (border width is always zero);

. TheT texture coordinate and the texture image are both reversed;

. minification and magnification filters cannot be specified separately;

. mipmap level images are generated automatically by the implementation;

LOD parameters for mipmap level selection are implementation defined;

. The COVBI NE texture environment mode is not supported;
. Thel NTENSI TY texture image format is not supported;
. The secondary color is not supported.

Texture filtering modes, other than point sampling of the base level image, are rendering quality hints that may be
ignored by the implementation. However, if they are implemented, the implementation must be according to the OpenGL

1.3 specification.
See Also:
Binary format
Field Summary
static int |FI LTER BASE LEVEL
A levd filtering parameter to set Fi | t er i ng that selects the base level image, even if mipmap
levels exist.
static int |FI LTER LI NEAR
A parameter toset Fi | t eri ng that selectslinear filtering.
static int |FI LTER NEAREST
A parameter toset Fi | t eri ng that selects nearest neighbor filtering.
static int |FUNC ADD
A parameter to set Bl endi ng, specifying that the texel color isto be added to the fragment
color.
static int |FUNC BLEND
A parameter to set Bl endi ng, specifying that the texture blend color isto be blended into the
fragment color in proportion to the texel RGB values.
static int |FUNC DECAL
A parameter to set Bl endi ng, specifying that the texel color isto be blended into the fragment
color in proportion to the texel alpha.

206

Mobile 3D Graphics API

Version 1.1

static int [FUNC_MODULATE
A parameter to set Bl endi ng, specifying that the texel color and/or alpha are to be multiplied

with the fragment color and alpha.

static int |FUNC REPLACE
A parameter to set Bl endi ng, specifying that the texel color and/or apha are to replace the

fragment color and apha.

static int |\\RAP_CLAMP
A parameter to set W appi ng, specifying that the texture image is to be repeated only once.

static int [\\RAP_REPEAT
A parameter to set W appi ng, specifying that the texture image is to be repeated indefinitely.

Constructor Summary

Text ure2D(| mage2D i nmage)
Constructs a new texture object with the given image, setting the texture attributes to their default values.

Method Summary

int |get Bl endCol or ()
Returns the current texture blend color for this Texture2D.
int |get Bl endi ng()
Returns the current texture blend mode for this Texture2D.
| mage2D | get | mage()
Retrieves the current base level (full size) texture image.
int |getlmageFilter()
Returns the current texture image filter.
int |getLevel Filter()
Returns the current texture level filter.
int |[get Wappi ngS()
Returns the current texture wrapping mode for the S texture coordinate.
int |get Wappi ngT()
Returns the current texture wrapping mode for the T texture coordinate.
voi d [set Bl endCol or (i nt RGB)
Sets the texture blend color for this Texture2D.
voi d [set Bl endi ng(i nt func)
Selects the texture blend mode, or blend function, for this Texture2D.
void|setFiltering(int levelFilter, int imageFilter)
Selects the filtering mode for this Texture2D.
voi d |set | mage(| mage2D i nage)
Sets the given Image2D as the texture image of this Texture2D.
voi d [set Wappi ng(int wapS, int wapT)

Sets the wrapping mode for the Sand T texture coordinates.

207

Mobile 3D Graphics API Version 1.1

Methodsinherited from class javax.microedition.m3g.Transfor mable

get ConpositeTransform getOrientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
set Transl ation, transl ate

Methodsinherited from class javax.micr oedition.m3g.0Object3D

addAni mati onTrack, animate, duplicate, find, getAninmationTrack,
get Ani mati onTrackCount, get Ref erences, getUserl D, getUser Qbject,
renoveAni mati onTrack, setUserlD, setUser Qbject

Field Detail

FILTER_BASE_LEVEL
public static final int FILTER BASE LEVEL

A levd filtering parameter to set Fi | t er i ng that selects the base level image, even if mipmap levels exist.
Thisisnot applicable asthei nageFi | t er parameter.

See Also:
Constant Field Values

FILTER_LINEAR
public static final int FILTER LI NEAR

A parametertoset Fi | t eri ng that selectslinear filtering. Asaleve filter parameter, it specifiesthat a
weighted average of the two closest mipmap levels should be selected. As an image filter parameter, it specifies
that a weighted average of the four texels that are nearest to (s, t) in Manhattan distance should be selected.

See Also;
Constant Field Values

FILTER_NEAREST
public static final int FILTER NEAREST

A parameter toset Fi | t er i ng that selects nearest neighbor filtering. Asalevel filter parameter, it specifies
that the closest mipmap level should be selected. As an image filter parameter, it specifies that the texel that is
nearest to (s, t) in Manhattan distance should be selected.

See Also;
Constant Field Values

208

Mobile 3D Graphics API Version 1.1

FUNC_ADD
public static final int FUNC_ADD

A parameter to set Bl endi ng, specifying that the texel color isto be added to the fragment color. The texel
aphaisto be multiplied with the fragment al pha.

See Also:
Constant Field Values

FUNC_BLEND
public static final int FUNC _BLEND

A parameter to set Bl endi ng, specifying that the texture blend color isto be blended into the fragment color
in proportion to the texel RGB values. The texel aphaisto be multiplied with the fragment alpha.

See Also;
Constant Field Values

FUNC_DECAL
public static final int FUNC DECAL

A parameter to set Bl endi ng, specifying that the texel color isto be blended into the fragment color in
proportion to the texel alpha.

See Also:
Constant Field Values

FUNC_MODULATE
public static final int FUNC_MODULATE

A parameter to set Bl endi ng, specifying that the texel color and/or apha are to be multiplied with the
fragment color and alpha.

See Also:
Constant Field Values

FUNC_REPLACE
public static final int FUNC REPLACE

A parameter to set Bl endi ng, specifying that the texel color and/or apha are to replace the fragment color
and alpha.

209

Mobile 3D Graphics API Version 1.1

See Also;
Constant Field Values

WRAP_CLAMP
public static final int WRAP_CLAMP

A parameter to set W appi ng, specifying that the texture image is to be repeated only once. This can be
specified independently for the Sand T texture coordinates. Formally, clamping means that the texture

coordinate value is clamped to the range [0, 1]. Thisis equivalent to the CLAMP maode, with a border width of
zero, in OpenGL.

See Also:
Constant Field Values

WRAP_REPEAT
public static final int WRAP_REPEAT

A parameter to set W appi ng, specifying that the texture image is to be repeated indefinitely. This can be
specified independently for the Sand T texture coordinates. Formally, repeating the image means that the

integer part of the texture coordinate is ignored and only the fractional part is used. Thisis equivaent to the
REPEAT modein OpenGL.

See Also;
Constant Field Values

Constructor Detall

Texture2D

public Texture2D(| mage2D i nage)

Constructs a new texture object with the given image, setting the texture attributes to their default values. The
default values for the wrapping, filtering and blending attributes are as follows:

o wrapping S: WRAP_REPEAT

o wrapping T : WRAP_ REPEAT

o level filter : FI LTER_BASE_LEVEL

o imagefilter : FI LTER_NEAREST

o blending mode : FUNC_MODULATE

o blend color : 0x00000000 (transparent black)

Parameters:

i mage - an Image2D object to set as the base level texture image
Throws:

j ava. l ang. Nul | Poi nt er Excepti on-ifi mage isnull

java.lang. ||l egal Argunment Excepti on - if the width or height of i mage isnot a positive power of
two (1, 2, 4, 8, 16, etc.)

210

Mobile 3D Graphics API Version 1.1

java.lang. |11 egal Argunent Excepti on - if thewidth or height of i nage exceedsthe
implementation defined maximum

M ethod Detail

setimage
public void setlmage(l mage2D i nage)

Sets the given Image2D as the texture image of this Texture2D. Mipmap level images are generated
automatically from the given Image2D, if and when necessary.

Parameters:
i mage - an Image2D object to set as the base level texture image

Throws:
j ava. |l ang. Nul | Poi nt er Excepti on -if i mage isnull
java.lang. |11 egal Argunent Excepti on - if thewidth or height of i nage is not a positive
power of two (1, 2, 4, 8, 16, etc.)
java.lang. ||| egal Argunent Excepti on - if thewidth or height of i nage exceeds the
implementation defined maximum

See Also:
get | rage

getimage

public |1 mage2D getl nmage()

Retrieves the current base level (full size) texture image.

Returns:
the current base level texture image
See Also:
set | nage
setFiltering

public void setFiltering(int levelFilter,
int imgeFilter)

Selects the filtering mode for this Texture2D. The available filtering modes are defined in the class description.

Note that this setting is only a hint -- implementations may ignore it and choose a filtering method at their own
discretion.

Parameters:
| evel Filter -filtering between mipmap levels
i mageFi | t er -filtering within a mipmap level
Throws:
java.lang. 111 egal Argunent Excepti on-ifl evel Fi | t er isnot one of
FI LTER_BASE LEVEL, FILTER NEAREST, FILTER LI NEAR

211

Mobile 3D Graphics API Version 1.1

java.lang. ||| egal Argunent Excepti on -ifi mageFi | t er isnot one of
FI LTER_NEAREST, FILTER LI NEAR

See Also:
get Level Filter,getl mageFilter

getLevelFilter
public int getLevel Filter()

Returns the current texture level filter. Note that the set value is returned, even if the implementation only
supports a subset of the available filtering methods.

Returns:

the current filtering between mipmap levels
Since:

M3G 1.1
See Also:

setFiltering

getlmageFilter
public int getlmageFilter()

Returns the current texture image filter. Note that the set value is returned, even if the implementation only
supports a subset of the available filtering methods.

Returns:

the current filtering within a mipmap level
Since:

M3G 1.1
See Also:

setFiltering

setWrapping

public void set Wappi ng(i nt w apS,
i nt wrapT)

Sets the wrapping mode for the Sand T texture coordinates.

Parameters:
wWr aps - Stexture coordinate wrapping mode
wr apT - T texture coordinate wrapping mode
Throws:
java.lang. 1l egal Argunent Excepti on-if wapSorw apT isnot one of
WRAP_CLAMP, WRAP_REPEAT
See Also:
get W appi ngS, get W appi ngT

getWrappingS

212

Mobile 3D Graphics API

public int getWappingS()

Returns the current texture wrapping mode for the S texture coordinate.

Returns:

the current S coordinate wrapping mode
See Also:

set W appi ng

getWrappingT

public int get Wappi ngT()

Returns the current texture wrapping mode for the T texture coordinate.

Returns:

the current T coordinate wrapping mode
See Also:

set W appi ng

setBlending

public void setBl ending(int func)

Version 1.1

Selects the texture blend mode, or blend function, for this Texture2D. The available blending modes are defined

in the class description.

Parameters:
f unc - the texture blending function to select
Throws:

java.lang. ||| egal Argunent Excepti on -if f unc isnot one of FUNC_REPLACE,
FUNC_MODULATE, FUNC_DECAL, FUNC BLEND, FUNC_ADD

See Also:
get Bl endi ng

getBlending
public int getBlending()
Returns the current texture blend mode for this Texture2D.

Returns:

the current texture blending function
See Also:

set Bl endi ng

setBlendColor

213

Mobile 3D Graphics API Version 1.1

public void setBl endCol or (i nt RGB)

Sets the texture blend color for this Texture2D. The high order byte of the color value (that is, the alpha
component) isignored.

Parameters:

RGB - the new texture blend color in 0OXOORRGGBB format
See Also:

get Bl endCol or

getBlendColor
public int getBl endCol or()

Returns the current texture blend color for this Texture2D. The high order byte of the color value (that is, the
apha component) is guaranteed to be zero.

Returns:

the current texture blend color in OXOORRGGBB format
See Also:

set Bl endCol or

214

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Transform

j ava. |l ang. Qbj ect
I—j avax. m croedition. nB8g. Transform

public class Transform
extends java.lang.Object

A generic 4x4 floating point matrix, representing a transformation. By default, all methods dealing with Transform
objects operate on arbitrary 4x4 matrices. Any exceptions to this rule are documented explicitly at the method level.

Even though arbitrary 4x4 matrices are generally allowed, using non-invertible (singular) matrices may produce
undefined results or an arithmetic exception in some situations. Specificaly, if the modelview matrix of an object is non-
invertible, the results of normal vector transformation and fogging are undefined for that object.

Constructor Summary

Transform)
Constructs a new Transform object and initializes it to the 4x4 identity matrix.

Transform Transform transform
Constructs a new Transform object and initializes it by copying in the contents of the given Transform.

Method Summary

void|get(float[] matrix)
Retrieves the contents of this transformation as a 16-element float array.

void |invert ()
Inverts this matrix, if possible.

voi d |post Mul tiply(Transform transform
Multiplies this transformation from the right by the given transformation.

voi d |post Rot ate(fl oat angle, float ax, float ay, float az)
Multiplies this transformation from the right by the given rotation matrix, specified in axis-angle form.

voi d | post Rot at eQuat (fl oat qx, float qy, float gz, float qw)
Multiplies this transformation from the right by the given rotation matrix, specified in quaternion form.

voi d |post Scal e(fl oat sx, float sy, float sz)
Multiplies this transformation from the right by the given scale matrix.

voi d |post Transl ate(float tx, float ty, float tz)
Multiplies this transformation from the right by the given translation matrix.

void|set(float[] matrix)
Sets this transformation by copying from the given 16-element float array.

void|set (Transform transform
Sets this transformation by copying the contents of the given Transform.

215

Mobile 3D Graphics API Version 1.1

void|setldentity()
Replaces this transformation with the 4x4 identity matrix.

void|transforn(float[] vectors)
Multiplies the given array of 4D vectors with this matrix.

void |transform VertexArray in, float[] out, boolean W

Multiplies the elements of the given VertexArray with this matrix, storing the transformed valuesin a
float array.

voi d |transpose()
Transposes this matrix.

Constructor Detail

Transform

public Transforn()

Constructs a new Transform object and initializes it to the 4x4 identity matrix.

Transform

public Transforn(Transformtransform

Constructs a new Transform object and initializes it by copying in the contents of the given Transform.

Parameters:
t r ansf or m- the Transform object to copy the contents of
Throws:
j ava. l ang. Nul | Poi nt er Excepti on -if t r ansf or misnull

Method Detail

setldentity
public void setldentity()
Replaces this transformation with the 4x4 identity matrix.
set
public void set(Transformtransformn

Sets this transformation by copying the contents of the given Transform. The pre-existing contents of this
transformation are discarded.

216

Mobile 3D Graphics API Version 1.1

Parameters:
t r ansf or m- the new transformation
Throws:
java. |l ang. Nul | Poi nt er Excepti on -iftransfor misnull

set
public void set(float[] matrix)

Sets this transformation by copying from the given 16-element float array. The pre-existing contents of this
transformation are discarded. The elementsin the source array are organized in row-major order:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

In other words, the second element of the source array is copied to the second element of the first row in the
matrix, and so on.

Parameters:
mat r i x - the new transformation matrix as aflat float array
Throws:
java. |l ang. Nul | Poi nter Exception-ifmatri x isnull
java.lang. ||l egal Argunment Exception-ifrmatrix.|length < 16

get
public void get(float[] matrix)

Retrieves the contents of this transformation as a 16-element float array. The matrix elements are copied to the
array in row-major order, that is, in the same order asintheset (f1 oat[]) method.

Parameters:
mat ri x - aflat float array to populate with the matrix contents
Throws:
java.lang. Nul | Poi nter Exception-ifmatri x isnull
java.lang. ||l egal Argunment Exception-ifrmatrix.|length < 16

invert
public void invert()
Inverts this matrix, if possible. The contents of this transformation are replaced with the result.

Throws:
java.lang. Arithneti cExcepti on - if thistransformation is not invertible

transpose

217

Mobile 3D Graphics API Version 1.1

public void transpose()

Transposes this matrix. The contents of this transformation are replaced with the resuilt.

postMultiply

public void postMiltiply(Transformtransform

Multiplies this transformation from the right by the given transformation. The contents of this transformation are
replaced with the result. Dencting this transformation by M and the given transformation by T, the new value
for this transformation is computed as follows:

M'=MT

Parameters:
t r ansf or m- the right-hand-side matrix multiplicant
Throws:
java. l ang. Nul | Poi nt er Excepti on -iftransf or misnull

postScale

public void postScal e(fl oat sx,
fl oat sy,
float sz)

Multiplies this transformation from the right by the given scale matrix. The contents of this transformation are
replaced with the result. Denoting this transformation by M and the scale matrix by S, the new value for this
transformation is computed as follows:

M'=MS

The scaling factors may be non-uniform, and negative scale factors (mirroring transforms) are also alowed. The
scale matrix Sis constructed from the given scale factors (sx sy sz) follows:

Qo oOowm
OO wmw o
<
oOwm OO
O OO

Parameters:
sx - scaling factor along the X axis
sy - scaling factor dlong the Y axis
sz - scaling factor along the Z axis

postRotate

public void postRotate(float angle,
fl oat ax,

218

Mobile 3D Graphics API Version 1.1

fl oat ay,
float az)

Multiplies this transformation from the right by the given rotation matrix, specified in axis-angle form. The
contents of this transformation are replaced with the result. Denoting this transformation by M and the rotation
matrix by R, the new value for this transformation is computed as follows:

M'=MR

Therotation is specified such that looking along the positive rotation axis, the rotation isangl e degrees
clockwise (or, equivalently, looking on the opposite direction of the rotation axis, the rotation isangl e degrees
counterclockwise).

Therotation matrix R is constructed from the given angle and axis (X y z) asfollows:

xx(1-c)+c xy(1-c)-zs xz(1-c)+ys 0
yx(1-c) +zs yy(1-c)+c yz(1-c)-xs 0
xz(1-c)-ys yz(1-c) +xs zz(1-c)+c 0

0 0 0 1

where ¢ = cos(angle) and s = sin(angle). If the axis (x y z) is not unit-length, it will be normalized automatically
before constructing the matrix.

Parameters:
angl e - angle of rotation about the axis, in degrees
ax - X component of the rotation axis
ay - Y component of the rotation axis
az - Z component of the rotation axis

Throws:
java.lang. ||| egal Argunent Excepti on -if therotation axis(ax ay az) iszeroand
angl e isnonzero
postRotateQuat

public void postRotateQuat (fl oat qx,
fl oat qy,
fl oat gz,

float gw

Multiplies this transformation from the right by the given rotation matrix, specified in quaternion form. The
contents of this transformation are replaced with the result. Denoting this transformation by M and the rotation
matrix by R, the new vaue for this transformation is computed as follows:

M'=MR

Therotation matrix R is constructed from the given quaternion (x y z w) asfollows:

1- (2yy+2z2) 2xy-2zw 2XZ+2yw 0
2xy+2zw 1-(2xx+2z2) 2yz- 2Xw 0
2XZ- 2yw 2yzZ+2xXwW 1- (2xx+2yy) 0

0 0 0 1

219

Mobile 3D Graphics API Version 1.1

The input quaternion is normalized to a4-dimensional unit vector prior to constructing the rotation matrix. A
quaternion with a vector part of al zerosis therefore normalized to (0 0 0 1), which represents a rotation by
2*pi, that is, no rotation at al. The only illegal input condition occurs when all components of the quaternion are
zero.

Parameters:
gx - X component of the quaternion's vector part
gy - Y component of the quaternion's vector part
gz - Z component of the quaternion's vector part
gw - scalar component of the quaternion
Throws:
java.lang. ||| egal Argunent Excepti on - if all quaternion components are zero

postTranslate

public void postTransl ate(float tx,
float ty,
float tz)

Multiplies this transformation from the right by the given translation matrix. The contents of this transformation
are replaced with the result. Denoting this transformation by M and the translation matrix by T, the new value
for this transformation is computed as follows:

M'=MT

Thetrandation matrix T is constructed from the given translation vector (tx ty tz) asfollows:

1 0 0 t X

0 1 0 ty

0 0 1 tz

0 0 0 1
Parameters:

t X - X component of the translation vector
ty - Y component of the trandlation vector
t z - Z component of the trandation vector

transform

public void transform VertexArray in,

float[] out,
bool ean W

Multiplies the elements of the given VertexArray with this matrix, storing the transformed valuesin afloat array.

Theinput VertexArray may have any number of elements (E), two or three components per element (C), and
any component size (8 or 16 bit). Thefloat array isfilled in with E elements, each having four components. The
multiplication is always done with a full 4x4 matrix and all four components of the result are returned.

The implied value of the missing fourth component (W) of each input element depends on the boolean

220

Mobile 3D Graphics API Version 1.1

parameter. If the parameter is set to true, the W components of all vectors are set to 1.0 prior to multiplication.
If the parameter isfalse, the W components are set to 0.0. If the elements of the input array have only two
components, the missing third component is always set to zero.

This method does not take into account the scale and bias that may be associated with vertex positions and
texture coordinates. (Thisis simply because the scale and bias values are defined in VertexBuffer, not
VertexArray.) If the application wishes to use this method for transforming the vertex positionsin a specific
VertexBuffer, for example, the scale and bias can be applied to this Transform directly. See the code fragment
below for how to do that.

Note that this is a simple matrix-by-vector multiplication; no division by W or other operations are implied. The
interpretation of the input and output valuesis up to each application.

Parameters:

i n -aVertexArray of 2D or 3D vectors to multiply with this matrix

out - a4D float array to populate with the transformed vectors

W= true to set the W component of each input vector implicitly to 1.0; false to set them to 0.0
Throws:

java. |l ang. Nul | Poi nt er Exception-ifinisnull

java.l ang. Nul | Poi nt er Excepti on -if out isnull

java.lang. ||l egal Argunment Excepti on-ifi n. numConponents ==
java.lang. |1 egal Argunent Exception-ifout.| ength < 4*E, whereE isthe number
of elementsin the input VertexArray

Example:

A method for transforming a vertex coordinate array.

voi d transfornPoi nts(Transformt, VertexBuffer vb, float[] out)
{
/1 Make a copy of the given Transform so that we can restore
/1 its original contents at the end
Transformtnp = new Transforn(t);
/'l Retrieve the vertex coordinate array and its associ ated
/1 scale and bias. In real applications, the float array
/1 and the tenporary Transform object should both be class
/1 variables to avoid garbage coll ection.
float[] scaleBias = new float[4];
VertexArray points = vb. getPositions(scal eBi as);
/1 Note the order of constructing the transformation matri x.
/'l The coordinates nust be scaled first, then biased
/1 vi =TSv
t. post Transl at e(scal eBi as[1], scal eBi as[2], scal eBias[3]);
t. post Scal e(scal eBi as[0], scal eBi as[0], scal eBias[0]);
t.transforn(points, out, true);
/'l Restore the original Transform
t.set(tnp);
}
transform

221

Mobile 3D Graphics API Version 1.1

public void transforn(float[] vectors)

Multipliesthe given array of 4D vectors with this matrix. The transformation is done in place, that is, the
original vectors are overwritten with the transformed vectors.

The vectors are given as aflat array of (x y zw) quadruplets. The length of the array divided by 4 gives the
number of vectors to transform.

Note that thisis a simple matrix-by-vector multiplication; no division by W or other operations areimplied. The
interpretation of the input and output valuesis up to each application.

Parameters:
vect or s - thevectorsto transform, in (xyzw Xyzw xyzw ...) order
Throws:
java. |l ang. Nul | Poi nt er Excepti on -if vect or s isnull
java.lang. ||l egal Argunment Exception-ifvectors.length %4 !'=0

222

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class Transformable

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi ti on. nBg. Tr ansf or mabl e

Direct Known Subclasses;
Node, Texture2D

public abstract class Transformable
extends Object3D

An abstract base class for Node and Texture2D, defining common methods for manipulating node and texture
transformations.

Node transformations and texture transformations consist of four individual components: trandation (T), orientation (R),
scale (S) and ageneric 4x4 matrix (M). Formally, a homogeneous vector p = (X, Y, z, W), representing vertex coordinates
(in Node) or texture coordinates (in Texture2D), istransformed into p' = (X', y', Z', w') as follows:

p'=TRSMp

See the Node and Texture2D class descriptions for more information on node transformations and texture
transformations.

Instantiation

Transformableis an abstract class, and therefore has no public constructor. When a class derived from Transformableis
instantiated, the attributes inherited from it will have the following default values:

. scae: (1,1,1)

. trandation: (0,0,0)

. orientation : angle = 0, axis = undefined
« matrix : identity

The transformation components areinitially set to identity so that they do not affect the texture coordinates or vertex
coordinatesin any way. Note that the orientation axis can be |eft undefined because the angle is zero.

See Also:
Binary format

Method Summary

voi d [get Conposi teTransforn(Transformtransform
Retrieves the composite transformation matrix of this Transformable.

223

Mobile 3D Graphics API Version 1.1

void|getOrientation(float[] angl eAxi s)
Retrieves the orientation component of this Transformable.

voi d |get Scal e(float[] xyz)
Retrieves the scale component of this Transformable.

voi d [get Transforn{Transformtransform
Retrieves the matrix component of this Transformable.

void|getTranslation(float[] xyz)
Retrieves the trand ation component of this Transformable.

voi d |post Rot ate(fl oat angle, float ax, float ay, float az)
Multiplies the current orientation component from the right by the given orientation.

void |preRotate(float angle, float ax, float ay, float az)
Multiplies the current orientation component from the left by the given orientation.

void|scal e(float sx, float sy, float sz)
Multiplies the current scale component by the given scale factors.

void|setOrientation(float angle, float ax, float ay, float az)
Sets the orientation component of this Transformable.

voi d |[set Scal e(fl oat sx, float sy, float sz)
Sets the scale component of this Transformable.

voi d |set Transf orn(Transform transform
Sets the matrix component of this Transformable by copying in the given Transform.

void |setTransl ation(float tx, float ty, float tz)
Sets the tranglation component of this Transformable.

void|translate(float tx, float ty, float tz)
Adds the given offset to the current translation component.

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mat i onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Method Detail

setOrientation

public void setOientation(float angle,
float ax,
fl oat ay,
fl oat az)

Sets the orientation component of this Transformable. The orientation is specified such that looking along the
rotation axis, the rotation isangl e degrees clockwise. Note that the axis does not have to be a unit vector.

224

Mobile 3D Graphics API Version 1.1

Parameters:
angl e - angle of rotation about the axis, in degrees
ax - X component of the rotation axis
ay - 'Y component of the rotation axis
az - Z component of the rotation axis
Throws:
java.lang. ||| egal Argunent Excepti on -if therotation axis(ax ay az) iszeroand
angl e isnonzero
See Also:
getOrientation,preRot at e, post Rot at e

preRotate

public void preRotate(float angl e,
fl oat ax,
fl oat ay,
float az)

Multiplies the current orientation component from the left by the given orientation. The orientation is given in
axis-angleformat, asinset Ori ent ati on.

Denoting the given orientation by R' and the current orientation by R, the new orientation is computed as
follows:

R"=R'R

Depending on the internal representation of orientations, the multiplication may be done with quaternions,
matrices, or something else, aslong as the resulting orientation is the same asit would be if matrices or
guaternions were used.

Parameters:
angl e - angle of rotation about the axis, in degrees
ax - X component of the rotation axis
ay - 'Y component of the rotation axis
az - Z component of the rotation axis
Throws:
java.lang. ||| egal Argunent Excepti on - if therotation axis(ax ay az) iszeroand
angl e isnonzero
See Also:
setOrientation,postRotate

postRotate

public void postRotate(float angle,
fl oat ax,
fl oat ay,
float az)

Multiplies the current orientation component from the right by the given orientation. Except for the
multiplication order, this method is equivalent to pr eRot at e.

225

Mobile 3D Graphics API Version 1.1

Denoting the given orientation by R' and the current orientation by R, the new orientation is computed as
follows:

R"=RR'

Parameters:
angl e - angle of rotation about the axis, in degrees
ax - X component of the rotation axis
ay - 'Y component of the rotation axis
az - Z component of the rotation axis
Throws:
java.lang. ||| egal Argunent Excepti on - if therotation axis(ax ay az) iszeroand
angl e isnonzero
See Also:
setOrientation,preRotate

getOrientation
public void getOrientation(float[] angl eAxis)
Retrieves the orientation component of this Transformable.

The returned axis and angle values are not necessarily the same that were last written to the orientation
component. Instead, they may be any values that produce an equivalent result. For example, a 90 degree rotation
about the positive Z axisis equivalent to a 270 degree rotation about the negative Z axis. In particular, if the
rotation angle is zero, the returned rotation axis is undefined and may also be the zero vector.

Parameters:

angl eAxi s - afloat array tofill inwith (angl e ax ay az)
Throws:

j ava.l ang. Nul | Poi nt er Excepti on -if angl eAxi s isnull

java.lang. |11 egal Argunent Exception-ifangl eAxis.length < 4
See Also:

setOrientation

setScale

public void setScal e(fl oat sx,
float sy,
float sz)

Sets the scale component of this Transformable.

Note that if any of the scale factors are set to zero, this transformation becomes uninvertible. That, in turn, may
cause certain operations to produce undefined results or to fail with an ArithmeticException.

Parameters:
sx - scaleaong the X axis
sy - scaeaongtheY axis
sz - scaleaong the Z axis
See Also:

226

Mobile 3D Graphics API Version 1.1

get Scal e,scal e

scale

public void scal e(float sx,
float sy,
float sz)

Multiplies the current scale component by the given scale factors. Denoting the current scale by (sx sy sz) and
the given scale by (sx' sy' sz'), the new scale factors are computed as follows:

Re g

SX*
Sy*
SZ*

Re Q

Since thisis an operation on scalar values, the order of multiplication makes no difference. Unlike with the
rotation component, separate methods for left and right multiplication are therefore not needed.

Parameters:
sXx - scaleaong the X axis
sy - scaeaongtheY axis
sz - scaleaong the Z axis
See Also:
set Scal e

getScale
public void getScal e(float[] xyz)

Retrieves the scale component of this Transformable.

Parameters:

xyz - afloat array tofill inwith (sx sy sz)
Throws:

java. |l ang. Nul | Poi nt er Excepti on -if xyz isnull

java.lang. ||l egal Argunment Exception-ifxyz.length < 3
See Also:

set Scal e

setTranslation

public void setTranslation(float tx,
float ty,
float tz)

Sets the tranglation component of this Transformable.

Parameters:
t X - trandation along the X axis
ty - trandlation along the Y axis

227

Mobile 3D Graphics API Version 1.1

t z - trandation along the Z axis
See Also:
get Transl ation,transl ate

translate

public void translate(float tx,
float ty,
float tz)

Adds the given offset to the current translation component. Denoting the current transation component by (tx ty
tz) and the given offset by (tx' ty' tz'), the new translation component is computed as follows:

X" =tx + tx'

ty" =ty +ty’

tz'=tz+ 1tz
Parameters.

t X - tranglation along the X axis

ty - trandation along the Y axis

t z - trandlation along the Z axis
See Also:

set Transl ati on

getTranslation
public void getTranslation(float[] xyz)
Retrieves the translation component of this Transformable.

Parameters:

xyz - afloat array tofill inwith(tx ty tz)
Throws:

java. |l ang. Nul | Poi nt er Excepti on -if xyz isnull

java.lang. ||l egal Argunment Exception-ifxyz.length < 3
See Also:

set Transl ati on

setTransform
public void setTransforn{Transformtransform

Sets the matrix component of this Transformable by copying in the given Transform. This does not affect the
separate trangdlation, orientation and scale components.

A generic matrix component is required for transformations that can not be expressed in the component form
efficiently, or at all. These include, for example, pivot transforms and non-axis-aligned scales.

If this Transformable is a Node object, the bottom row of the given matrix must be (0 0 0 1). Projective
transformations are not supported in the scene graph so as to reduce run-time memory consumption and to

228

Mobile 3D Graphics API Version 1.1

accelerate rendering. Note, however, that arbitrary 4x4 modelview matrices are supported in the immediate

mode.

Parameters:
t r ansf or m- the Transform object to copy in, or null to indicate the identity matrix

Throws:
java.lang. ||| egal Argunent Excepti on - if this Transformable is a Node and the bottom
row of t r ansf or misnot (000 1)

See Also:
get Transform

getTransform

public void getTransforn{Transformtransform

Retrieves the matrix component of this Transformable. This does not include the separate translation, orientation
and scale components. The transformation is copied into the given Transform object.

Parameters:

t r ansf or m- the Transform object to receive the transformation matrix
Throws:

java. l ang. Nul | Poi nt er Excepti on -iftransf or misnull
See Also:

set Transform

getCompositeTransform

public void get ConpositeTransforn(Transformtransform

Retrieves the composite transformation matrix of this Transformable. The composite transformation matrix is
the concatenation of the translation, rotation, scale and generic matrix components. Formally, C=T R SM.
The composite transformation is copied into the given Transform object.

Parameters:

t r ansf or m- the Transform object to receive the composite transformation matrix
Throws:

java. |l ang. Nul | Poi nt er Excepti on -ift ransf or misnull

229

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g

Class TriangleStripArray

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. nBg. | ndexBuf f er

I—j avax. m croedi tion. nB8g. Tri angl eStri pArray

public class TriangleStripArray
extends IndexBuffer

TriangleStripArray defines an array of triangle strips. In atriangle strip, the first three vertex indices define the first
triangle. Each subsequent index together with the two previous indices defines a new triangle. For odd triangles, two of
the indices must be swapped to produce correct winding. The first triangle is considered even. For example, the strip S=
(2,0, 1, 4) definestwo triangles: (2, 0, 1) and (1, 0, 4).

Triangle strip indices may be explicitly defined, asin the example above, or they may be implicit. In animplicit
TriangleStripArray, only the first index of the first strip is specified. All subsequent indices are one greater than their
predecessor. For example, if there are two strips with lengths 3 and 4, and the initial index is 10, the strips are formed as
follows: S; = (10, 11, 12) and S, = (13, 14, 15, 16).

Triangle strips may contain so-called degenerate triangles, that is, triangles that have zero area. These are completely
valid input to the API. The implementation must take the necessary steps to ensure that degenerate triangles do not
produce any rasterizable fragments.

Degenerate triangles often occur in explicit triangle strips that are constructed by merging multiple stripsinto one at the
content authoring stage. Merging of strips requires that the same index be repeated two or three timesin arow.

Degenerate triangles may also result from multiple vertices in the associated VertexBuffer having the same coordinates
(in screen space, or already before that).

See Also:
Binary format

Constructor Summary

TriangleStripArray(int[] indices, int[] stripLengths)
Constructs a triangle strip array with explicit indices.

Triangl eStripArray(int firstlndex, int[] stripLengths)
Constructs atriangle strip array with implicit indices.

Methodsinherited from class javax.microedition.m3g.I ndexBuffer

get I ndexCount, getl ndices

Methodsinherited from class javax.micr oedition.m3g.Object3D

230

Mobile 3D Graphics API Version 1.1

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mati onTrackCount, get References, getUserl D, getUserQbject,
renoveAni mati onTrack, setUserl D, setUser (bject

Constructor Detail

TriangleStripArray

public TriangleStripArray(int firstlndex,
int[] stripLengths)

Constructs atriangle strip array with implicit indices. The first index of the first strip is specified, along with the
lengths of the individual strips.

Parameters:
firstlndex -index of theinitial vertex of thefirst strip
stri pLengt hs - array of per-strip vertex counts to be copied in

Throws:
java. |l ang. Nul | Poi nt er Exception-ifstri pLengt hs isnull
java.lang. ||l egal Argument Excepti on-if stri pLengt hs isempty
java.lang. |11 egal Argunent Excepti on -if any elementinst ri pLengt hs islessthan 3

j ava. l ang. | ndexQut Of BoundsException-iffirstlindex < 0
j ava. |l ang. | ndexQut Of BoundsException-iffirstlndex + sun(striplLengths) >
65535

TriangleStripArray

public TriangleStripArray(int[] indices,
int[] striplLengths)

Constructs atriangle strip array with explicit indices. An array of indicesis given, along with the lengths of the
individual strips. The combined length of the strips must not exceed the number of elementsin the index array.
The contents of both arrays are copied in.

Parameters:

i ndi ces - array of indicesto be copied in

stri pLengt hs - array of per-strip index counts to be copied in
Throws:

j ava. l ang. Nul | Poi nt er Excepti on -ifi ndi ces isnull

j ava. l ang. Nul | Poi nt er Excepti on-ifstri pLengths isnull

java.lang. Il1egal Argunent Excepti on-if stri pLengt hs isempty
java.lang. |11 egal Argunent Excepti on -if any elementinst ri pLengt hs islessthan 3
java.lang. |l egal Argument Exception-ifindices.|length < sun(stripLengths)

j ava. |l ang. | ndexQut O BoundsExcepti on - if any elementini ndi ces isnegative
java. l ang. I ndexQut Of BoundsExcepti on -if any elementini ndi ces is greater than 65535

231

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class VertexArray

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedition. nBg. Vert exArray

public class VertexArray
extends Object3D

An array of integer vectors representing vertex positions, normals, colors, or texture coordinates.

VertexArray objects are referenced by VertexBuffer objects. Each VertexArray may be referenced by any number of
VertexBuffers, or even multiple times by the same VertexBuffer. The role in which the array is referenced determines the
interpretation of the vertex attributes contained in it. For example, if aVertexArray is referenced as a normal vector

array, the array entries are interpreted as 3D vectors. If the same array is referenced as atexture coordinate array, the
entries are interpreted as 3D points.

Certain restrictions exist on the types of datathat can be used in each role. The restrictions are as follows:

. Vertex positions must have 3 components.

. Normal vectors must have 3 components.

. Texture coordinates must have 2 or 3 components.

. Colors must have 3 or 4 components, one byte each.

See Also:
Binary format

Constructor Summary

VertexArray(int nunmVertices, int numConponents, int conponentSize)
Constructs anew VertexArray with the given dimensions.

Method Summary

void|get(int firstVertex, int nunVertices, byte[] val ues)
Returns arange of 8-bit vertex attributes.

void|get(int firstVertex, int nunVertices, short[] val ues)
Returns arange of 16-bit vertex attributes.

i nt |get Conponent Count ()
Returns the number of components per vertex.

i nt |get Conponent Type()
Returns the data type (size) of vertex components.

int |get VertexCount ()
Returns the number of verticesin this array.

232

Mobile 3D Graphics API Version 1.1

void|set(int firstVertex, int nunVertices, byte[] val ues)
Copiesin an array of 8-hit vertex attributes.

void|set(int firstVertex, int nunVertices, short[] val ues)
Copiesin an array of 16-bit vertex attributes.

Methods inherited from class javax.microedition.m3g.Object3D

addAni mati onTrack, animate, duplicate, find, getAninmationTrack,
get Ani mati onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Constructor Detail

VertexArray

public VertexArray(int nunVerti ces,
i nt nunConponents,
i nt conponent Si ze)

Constructs a new VertexArray with the given dimensions. The array elements are initialized to zero. The
elements can be set later with either the 8-bit or the 16-bit version of the set method, depending on the
component size selected here.

Parameters:
numVer t i ces - number of verticesin this VertexArray; must be[1, 65535]
nunConponent s - number of components per vertex; must be [2, 4]
conponent Si ze - number of bytes per component; must be[1, 2]

Throws:
java.lang. |11 egal Argunent Excepti on - if any of the parameters are outside of their allowed ranges
Method Detail
set

public void set(int firstVertex,
i nt nunVerti ces,
short[] val ues)

Copiesin an array of 16-bit vertex attributes. Positions, normals, and texture coordinates can be set with this
method, but colors must be set with 8-bit input. This method is available only if conponent Si ze, specifiedin
the constructor, is 2.

The vertex attributes are copied in starting from the first element of the source array. The number of elements
copiedinisnunConponent s * numVerti ces, wherenuntConponent s iseither 2, 3, or 4, as specified
at construction time. The source array must have at least that many elements.

233

Mobile 3D Graphics API Version 1.1

Parameters:
firstVertex -index of thefirst vertex to replace
nunVerti ces - number of verticesto replace
val ues - array of 16-bit integers to copy vertex attributes from
Throws:
java. |l ang. Nul | Poi nt er Excepti on -if val ues isnull
java.lang. ||| egal St at eExcepti on - if thisisnot a 16-hit VertexArray
java.lang. Il 1 egal Argunent Excepti on-if numvertices < 0
java.lang. ||l egal Argument Exception-ifval ues. |l ength < nunVertices *
get Conmponent Count
java. |l ang. | ndexQut Of BoundsException-iffirstVertex < 0
j ava. |l ang. | ndexQut Of BoundsException-iffirstVertex + nunVertices >
get Ver t exCount

set

public void set(int firstVertex,
int nunVerti ces,
byte[] val ues)

Copiesin an array of 8-hit vertex attributes. All vertex attributes can be set with this method, including
positions, normals, colors, and texture coordinates. This method is available only if conrponent Si ze,
specified in the constructor, is 1.

The vertex attributes are copied in as specified in the other set variant.

Parameters:
firstVertex -index of thefirst vertex to replace
numVer t i ces - number of verticesto replace
val ues - array of 8-bit integersto copy vertex attributes from
Throws:
java. |l ang. Nul | Poi nt er Excepti on -if val ues isnull
java.lang. ||| egal St at eExcepti on - if thisisnot an 8-bit VertexArray
java.lang. Il 1 egal Argunent Excepti on-if numvertices < 0
java.lang. ||l egal Argunment Exception -ifval ues. |l ength < nunVertices *
get Conmponent Count
java. |l ang. | ndexQut Of BoundsException-iffirstVertex < 0
j ava. |l ang. | ndexQut Of BoundsException-iffirstVertex + nunVertices >
get Ver t exCount

getVertexCount
public int getVertexCount()
Returns the number of verticesin this array.

Returns:

the number of vertices
Since:

M3G 1.1

getComponentCount

234

Mobile 3D Graphics API Version 1.1

public int get Conponent Count ()
Returns the number of components per vertex.

Returns:

the number of components
Since:

M3G 1.1

getComponentType
public int getConponent Type()
Returns the data type (size) of vertex components.

Returns:

the number of bytes per component; 1 for bytes, 2 for shorts
Since:

M3G 1.1

get

public void get(int firstVertex,
int nunVerti ces,
short[] val ues)

Returns arange of 16-bit vertex attributes. The values are returned in the same format as in the respective set
method.

Parameters:
firstVertex -index of thefirst vertex to get
numVer t i ces - number of verticesto get
val ues - array of 16-bit integers to copy vertex attributes to
Throws:
java. |l ang. Nul | Poi nt er Excepti on -if val ues isnull
java.lang. ||| egal St at eExcepti on - if thisisnot a 16-bit VertexArray
java.lang. |1 egal Argunent Exception-if nunvVertices < 0
java.lang. ||| egal Argunent Excepti on-ifval ues.l ength < nunVertices *
get Conmponent Count
java. |l ang. | ndexQut Of BoundsException-iffirstVertex < 0
j ava. |l ang. | ndexQut Of BoundsException-iffirstVertex + nunVertices >
get Ver t exCount
Since:
M3G 1.1

get

public void get(int firstVertex,
int nunVerti ces,
byte[] val ues)

235

Mobile 3D Graphics API Version 1.1

Returns arange of 8-bit vertex attributes. The values are returned in the same format as in the respective set
method.

Parameters:
firstVertex -index of thefirst vertex to get
nunVerti ces - number of verticesto get
val ues - array of 8-bit integersto copy vertex attributes to

Throws:
java. l ang. Nul | Poi nt er Excepti on -if val ues isnull
java.lang. |11 egal St at eExcepti on - if thisisnot an 8-bit VertexArray
java.lang. ||l egal Argunment Exception-if nunvertices < 0
java.lang. ||l egal Argunent Exception-ifval ues.l ength < nunVertices *
get Conponent Count
java. |l ang. I ndexQut Of BoundsException-iffirstVertex < 0
j ava. |l ang. | ndexQut Of BoundsException-iffirstVertex + numertices >
get Ver t exCount
Since:

M3G 11

236

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g
Class VertexBuffer

j ava. |l ang. Obj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi tion. nBg. Vert exBuffer

public class VertexBuffer
extends Object3D

VertexBuffer holds references to VertexArrays that contain the positions, colors, normals, and texture coordinates for a
set of vertices. The elements of these arrays are called vertex attributes in the rest of this documentation. The structure of
aVertexBuffer object is shown in the figure below.

‘\
| VertexArray stores
an array of vectors.
VertexArray Positions array must
VertexBuffer > i i always be present.
(positions) |
Array of normals All
> VertexArray !
(normals) arrays
present
i > must
Array of vertex colors have
> VertexArray .-~ ' same
(colors) . length
Array of texture
4 coordinates, one per
L, VertexArray | active texture.
(tex. coords) '
VertexArray
(tex. coords)
/

There can be at most one position array, one color array, and one normal array in aVertexBuffer. The number of texture
coordinate arrays, however, can be anything between zero and the number of texturing units supported by the
implementation, which can be queried with get Properti es.

All vertex attribute arrays must be the same length; thisis enforced by the set methods. The first array that is added to a
previously empty VertexBuffer can have any number of elements. Thisis also the case if the sole previously set array is
replaced with another. Any subsequently added arrays must have the same length as the first.

Vertex positions, texture coordinates, and normals are interpreted as homogeneous (4D) coordinates, where the fourth
component isimplicitly 1 for positions and texcoords, and O for normals. In other words, positions and texcoords are
interpreted as 3D points, whereas normals are treated as 3D vectors. In the case of 2D texcoords, the third component is
implicitly zero.

3D texture coordinates are supported, even though 3D texture maps are not. This alows some clever rendering tricks,

237

Mobile 3D Graphics API Version 1.1

such as cheap environment mapping by using normal vectors as texture coordinates.
Deferred exceptions

All vertex attribute arrays are initialized to null. The application can also set them to null at any time. Thisisa
completely legal state, aslong asthe VertexBuffer is not rendered or tested for intersection with a pick ray. When
rendering, null vertex attributes are treated as follows:

. If the position array is null, an exception is thrown.

. If thenormal array isnull, and lighting is enabled, the normal vectors are undefined.

. If atexcoord array is null, and the corresponding texturing unit is enabled, the texture coordinates are undefined.
. If thecolor array is null, the default color is used instead.

Lighting can be disabled for a submesh by setting a null Material in Appearance. Similarly, a particular texturing unit can
be turned off by setting its Texture2D to null.

When picking, null vertex attributes are treated as follows:

. If the position array isnull, an exception is thrown.
. If the normal array is null, the returned normal is undefined.
. If atexcoord array is null, the returned texcoords are undefined.

The color array and the default color are ignored when picking.

See Also:
Binary format

Constructor Summary

Ver t exBuffer()
Creates an empty VertexBuffer with default values.

Method Summary

VertexArray |get Col ors()
Gets the current color array, or null if per-vertex colors are not set.

i nt [get Def aul t Col or ()
Retrieves the default color of this VertexBuffer.

VertexArray |get Nor mal s()
Getsthe current normal vector array, or null if normals are not set.

VertexArray |get Positions(float[] scal eBi as)
Returns the current vertex position array, or null if positions are not set.

VertexArray |get TexCoords(int index, float[] scal eBias)

Gets the current texture coordinate array for the specified texturing unit, or null if texture
coordinates for that unit are not set.

int |get Vert exCount ()
Retrieves the current number of verticesin this VertexBuffer.

238

Mobile 3D Graphics API Version 1.1

voi d |set Col ors(VertexArray col ors)
Sets the per-vertex colors for this VertexBuffer.

voi d |set Def aul t Col or (i nt ARGB)
Sets the color to use in absence of per-vertex colors.

voi d [set Nor mal s(Vert exArray nornmal s)
Sets the normal vectors for this VertexBuffer.

voi d |set Positions(VertexArray positions, float scale, float[] bias)
Sets the vertex positions for this VertexBuffer.

voi d |set TexCoords(int index, VertexArray texCoords, float scale, float
[T bias)
Sets the texture coordinates for the specified texturing unit.

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mati onTrack, animate, duplicate, find, getAninmationTrack,
get Ani mati onTrackCount, get References, getUserlD, getUserject,
renoveAni mati onTrack, setUserl D, setUser (bject

Constructor Detall

VertexBuffer

public VertexBuffer()

Creates an empty VertexBuffer with default values. The default values are:
o vertex count : O

vertex position array : null

texture coordinate array(s) : null

normal array : null

color array : null (use default color)

default color : OXFFFFFFFF (opaque white)

[} [} [} [} [}

Method Detail

getVertexCount
public int getVertexCount()

Retrieves the current number of verticesin this VertexBuffer. Thisisthe same as the number of verticesin any
of the associated VertexArrays, because they must al have the same length. If there are no VertexArrays
currently in this VertexBuffer, the number of verticesis defined to be zero.

Returns:
the number of vertices currently in this VertexBuffer, or zero if no vertex arrays are set

239

Mobile 3D Graphics API Version 1.1

setPositions

public void setPositions(VertexArray positions,

fl oat scal e,
float[] bias)

Sets the vertex positions for this VertexBuffer. Vertex positions are specified with a 3-component VertexArray.
The components are interpreted as coordinatesin (X, Y, Z) order, each component being a signed 8-bit or 16-hit
integer. Vertex positions have associated with them a uniform scale and a per-component bias, which are
common to al verticesin the VertexArray. Thefinal position v' of avertex is computed from the original
position v asfollows:

v'=sv+ b

where sisthe the uniform scale and b is the bias vector. For example, the application can map the 8-bit integers
[-128, 127] to the real number range [-1, 1] by setting the scale to 2/255 and the bias to 1/255.

Non-uniform scaling is not supported due to implementation constraints. A uniform scale factor introduces no
per-vertex processing overhead, as implementations may combine the scale with the transformation from object
space to world space or camera space. Combining a non-uniform scale with that transformation, in contrast,
would distort the normal vectors and thereby cause undesirable side effectsin lighting.

Parameters:
posi ti ons - aVertexArray with 3-component vertex positions, or null to disable vertex positions
scal e - aconstant uniform scale factor common to all vertex positions
bi as - aconstant (X, Y, Z) offset to add to vertex positions after scaling, or null to set a zero bias for
all components

Throws:
java.lang. ||l egal Argunent Exception-if (positions != null) &&
(posi tions. get Conponent Count != 3)
java.lang. |11 egal Argunent Exception-if (positions !'= null) &&
(positions. getVertexCount != getVertexCount) && (at |east one other
VertexArray is set)
java.lang. |11 egal Argunent Exception-if (positions != null) && (bias !=
null) && (bias.length < 3)

See Also:

get Posi ti ons

setTexCoords

public void set TexCoords(int index,
Vert exArray texCoords,

fl oat scal e,
float[] bias)

Sets the texture coordinates for the specified texturing unit. Texture coordinates are specified with a 2- or 3-
component VertexArray. The components are interpreted in (S, T) or (S, T, R) order, each component being a
signed 8-hit or 16-bit integer. Texture coordinates have associated with them a uniform scale and a per-
component bias, which behave exactly the same way as with vertex positions (see set Posi ti ons). Non-
uniform scaling is not supported, so as to make texture coordinates behave consistently with vertex positions.

240

Mobile 3D Graphics API Version 1.1

Parameters:
i ndex - index of the texturing unit to assign these texture coordinates to
t exCoor ds - aVertexArray with 2- or 3-component texture coordinates, or null to disable texture
coordinates for the specified unit
scal e - aconstant uniform scale factor common to all texture coordinates
bi as - aconstant (X, Y, Z) offset to add to texture coordinates after scaling, or null to set a zero bias
for al components

Throws:
java.lang. ||l egal Argunent Exception-if (texCoords != null) &&
(t exCoor ds. get Conponent Count != {2, 3})
java.lang. |11 egal Argunent Exception-if (texCoords !'= null) &&
(texCoords. get Vert exCount != getVertexCount) && (at |east one other
VertexArray is set)
java.lang. ||l egal Argunent Exception-if (texCoords != null) && (bias !=
null) && (bias.length < texCoords. get Conponent Count)
java. |l ang. I ndexQut Of BoundsException-ifi ndex != [0, N] whereNisthe
implementation specific maximum texturing unit index

See Also:
get TexCoor ds

setNormals

public void setNormal s(VertexArray normals)

Sets the normal vectors for this VertexBuffer. The scale and bias terms are not specified for normals. Instead,
the components of the normals are mapped to [-1, 1] such that the maximum positive integer mapsto +1, the
maximum negative integer to -1, and the mapping is linear in between. Note that the number zero, for instance,
cannot be represented accurately with this scheme.

The normal vectors need not be unit length on input; they are automatically normalized prior to using themin
the lighting computations. Thisimplicit normalization does not modify the original valuesin the VertexArray.

Parameters:
nor mal s - aVertexArray with 3-component normal vectors, or null to disable normals

Throws:
java.lang. |l egal Argunment Exception-if(normals !'= null) && (normals.
get Conponent Count ! = 3)
java.lang. 111 egal Argunent Exception-if(normals !'= null) && (nornals.
get VertexCount != getVertexCount) && (at |east one other VertexArray
is set)

See Also:

get Nor nal s

setColors

public void setCol ors(VertexArray col ors)

Sets the per-vertex colors for this VertexBuffer. The given VertexArray containing the color values must have
either 3 (RGB) or 4 (RGBA) components per element, and the component size must be 8 bits. With RGB colors,
the apha component isimplicitly set to 1 for al vertices.

The scale and bias terms are not specified for colors. Instead, color components are interpreted as unsigned

241

Mobile 3D Graphics API Version 1.1

integers between [0, 255], where 255 represents the maximum brightness (1.0). Thisis equivalent to having a
scale of 1/255 and a bias of 128/255 for all components (the bias is needed because bytesin Java are always

interpreted as signed values).
Parameters:
col or s - aVertexArray with RGB or RGBA color values, or null to use the default color instead
Throws:
java.lang. ||l egal Argunment Exception-if(colors !'= null) && (colors.
get Conponent Type ! = 1)
java.lang. |11 egal Argunent Exception-if(colors !'= null) && (col ors.
get Conmponent Count != {3, 4})
java.lang. ||l egal Argunment Exception-if(colors !'= null) && (colors.
get Vert exCount != getVertexCount) && (at |east one other VertexArray
is set)
See Also:
get Col ors

getPositions

public VertexArray getPositions(float[] scal eBi as)

Returns the current vertex position array, or null if positions are not set. The current scale and bias values are
copied into the given array. If positions are not set, the scale and bias values are undefined. The first four
elements of the array are overwritten with the scale and bias, in that order. Any other elementsin the array are
left untouched. If the given array is null, only the VertexArray is returned.

Parameters:
scal eBi as - afloat array to populate with the current scale (1 entry) and bias (3 entries), or null to
just return the VertexArray
Returns:
the current VertexArray for vertex positions, or null
Throws:
java.lang. |11 egal Argunent Exception-if(scaleBias != null) &&
(scal eBias.length < 4)
See Also:
set Posi tions

getTexCoords

public VertexArray get TexCoords(int index,
float[] scal eBi as)

Getsthe current texture coordinate array for the specified texturing unit, or null if texture coordinates for that
unit are not set. The current scale and bias values are copied into the given array. If the texture coordinate array
isnull, the scale and bias values are undefined. The first 3 or 4 elements of the array are overwritten with the
scale and bias, in that order. Any other elementsin the array are left untouched. The number of elements written
is equal to the number of components in the returned VertexArray, plus one for the scale. If the given array is
null, only the VertexArray is returned.

Parameters:
i ndex - index of the texturing unit to get the texture coordinates of
scal eBi as - afloat array to populate with the current scale (1 entry) and bias (2 or 3 entries), or null

242

Mobile 3D Graphics API Version 1.1

to just return the VertexArray
Returns:
VertexArray with the texture coordinates for the given texturing unit, or null
Throws:
java.lang. ||| egal Argunent Exception-if(scaleBias != null) &&
(scal eBias.l ength < texCoords. get Conponent Count +1)
j ava. |l ang. | ndexQut Of BoundsExcepti on-ifi ndex != [0, N] whereNisthe
implementation specific maximum texturing unit index
See Also:
set TexCoor ds

getNormals
public VertexArray get Normal s()

Gets the current normal vector array, or null if normals are not set.

Returns:

the current VertexArray for vertex normals, or null
See Also:

set Nornal s

getColors

public VertexArray getCol ors()

Getsthe current color array, or null if per-vertex colors are not set.

Returns:

the current VertexArray for vertex colors, or null
See Also:

set Col ors

setDefaultColor
public void setDefaultColor(int ARGB)

Sets the color to use in absence of per-vertex colors. This color will be assigned to each vertex by default. If per-
vertex colors are specified, this color isignored.

Parameters:

ARGB - the default vertex color in OXAARRGGBB format
See Also:

get Def aul t Col or

getDefaultColor

public int getDefaultColor()

243

Mobile 3D Graphics API Version 1.1

Retrieves the default color of this VertexBuffer.

Returns:

the default vertex color in OXAARRGGBB format
See Also:

set Def aul t Col or

244

Mobile 3D Graphics API Version 1.1

javax.microedition.m3g

Class World

j ava. |l ang. Qbj ect
I—j avax. m croedi tion. n8g. Cbj ect 3D

I—j avax. m croedi ti on. nBg. Transf or mabl e
I—j avax. m croedi ti on. n8g. Node
I—j avax. m croedi tion. nBg. G oup
I—j avax. m croedi tion. n3g. Wrld

public classWorld
extends Group

A special Group node that is atop-level container for scene graphs. A scene graph is constructed from a hierarchy of
nodes. In a complete scene graph, all nodes are ultimately connected to each other viaa common root, which isaWorld
node. An example of a complete scene graph is shown in the figure below.

Groups allow the

\\\\\@—b BaCkground
application to treat

multiple nodes as | .

Background defines the
.- backdrop against which the
3D scene is rendered

World is a top-level
node containing the
whole scene

e

a single unit | Group | Groups can be Group
| nested inside
. /| other Groups
Sprite3D is a | r v
2D image with - .
a 3D position | Morphing
| Mesh
" | Morphing and skinned

Al

meshes are animated
geometry objects

User Object Group m

/
/

An arbitrary | / " Mesh defines the

user object can |/ 1 3D geometry of a
be associated ! c Liaht visible object
with any scene | amera 'g i
object. | - /
Camera defines |/ Light defines a
, S light source in |
a viewpoint |

the scene '

245

Mobile 3D Graphics API Version 1.1

Note that a scene graph need not be complete in order to be rendered; individual nodes and branches can be rendered
using a separate method in Graphics3D. However, the semantics of rendering an incomplete scene graph are slightly
different compared to rendering a World; see Graphics3D for more information.

Despite that it is called a graph, the scene graph is actually atree structure. Thisimplies that a node can belong to at most
one group at atime, and cycles are prohibited. However, component objects, such as VertexArrays, may be referenced by
an arbitrary number of nodes and components. The basic rules for building valid scene graphs are summarized below.

A single component may be
Node / referenced from multiple objects.
) /| This allows sharing of date.

1
’

Node ——» Component

Component

Exceptions

\
\ \

Loops are not allowed.
A loop exists if you can
follow any chain of
references back to the
start object.

\ | Nodes may be \

\| children of only

| one group at a
 time

Even though World is a scene graph node, its special role as the singular root node has two noteworthy consequences.
Firstly, aWorld can not be a child of any Node. Secondly, the node transformation isignored for World objects when
rendering. In all other respects (get, set, animate), the transformation behaves just like any other node transformation.
Note also that there is no conceptual "Universe" coordinate system above the World, contrary to some other scene graph
APIs.

The method r ender (Wor | d) in Graphics3D renders a World as observed by the currently active camera of that world.

If the active camerais null, or the camerais not in the world, an exception is thrown. The world can till be rendered with
ther ender (Node, Transform method by treating the World as a Group. In that case, however, the application

must explicitly clear the background and set up the camera and lights prior to rendering.

See Also:
Binary format

246

Mobile 3D Graphics API Version 1.1

Field Summary

Fieldsinherited from class javax.microedition.m3g.Node

NONE, ORIGN, X AXIS, Y AXIS, Z AXIS

Constructor Summary

Vor | d()
Creates an empty World with default values.

Method Summary

Caner a |get Acti veCaner a()
Getsthe currently active camera.

Background | get Backgr ound()
Retrieves the background settings of this World.

voi d [set Act i veCaner a(Caner a caner a)
Sets the Camerato use when rendering this World.

voi d | set Backgr ound(Backgr ound backgr ound)
Sets the Background object for this World.

Methodsinherited from class javax.micr oedition.m3g.Group

addChil d, getChild, getChildCount, pick, pick, renoveChild

Methodsinherited from class javax.micr oedition.m3g.Node

align, getAlignnmentReference, getAlignnmentTarget, getAl phaFactor, getParent,
get Scope, get Transformrlo, i sPicki ngEnabl ed, isRenderingEnabl ed, setAlignnent,
set Al phaFact or, set Pi cki ngEnabl e, set Renderi ngEnabl e, set Scope

Methodsinherited from class javax.microedition.m3g.Transfor mable

get ConpositeTransform getOientation, getScale, getTransform getTranslation,
post Rotate, preRotate, scale, setOrientation, setScale, setTransform
set Transl ation, translate

Methodsinherited from class javax.micr oedition.m3g.Object3D

addAni mat i onTrack, ani mate, duplicate, find, getAni mationTrack,
get Ani mati onTrackCount, get References, getUserlD, getUserject,
removeAni mati onTrack, setUserl| D, setUser (bject

247

Mobile 3D Graphics API Version 1.1

Constructor Detail

World

public World()

Creates an empty World with default values. The default values are:

o background : null (clear to black)
o active camera: null (the world is not renderable)

M ethod Detail

setBackground

public void setBackground(Background background)

Sets the Background object for this World. The background is used for clearing the frame buffer prior to
rendering the World when Gr aphi ¢s3D. r ender (Wor | d) iscalled.

If the background object is null, the default values are used. That is, the color buffer is cleared to transparent
black, and the depth buffer to the maximum depth (1.0).

Parameters:

backgr ound - attributes for clearing the frame buffer, or null to use defaults
See Also:

get Backgr ound

getBackground
publ i ¢ Background get Background()

Retrieves the background settings of this World.

Returns:

the current attributes for clearing the frame buffer
See Also:

set Backgr ound

setActiveCamera
public void setActiveCanera(Canera camnera)

Sets the Camerato use when rendering this World. At the time of rendering, the camera must also be a
descendant of this World.

248

Mobile 3D Graphics API Version 1.1

Parameters:

camer a - the Camera object to set as the active camera
Throws:

java. l ang. Nul | Poi nt er Excepti on -if canmeraisnull
See Also:

get Acti veCaner a

getActiveCamera

public Canmera get ActiveCaneral()

Getsthe currently active camera.

Returns:

the camera that is currently used to render this World
See Also:

set Acti veCanera

249

Mobile 3D Graphics API Version 1.1

Constant Field Values

Contents

. javax.microedition.*

javax.microedition.*

javax.microedition.m3g.AnimationTrack
public static final int ALPHA 256
public static final int AVBI ENT_COLOR 257

public static final int COLOR 258
public static final int CROP 259
public static final int DENSITY 260

public static final int DIFFUSE_COLOR 261
public static final int EM SSI VE COLOR 262
public static final int FAR D STANCE 263
public static final int FIELD OF_VIEW 264
public static final int I NTENSITY 265
public static final int MORPH VEI GHTS 266
public static final int NEAR DI STANCE 267
public static final int ORI ENTATI ON 268
public static final int PICKABILITY 269
public static final int SCALE 270
public static final int SH N NESS 271
public static final int SPECULAR COLOR 272
public static final int SPOT_ANGLE 273
public static final int SPOT_EXPONENT 274
public static final int TRANSLATI ON 275
public static final int VISIBILITY 276

javax.microedition.m3g.Background
public static final int BORDER 32
public static final int REPEAT 33

250

Mobile 3D Graphics API

javax.microedition.m3g.Camera

public
public
public

static final
static final

static final

i nt
i nt

i nt

GENERI C
PARALLEL
PERSPECTI VE

javax.microedition.m3g.CompositingM ode

public
public
public
public
public

static final
static final
static final
static final

static final

i nt
i nt
i nt
i nt

i nt

javax.microedition.m3g.Fog

public
public

static final

static final

i nt

i nt

ALPHA
ALPHA ADD
MODULATE
MODULATE_X2
REPLACE

EXPONENTI AL
LI NEAR

javax.microedition.m3g.Graphics3D

public
public
public
public

static final
static final
static final

static final

i nt
i nt
i nt

i nt

ANTI ALI AS

DI THER
OVERWRI TE 1
TRUE_COLOR

javax.micr oedition.m3g.l mage2D

public
public
public
public
public

static final
static final
static final
static final

static final

i nt

i nt

i nt LUM NANCE_ALPHA

i nt

i nt

ALPHA
LUM NANCE

RGB
RGBA

javax.microedition.m3g.K eyframeSequence

public
public
public
public
public
public

static final
static final
static final
static final
static final

static final

i nt
i nt
i nt
i nt
i nt

i nt

CONSTANT 192
LI NEAR 176
LOOP 193

SLERP 177
SPLINE 178
SQUAD 179

48
49

64
65
66

68

80
81

2
4
6
8

96
97
98
99

100

251

Version 1.1

Mobile 3D Graphics API

public static final

i nt

javax.microedition.m3g.Light

publ i
publ i
publ i
publ i

c

c

c

c

static final
static final
static final

static final

i nt
i nt
i nt

i nt

STEP 180

AMBI ENT

128

DI RECTI ONAL 129

OWN
SPOT

javax.microedition.m3g.M aterial

publ i
publ i
publ i
publ i

c

c

c

c

static final
static final
static final

static final

i nt
i nt
i nt

i nt

javax.microedition.m3g.Node

publ i
publ i
publ i
publ i
publ i

c

c

c

c

c

static final
static final
static final
static final

static final

i nt
i nt
i nt
i nt

i nt

130
131

AMVBI ENT 1024

DI FFUSE 2048

EM SSI VE 4096
SPECULAR 8192

NONE 144
ORI G N 145
X_AXI'S 146
Y AXI'S 147
Z AXI'S 148

javax.micr oedition.m3g.PolygonM ode

publ i
publ i
publ i
publ i
publ i
publ i
publ i

c

c

c

static final
static final
static final
static final
static final
static final

static final

i nt
i nt
i nt
i nt
i nt
i nt

i nt

CULL_BACK
CULL_FRONT
CULL_NONE

SHADE_FLAT

160
161
162
164

SHADE_SMOOTH 165

W NDI NG_CCW 168

W NDI NG_CW

javax.microedition.m3g.T exture2D

publ i
publ i
publ i
publ i
publ i

c

c

c

static final
static final
static final
static final

static final

i nt
i nt
i nt
i nt

i nt

169

FI LTER_BASE_LEVEL 208

FI LTER LI NEAR
FI LTER_NEAREST

FUNC_ADD
FUNC_BLEND

209
210
224
225

252

Version 1.1

Mobile 3D Graphics API

public
public
public
public
public

static final
static final
static final
static final

static final

i nt
i nt
i nt
i nt

i nt

FUNC_DECAL
FUNC_MODULATE
FUNC_REPLACE
W\RAP_CLANP
WRAP_REPEAT

226
227
228
240
241

253

Version 1.1

Mobile 3D Graphics API Version 1.1

File Format for Mobile 3D Graphics API

Abstract

This specification defines a 3D Graphics File Format that complements the Mobile 3D Graphics APl (M3G). Thefile
format is provided as a compact and standardised way of populating a scene graph.

Contents

. 1 Important Notes
. 2MIME Type and File Extension
. 3 DataTypes
. 3.1 Fundamental Data Types
. 3.2 Compound Data Types
. 4 File Structure
. S5Fileldentifier
. 6 Section
. 6.1 CompressionScheme
. 6.2 Total SectionLength
. 6.3 UncompressedLength
. 6.4 Objects
. 6.5 Checksum
. 7 Object Structure
. 7.1 ObjectType
. 7.2 Length
. 7.3Data
. 8 Object Ordering
. 8.1 Object References
. 8.2 Shared Objects
. 8.3 Subtree Loading
« 9 Error Handling
. 10 Specia Object Data
. 10.1 Header Object
. 10.2 External Reference
. 11 Per-Class Data
. 11.1 AnimationController
. 11.2 AnimationTrack
. 11.3 Appearance
. 11.4 Background
. 11.5 Camera
. 11.6 CompositingMode
. 11.7 Fog
. 11.8 Graphics3D

254

Mobile 3D Graphics API Version 1.1

. 11.9 Group
. 11.10 Image2D
. 11.11 IndexBuffer
. 11.12 KeyframeSequence
. 1113 Light
. 11.14 | oader
. 11.15 Materia
. 11.16 Mesh
. 11.17 MorphingMesh
. 11.18 Node
. 11.19 Object3D
. 11.20 PolygonMode
. 11.21 Raylntersection
. 11.22 SkinnedMesh
. 11.23 Sprite
. 11.24 Texture2D
. 11.25 Transform
. 11.26 Transformable
. 11.27 TriangleStripArray
. 11.28 VertexArray
. 11.29 VertexBuffer
. 11.30 World
. 12 ObjectType Vaues

1 Important Notes

The data here are not serialized by Java's own serialization mechanism. They are serialized by the M3G serialization
mechanism, which produces and loads data streams conforming to the M3G file format specification.

For more details of the mechanisms for loading a M3G compliant file, please refer to the documentation for the Loader
class.

2 MIME Type and File Extension

The MIME typefor thisfileformat isappl i cat i on/ nBg. Thefile extension (for systems that do not support MIME
type queries) is. nBg, to match the lowest level name in the package hierarchy.

3 Data Types

3.1 Fundamental Data Types

There are severa datatypes which are regarded as fundamental. These are asfollows:

255

Mobile 3D Graphics API

Type Name Description

Byt e A single, unsigned 8-bit byte.

Int16 A signed 16 bit value, stored as two bytes, lower byte first.

U nt 16 Anunsigned 16 bit value, stored as two bytes, lower byte first.

I nt 32 A signed 32 bit value, stored as four bytes, lowest byte first.

Ul nt 32 An unsigned 32 bit value, stored as four bytes, lowest byte first.
A single precision floating point value, in 32-bit format as defined by
IEEE-754. Thisis stored as four bytes, with the least significant byte of

Fl oat 32 the mantissa first, and the exponent byte last.
Note that only normal numeric values and positive O can be stored.
Special values such as denormals, infinities, NaNs, negative 0, and
indefinite values are disallowed and must be treated as errors.

String A null-terminated Unicode string, coded as UTF-8.

Bool ean A single byte with the value O (false) or 1 (true). Other values are
disallowed and must be treated as errors.

Version 1.1

3.2 Compound Data Types

In order to avoid having to repeatedly specify sequences of the same types many times, some compound data types are
defined for convenience. The composition of theseislisted to show both their makeup and the order in which the simple
elements are to be serialized. These are as follows:

Type Name Description Composition
Fl oat 32 x;
Vector3D A 3D vector. Fl oat 32 v;
Fl oat 32 z;
A 4x4 generalized matrix. The 16 elements of the
matrix are output in the same order asthey are
retrieved using the API Transform.get method. In
other words, in this order:
Fl oat 32
Matrix 0 1 2 13 c[sllg]m.ent S
4 5 6 7 ’
8 9 10 11
12 13 14 15
Byt e red;
ColorRGB A color, with no alphainformation. Each component | Byt e
is scaled so that 0x00 is 0.0, and OxFF is 1.0. green;
Byt e bl ue;

256

Mobile 3D Graphics API

A color, with alphainformation. Each component is gﬁ 2 red;
ColorRGBA scaled so that 0x00 is 0.0, and OxFFis1.0. Theapha gr een:
valueis scaled so that 0x00 is completely ' .
transparent, and OxFF is compl etely opagque. Byte bl ue;
’ Byt e al pha;
Theindex of a previously encountered object in the
file. Although thisis serialized as a single unsigned
integer, it isincluded in the compound type list
because of the additional semantic information
embodied initstype. A value of O isreserved to
Objectindex indicate anull reference; actual object indices start Ul nt 32
from 1. Object indices must refer only to null ortoan |i ndex;
object which has already been created during the
input deseriaization of afile - they must be less than
or equal to theindex of the object in which they
appear. Other values are disallowed and must be
treated as errors.
Ul nt 32
count;
A variable-length array of any typeisawaysoutput | Type
in a counted form, with the count first. Each element |ar r ayVal ue
Type]] isthen output in index order, starting from 0. Thelast |[0] ;
element has index (count-1). If the array is empty, Type
then only a0 count is outpuit. arrayVal ue
[1];
...efc.
. . . Type
Arrays with an explicit length are either always have
. arrayVal ue
the same constant number of elements, or this count [0]:
Type{count] is specified elsewhere, so only the elements are Type

output. Each element is then output in index order,
starting from 0. The last element hasindex (length-
1). If the array is empty, then nothing is outpuit.

arrayVal ue

[1];
...etc.

4 File Structure

Version 1.1

Thefile consists of the file identifier, followed by one or more sections. Thus the overall file structure looks like this:

File Identifier

Section 0

File Header Object

Section 1

External Reference Objects

Section 2

Scene Objects

Section 3

Scene Objects

Section n

Scene Objects

The reason for having different sections is that some of the objects, such as the mesh objects, should be compressed to

257

Mobile 3D Graphics API Version 1.1

reduce file size, whereas other objects, such as the header object, should not be compressed. The header object must be
kept uncompressed since it should be easy to read quickly.

The first section, Section 0, must be present, must be uncompressed and must contain only the header object. This object
contains information about the file as awhole, and is discussed in detail in Section 10.1.

If there are external references in the file, then these must all appear in a single section immediately following the header
section. This section may be compressed or uncompressed. External references allow scenesto be built up from a
collection of separate files, and are discussed in detail in Section 10.2.

Following these are an unspecified number of sections containing scene objects.

The file must contain the header section, plus at least one other non-empty section (containing at least one object). It is
possible to have afile consisting solely of external references, or solely of scene objects.

A file containing no objects at al isnot avalid M3G file, and must be treated as an error.

5 File Identifier

Thefile identifier isaunique set of bytes that will differentiate the file from other types of files. It consists of 12 bytes, as
follows:

Byte[12] Fileldentifier = { OxAB, Ox4A, 0x53, 0x52, O0x31, O0x38,
0x34, OxBB, 0xOD, OxOA, Ox1A, OxOA }

This can aso be expressed using C-style character definitions as:

Byte[12] Fileldentifier = { '« , 'J', 'S, 'R, '1', '8, "4, '»,
‘\r', '\n', "\x1A', ‘\n' }

The rationale behind the choice values in the identifier is based on the rationale for the identifier in the PNG
specification. Thisidentifier both identifies the file asaM3G file and provides for immediate detection of common file-
transfer problems.

. Byte[0Q] ischosen as anon-ASCII value to reduce the probability that a text file may be misrecognized as a
M3G file.

. Byte[0] also catches bad file transfers that clear bit 7.

. Bytes[1..6] identify the format, and are the ascii values for the string "JSR184".

. Byte[7] isfor aesthetic balance with byte 1 (they are amatching pair of double-angle quotation marks).

. Bytes[8..9] form a CR-LF sequence which catches bad file transfers that alter newline sequences.

. Byte[10] isacontrol-Z character, which stopsfile display under MS-DOS, and further reduces the chance that a
text file will be falsely recognised.

. Byte[11] isafinal linefeed, which checks for the inverse of the CR-LF translation problem.

A decoder may further verify that the next byteis O (thisisthe first byte of the mandatory uncompressed header section).
Thiswill catch bad transfers that drop or alter zero bytes.

258

Mobile 3D Graphics API Version 1.1

6 Section

A section is adata container for one or more objects. The section header determines if the objects are compressed or not,
how much object data there is, and a so contains a checksum.

In this document, we will talk about "sections that are compressed” and "sections that are uncompressed". In redlity, we
will mean "sections where the objects are compressed", and " sections where the objects are uncompressed"”.

Each section has the following structure:

Byt e Conpr essi onSchene
Ul nt 32 Tot al Secti onLengt h
Ul nt 32 Unconpr essedLengt h
Byt e[Tot al Secti onLengt h-13] bjects

Ul nt 32 Checksum

We will now go through the individual parts of the section.

6.1 CompressionScheme

Thisfield tells how the Obj ect s field in this section is compressed. It also specifies what checksum algorithm is used.
Currently, only the Adler32 checksum is mandatory. Compression only appliesto the Cbj ect data, and not to the other
fields in the section.

Conpr essi onScheme must be one of the following values:

0 Uncompressed, Adler32 Checksum
1 ZLib compression, 32 k buffer size, Adler32 Checksum

2...255 | Reserved

Example:
Byt e Conpressi onSchene = 1;
indicates that the Cbj ect s field in the section is compressed using zlib with 32 k buffer size.

The values 2...255 are reserved for future releases and are disallowed. A loader that follows the specification must report
an error if they are found.

6.2 TotalSectionLength
Thisisthetotal length of the section in bytes; from the start of this section to the start of the next section.

Example:

259

Mobile 3D Graphics API Version 1.1

U nt 32 Tot al Secti onLength = 2056

indicates that this section, including the Conpr essi onSchene, Tot al Sect i onLengt h,
Unconpr essedLengt h, Obj ect s and Checksumfields, will be 2056 bytesin length.

6.3 UncompressedLength

Knowing the size of the decompressed data ahead of time can be used to make Zlib inflation much easier and less
memory hungry. Therefore, the size of the compressed part of the section (in bytes) before compression (or after
decompression) is serialized as part of the section information. Sinceit is only the Cbj ect s field that can be
compressed, Unconpr essedLengt h contains the length of the Cbj ect s field after decompression. If no
compression is specified for this section, this equals the actual number of bytes serialized in the Cbj ect s array.

A valueof Ointhisfieldislegal - the section is simply ignored. However, it is recommended that any process that creates
afile should check for O length sections and eliminate them to reduce file size.

Example:
U nt 32 UnconpressedLength = 4560

Means that in this section, after decompression, the Gbj ect s field is 4560 bytes in length.

6.4 Objects

The objects in each section are serialized as an array of bytes, one after the other. This array of byteswill either be
compressed (if CompressionSchemeis 1) or it will be uncompressed. If it is compressed, it is compressed asasingle
chunk of data, not as separate objects. Zero bits must be padded in the end to make the Obj ect s field byte aligned.

The structure of each individual object's datais documented in Section 10 and Section 11.

6.5 Checksum

To be able to verify that the section was correctly loaded, there is a 32-bit checksum of al the datain the section. The
checksum algorithm is specified by the Conpr essi onSchenme field. Currently, only the Adler32 checksum is
mandatory. The checksum is calculated using all preceding bytes in the section, i.e. the Conpr essi onSchene,

Tot al Secti onLengt h, Unconpr essedLengt h, and the actual serialized datain the Cbj ect s field (i.e. inits
compressed form if compression is specified).

Example:
Ul nt 32 Checksum = Oxffe806a3

On limited devices, we might not be able to afford to load an entire section before interpreting it. Thus the loader may
start interpreting the objects before knowing that the section as awhole is correct. However, the checksums are il
useful in that we at least know afterwards that there was an otherwise undetected error if the checksums differed.

Even on a system that can afford to load an entire section before loading it, it is possible to have errorsin the file. The
content creation program can have a defect, the transmission of the file could be error-prone, or the file could have been
altered as part of a deliberate attack on the device. Thusit isimportant that the loader tries to detect errorsalsoin files

260

Mobile 3D Graphics API Version 1.1

that have correct checksums.

The loader implementation may decide not to compute (and/or check) the checksum. Thus, afile with erroneous
checksumsis not guaranteed to be rejected. However, afile with erroneous checksumsis not aM3G compliant file and
must not pass a strict verification test.

7 Object Structure

The object data stored in each section isfirst decompressed and then interpreted as a sequence of objects. This separates
the act of decompression from the interpretation of the data. All data documented in this section is assumed already to be
in its uncompressed form.

Each object in the file represents one object in the scene graph tree, and is stored in a chunk. The structure of an object
chunk is asfollows:

Byt e bj ect Type
Ul nt 32 Lengt h
Byt e[Length] Data

7.1 ObjectType

Thisfield describes what type of object has been serialized. For instance, we could have a Camera node, a Mesh node or
a Texture2D object. Section 12 includes atable that shows the correspondence between ObjectType values and the actual

object types. The ObjectType field must hold avalid value as defined in Section 12. The reserved object types (values
23..254) must be treated as errors.

The values 0 and OxFF are special: 0 represents the header object, and OxFF represents an external reference.
Example:
Byte (bjectType = 14
This means that the current object isaMesh object (see Section 12).
7.2 Length

This contains the length of the Data array, in bytes. Note that avalue of 0 in thisfield may be legal; some objects require
no additional data over and above their mere presence.

Example:

U nt32 Length = 2032
indicates that the Dat a field of this object spans 2032 bytes in the (decompressed) file.
7.3 Data

Thisisdatathat is specific for the object. It is up to the loader to interpret this data according to the object type and

261

Mobile 3D Graphics API Version 1.1

populate the object accordingly. Detailed information on the data for each object type is documented in Section 10 and
Section 11.

For instance, if the object just contained a single color, the Data would be a 3 byte long array, where the first byte
represents the red component, the second byte the green component, and the third byte the blue component.

Attemptsto read off the end of an object's data are disallowed and must be signalled as errors. An example of this would
be an object with areported length of 32 bytes, but which internally specifies an array with 65537 members.

Conversely, the deserialization code for each object may also check that each byte of the data belongsto avalid
interpretation. Additional bytes after the end of an object's valid data are disallowed. This condition may be difficult to
determine on the target platform, but any file which contains "extra" datain object chunksisnot aM3G compliant file
and must not pass a strict verification test.

8 Object Ordering

All the objectsin the scene graph are serialized in leaf-first order, or reference based order asit isalso called. Before
serializing a specific object, al other objects referenced by that object must already have been serialized. Objects may
refer to themselvesiif thisis allowed by the scene data structures.

By definition, the root of the tree will be sent last.

Note that cycles are not allowed in the file format. There is one special case where they are alowed in the run-time scene
graph, namely Node alignment. Before a scene graph containing cyclic references can be written into afile, the cycles
must be broken. This can be done by inserting dummy target nodes as children of the original alignment targets. For
example, if aleaf nodeis aligned to the World, an empty Group with an identity transformation isinserted as a child of
the World, and the alignment redirected to that.

Given a scene graph with no cycles, it is possibleto use a"leaves first" strategy for output - start by serializing all the
objects that do not reference other objects, and then all the objects that refer to the objects already sent, and so it
continues until all objects are sent.

Alternatively, a"depth first" strategy can be used, where each object recursively applies the following procedure, to build
up atable of referencesin the correct order. (It is assumed that the table isinitially empty.)

Bui | dRef er enceTabl e:
for each reference in this object,
call Buil dRef erenceTable on the referred object
if this object is not already in the reference table,
append this object to the reference table.

Each object can then be serialized from the reference table in order.

For example, assume that we have the following tree structure:

262

Mobile 3D Graphics API

Version 1.1

Onevalid ordering of the objectsisC D F B E A. Thisisthe ordering that occursif the "leavesfirst" method is used.

Note that other leaf-first orderings are al'so valid, for instance FD CE B A.

The "depth-first" method produces valid orderings where interior nodes in the graph may be sent before all the leaves

have been sent. An ordering produced by the depth-first method discussed above might be CD B FE A.

The only important thing is that any objects referenced by a particular object are sent before the object itself.

With this flexibility, the ordering of references can be forced by the file creator if this is advantageous. For example, if

we wish textures to be sent in a separate section that is uncompressed. Thus, if we have the following tree:

™

where T1 and T2 are textures, we can send the scene graph using, for instance:

T2

Identifier

File Identifier (see Section 5)

Section 0

Uncompressed

File Header Object

Section 1

Uncompressed

T1T2

Section 2

Compressed

DBEA

263

Mobile 3D Graphics API Version 1.1

Other orderings are also possible, for instance:

Identifier File Identifier (see Section 5)

Section 0 | Uncompressed | File Header Object

Section 1 | Uncompressed | T1 T2
Section 2 [Compressed (DEBA

or even (with anaive file creator):

Identifier File Identifier (see Section 5)

Section 0 | Uncompressed | File Header Object
Section 1 [Uncompressed | T1
Section 2 | Compressed | D

Section 3 | Uncompressed | T2
Section4 [Compressed |(BEA

Because multiple root-level objects are allowed in the file format, there is no obvious end point in the data. In order that
the loader can determine that the file has ended, the total length of thefileis stored in the header. Reading from thefileis
ended when the total number of bytesisreached. At this point, any objects not yet linked into the scene graph are treated
as root-level objects and returned to the application.

8.1 Object References

Each object serialized, including the header object, is given an index, in order, starting from 1. The O index is used to
indicate anull reference. Thisindex is unrelated to the user 1D for an object.

A referenceto an object is serialized as an integer containing its index within the file. The serialization order constraint
can be expressed as follows:

For an object with index i, areferenceindex r withinitisonly validif r <=1i. Invalid reference indices must be treated as
an error.

An object reference must refer to an object of avalid type for the reference involved. For example, the reference from an
Appearance object to aMaterial object must actually refer to aMateria object. If the referred object type isincorrect, this
must be treated as an error.

8.2 Shared Objects

Shared objects are handled the same way as hormal objects. We only need to make sure that a shared object is sent before
both of the objects that referenceit.

For instance, for the following tree of references, where X is a shared object

264

Mobile 3D Graphics API Version 1.1

\
X

L D
A possible ordering would be D X B E A. Both the leaves-first and the depth-first algorithms described above will
generate valid orderings.

8.3 Subtree Loading

With reference based order, it will be more difficult to load an arbitrary subtree from afile than with, e.g., root-first
order. However, it is still possible, using two passes of the file. Assume that the subtree is defined as "object number X
and al its children". In the first pass, only the node references are decoded, and an empty tree of the complete scene
graph is created. From this graph, we find node X and make alist of all its descendantsin the subtree. During the second
pass, we simply load all the objectsin the list. The last object that was loaded will be the root of the subtree.

In the case where rewinding the stream is not possible, it isalso possible to do subtree loading in just one pass. Thisis
achieved by loading everything up until the root node of the desired subtree, and then letting the garbage collection
remove everything that is not referred to by the subtree. However, such an implementation would consume more memory
than the two-pass implementation above. In the worst case, thisis no different from loading the entire scene. For
example, if the file contains a 3D map of the whole world and all you want is a specific house, you may still need to load
the entire world and then delete everything but the house, if the house is the last object in thefile.

9 Error Handling
There are several points at which an error may be detected. These include, but are not limited to:

. Memory exhaustion

. Missing or malformed file identifier
. Invalid section type

. Invalid file, section, or object length
. Invalid section checksum

. Invalid object type

. Extraor missing object data

. Invalid object reference

. Invalid enumeration value

. Invalid boolean value

. Invalid floating point value

. Values out of range for property

. Attempt to read past end of stream

. Aborted download

. Error in external reference

265

Mobile 3D Graphics API Version 1.1

In particular, if values read from the loaded file would cause an immediate exception when passed to the API (e.g. al the
attenuation parameters on alight are 0.0, or an image istoo large for the implementation to handle), then this must be
treated as an error.

If combinations of values are read that may cause a deferred exception, (e.g. amaterial and light are both present, but
there are no normals specified), then this must not be treated as an error by the Loader. The application must be given the
opportunity to take action after loading, in order to avoid these exceptions.

If any kind of error is detected during loading, the required action is for the Loader to abort this download, and that of
any pending externa references, clear up any temporary data structures, and throw an exception. If thisfile is being used
as an external reference, then thisis aso treated as an error in the file that is attempting to load it. (This definition is, of
COUrse, recursive.)

The practical upshot of thisisthat any error detected in any of the files that may make up aworld being loaded must
result in a safe abort of the loading process and the throwing of a single exception to the main application.

It is up to the application what action, if any, istaken in the event of aloading error. Options range from an apologetic
alert to the user ("Download failed!"), up through sophisticated error recovery schemes involving alternate file locations,
or even different content in extreme cases.

10 Special Object Data

The datafor the "special" object typesis documented here.
10.1 Header Object

Object Type: 00
Superclass data: none
Followed by:

Byt e[2] Versi onNunber

Bool ean hasExt er nal Ref er ences
Unt32 Total FileSize

U nt32 Approxi mat eCont ent Si ze
String AuthoringField

There must be exactly one Header object in afile, and it must be the only object in the first section of thefile, which in
turn must be uncompressed. Due to its position in the file, it will always be assigned object index 1.

Ver si onNunber isaunique version number identifying variants of the file fomat. Only one variant is currently
specified: version number 1.0. This must be indicated by Ver si onNunber = {1, 0}. Thefirst number is major
revision number, followed by minor revision.

hasExt er nal Ref er ences isaboolean that describes whether thisfile is self-contained or includes URIs for other
files, such as textures or geometries. If thisisf al se, thefileis self-contained. If itist r ue, then it indicates that the
immediately following section of the file will contain the external reference objects needed to specify these external
links. See Section 10.2 for more details.

Tot al Fi | eSi ze isthetota size of thefile, from the start to the end. It will be used in the loading, so it must be

266

Mobile 3D Graphics API Version 1.1

correct. (That is, itisnot ahint.) For example, afile of size 6783 would define thisfieldas Tot al Fi | eSi ze = 6783.

Appr oxi mat eCont ent Si ze contains the total number of bytes required to dowload the entire scene, including
external links such as textures and geometry. Thisis provided as a hint, so that the user can know how much data he/she
will pay for before loading the entire scene. The Appr oxi mat eCont ent Si ze field is also necessary in order to
produce a good progress bar during the loading of the scene.

It should be noted that this information is only a hint. For instance, the file sizes of the objects that thisfileislinked to
might have changed. Dueto this, it is called "approximate" content size. Note that Appr oxi mat eCont ent Si ze
should be equal to Tot al Fi | eSi ze if Ext er nal Fi | es isfalse.

For example, afile of 6083 bytes, with an external reference to another file of 10700 bytes would set
Appr oxi mat eCont ent Si ze = 16783.

Aut hor i ngFi el d consists of asingle nul-terminated UTF-8 string. The content of the string is not defined, and may
include any information that the authoring environment wishes to placeinto it. Its most common purpose is mainly to
make it possible to put a copyright note on the file, for example: Aut hori ngFi el d = "Bl ast4Fun (C) 2003
Extrenme Ganes Inc."

Note that if the string just contains numbers and letters from the English alphabet, the UTF-8 encoding will be the same
as ASCII encoding.

10.2 External Reference

ObjectType: OXFF (255)
Superclass data: none
Followed by:

String URI

Instead of storing an object in-place, it is possible to have an external reference, in the form of aURI. Thisis stored in the
object data as a single, nul-terminated UTF-8 string.

Relative URIs are relative to the file in which they are found, as usual. For example, a URI of "http://www.gamesforfun.
com/objs/redcar.m3g", indicates another file in the M3G file format, at an absolute address, and "bluecartexture.png"
indicates a PNG file in the same location as the current file.

If an external reference cannot be loaded, thiswill result in an error, causing the parent file to be "unloadable’”.

Loops of external references (e.g. file A references file B which in turn referencesfile A again) areillegal and will result
in aloading error.

The loader must only indicate that the loading of afile is complete when all external references within it have also been
successfully loaded and the references type checked.

External references may appear only within their own section within the file. If present, this appearsimmediately after
the file header section. It may be compressed or uncompressed.

In order to facilitate type checking of externa references, loading of the externally referenced file must complete before
reading any objects which could refer to it. Thisis one of the main reasons for ensuring that external referencesarein

267

Mobile 3D Graphics API Version 1.1

their own section, which occurs before sections containing objects of other types. For example, if the external referenceis
referred to asif it were an Appearance object, then the check that it is indeed an Appearance can occur only after loading
thereferred file.

External reference loading must support both M3G and PNG file typesin order to satisfy the specification. An external
reference to any other type of file must be treated as an error. To stress the point, even if aparticular format (e.g., JPEG)
is otherwise supported by the Loader, it must still reject any M 3G files that reference JPEG images.

For M3G format files, the external reference must be able to load another M3G format file containing a single root-level
object. If more than one root-level object is defined, then the first root-level object will be used, and the other objects and
their descendants discarded.

For PNG format files, the external reference must be able to reference avalid PNG file, in which case the object created
isasingleinstance of Image2D.

In al cases, once loading completes, the single root-level object loaded from the file effectively replaces the external
reference object in the object index table. References to that index will then nominate the root-level object.

11 Per-Class Data

The data for each classin the API is now presented in alphabetical order. Where aclassis a subclass, the superclass's
datais aways output first, and this information is taken to be part of the data for the class as awhole.

Classes without a serialized form (e.g. Graphics3D) are shown here for completeness, but are indicated as "not a
seridizable class'.

Detailed information about each field is not given - it should be assumed that the data have the same meanings as those
assigned in the API. Where datais serialized in aform which is different from the way it is specified in the AP, this
aternate form is documented here.

Any values which would be invalid as arguments to the corresponding methods in the API are also invalid in thefile and
must be reported as errors. For example, a negative value in the light attenuation fields is disallowed by the API and is
therefore also disallowed in the file format.

11.1 AnimationController

ObjectType: 01
Superclass data: Object3D

Followed by:
Fl oat 32 speed;
Fl oat 32 wei ght ;
| nt 32 activelnterval Start;
| nt 32 acti vel nt erval End;
Fl oat 32 r ef er enceSequenceTi ne;
| nt 32 ref erenceWr!| dTi ne;

11.2 AnimationTrack

ObjectType: 02

268

Mobile 3D Graphics API Version 1.1

Superclass data: Object3D
Followed by:

bj ect | ndex keyfraneSequence;
bj ect | ndex ani mati onControll er;
Ul nt 32 propertyl D;

The pr oper t yl Dfield must hold avalid enumerated value, as specified in the class definition. Other values must be
treated as errors.

11.3 Appearance

ObjectType: 03
Superclass data: Object3D
Followed by:

Byt e | ayer;

bj ect | ndex conposi ti nghode;
bj ect | ndex f og;

bj ect | ndex pol ygonhMode;

bj ect | ndex mat eri al ;

bj ect I ndex[] textures;

These are simply references to each of the objects aggregated together to form an appearance.

There are as many texture objects in the textures array as there are active texture units for this appearance. The texture
units are loaded sequentialy from unit 0. If the implementation supports more texture units than are specified, these are
left in their default, inactive state, with anull texture.

If more textures are specified than are supported by the implementation, then this must be treated as an error, as it would
bein the API. The application can then decide on an appropriate course of action to handle this case.

11.4 Background

ObjectType: 04
Superclass data: Object3D
Followed by:
Col or RGBA backgr oundCol or;
bj ect | ndex backgr oundl mage;
Byt e backgr oundl mageModeX;
Byt e backgr oundl mageModeY;
| nt 32 cropX;
| nt 32 cropy,
| nt 32 cr opW dt h;
I nt 32 cropHei ght ;
Bool ean dept hd ear Enabl ed;
Bool ean col or d ear Enabl ed;

The backgr oundl mageMbdeX and backgr oundl mageModeY fields must each hold avalid enumerated value, as
specified in the class definition. Other values must be treated as errors.

269

Mobile 3D Graphics API Version 1.1

11.5 Camera

ObjectType: 05
Superclass data: Node

Followed by:
Byte proj ectionType;
| F proj ecti onType==GENERI C, THEN
Matri x projectionMatri Xx;
ELSE
Fl oat 32 fovy;
Fl oat 32 Aspect Rat i o;
Fl oat 32 near;
Fl oat 32 far;
END

Thepr oj ecti onType field must hold avalid enumerated value, as specified in the class definition. Other values must
be treated as errors.

11.6 CompositingMode

ObjectType: 06
Superclass data: Object3D

Followed by:
Bool ean dept hTest Enabl ed;
Bool ean dept hWi t eEnabl ed;
Bool ean col or Wit eEnabl ed;
Bool ean al phaWi t eEnabl ed;
Byt e bl endi ng;
Byte al phaThr eshol d;
Fl oat 32 dept hOF f set Fact or;
Fl oat 32 depthOrfset Units;

The bl endi ng field must hold avalid enumerated value, as specified in the class definition. Other values must be
treated as errors.

Theal phaThr eshol d field is stored as a byte to save space. It is mapped so that 0x00 is equivalent to 0.0 (completely
transparent), and OxFF is equivalent to 1.0 (completely opaque).

11.7 Fog

ObjectType: 07
Superclass data: Object3D

Followed by:
Col or RGB col or;
Byt e node;

| F mode==EXPONENTI AL, THEN

270

Mobile 3D Graphics API Version 1.1

Fl oat 32 density;
ELSE | F node==LI NEAR, THEN
Fl oat 32 near;

Fl oat 32 far;
END

The node field must hold avalid enumerated value, as specified in the class definition. Other values must be treated as
errors.

11.8 Graphics3D
Not a serializable class.
11.9 Group

ObjectType: 09
Superclass data: Node
Followed by:

bj ect I ndex[] children;
11.10 Image2D

ObjectType: 10
Superclass data: Object3D

Followed by:

Byt e f or mat ;

Bool ean i sMut abl e;

Ul nt 32 wi dt h;

Ul nt 32 hei ght ;

| F i sMut abl e==f al se, THEN
Byt e[] pal ette;
Byt e[] pi xel s;

END

Thef or mat field must hold avalid enumerated value, as specified in the class definition. Other values must be treated
as errors.

For a palettised format, the pi xel s array contains a single palette index per pixel, and the pal et t e array will contain
up to 256 entries, each consisting of a pixel specifier appropriate to the format chosen.

For anon-palettised format, the pal et t e array will be empty, and the pi xel s array contains a pixel specifier
appropriate to the format chosen.

In apixel specifier, each byteis scaled such that O represents the value 0.0 and 255 represents the value 1.0. The different
formats require different data to be serialized, asfollows:

271

Mobile 3D Graphics API Version 1.1

. ALPHA: asingle byte per pixel, representing pixel opacity.

. LUMINANCE: asingle byte per pixel, representing pixel luminance.

. LUMINANCE_ALPHA: two bytes per pixel. The first represents luminance, the second alpha.
. RGB: three bytes per pixel, representing red, green and blue respectively.

. RGBA: four bytes per pixel, representing red, green, blue and a pha respectively.

The meaning of the componentsis given in the documentation for the Image2D class.

11.11 IndexBuffer

ObjectType: none (abstract base class)
Superclass data: Object3D

Followed by: no data (abstract class)
11.12 KeyframeSequence

ObjectType: 19
Superclass data: Object3D

Followed by:
Byt e i nt er pol ati on;
Byt e r epeat Mode;
Byt e encodi ng;
Ul nt 32 durati on;
Ul nt 32 val i dRangeFi r st ;
Ul nt 32 val i dRangelLast ;
Ul nt 32 conponent Count ;
Ul nt 32 keyf raneCount ;

| F encodi ng ==
FOR each key frane..
Ul nt 32 tinme;
Fl oat 32[conponent Count] vect or Val ue;
END
ELSE | F encodi ng ==
Fl oat 32[conponent Count] vectorBi as;
Fl oat 32[conponent Count] vect or Scal €;
FOR each key frane..
Ul nt 32 tine;
Byt e[conponent Count] vect or Val ue;
END
ELSE | F encodi ng ==
Fl oat 32[conponent Count] vectorBi as;
Fl oat 32[conponent Count] vect or Scal €;
FOR each key frane..
Ul nt 32 tine;
Ul nt 16] conponent Count] vect or Val ue;
END
END

Thei nt er pol ati on andr epeat Mode fields must each hold avalid enumerated value, as specified in the class
definition. Other values must be treated as errors.

272

Mobile 3D Graphics API Version 1.1

All of thevect or Val ue arrays are the same size, so a separate count is stored outside the individual keyframe's data
rather than with each array.

Theencodi ng field indicates the encoding scheme to be used for the keyframe data. Only the nominated values above
are allowed. Other values must be treated as errors.

. Encoding 0 indicates that the values are stored "raw" as floats.

. Encodings 1 and 2 indicate that the values are quantized to 1 or 2 bytes. For each component, a bias and scale
are calculated from the sequence of values for that component. The bias is the mimimum value, the scaleisthe
maximum value minus the minimum value. The raw values are then converted to avalue 0..1 by subtracting the
bias and dividing by the scale. These raw values are then quantized into the range of a Byte or UInt16 by
multiplying by 255 or 65535 respectively. The converse operation restores the original value from the quantized
values.

11.13 Light

ObjectType: 12
Superclass data: Node

Followed by:
Fl oat 32 at t enuat i onConst ant ;
Fl oat 32 at t enuati onLi near;
Fl oat 32 att enuati onQuadrati c;
Col or RGB col or;
Byt e node;
Fl oat 32 intensity;
Fl oat 32 spot Angl e;
Fl oat 32 spot Exponent ;

The node field must hold avalid enumerated value, as specified in the class definition. Other values must be treated as
errors.

11.14 Loader

Not a serializable class.

11.15 Material

ObjectType: 13
Superclass data: Object3D

Followed by:
Col or R&B anbi ent Col or;
Col or RGBA di f fuseCol or;
Col or R&B em ssi veCol or;
Col or RGB specul ar Col or;
Fl oat 32 shi ni ness;
Bool ean vert exCol or Tr acki ngEnabl ed;

273

Mobile 3D Graphics API

11.16 Mesh

ObjectType: 14
Superclass data: Node
Followed by:

bj ect | ndex vert exBuffer;

Ul nt 32 subnmeshCount ;
FOR each subnesh. ..
bj ect | ndex i ndexBuf f er;
bj ect | ndex appear ance;
END

11.17 MorphingMesh

ObjectType: 15
Superclass data: Mesh
Followed by:

Ul nt 32 nmor phTar get Count ;
FOR each target buffer...

bj ect | ndex nmor phTar get ;

Fl oat 32 i nitialWeight;
END

11.18 Node

ObjectType: none (abstract base class)
Superclass data: Transformable

Followed by:
Bool ean enabl eRenderi ng;
Bool ean enabl ePi cki ng;
Byt e al phaFact or;
Ul nt 32 scope;
Bool ean hasAl i gnnent ;
| F hasAli gnnment ==TRUE, THEN
Byt e zTar get;
Byt e yTar get ;
bj ect | ndex zRef er ence;
bj ect | ndex yRef er ence;
END

Version 1.1

ThezTar get andyTar get fields must each hold avalid enumerated value, as specified in the class definition. Other

values must be treated as errors.

Theal phaFact or field is stored as a byte to save space. It is mapped so that 0x00 is equivalent to 0.0 (fully

transparent), and 255 is equivalent to 1.0 (fully opaque).

If thehasAl i gnnent fiedisf al se, the omitted fields are initialized to their default values.

Mobile 3D Graphics API Version 1.1

11.19 Object3D

ObjectType: none (abstract base class)
Superclass data: none

Followed by:
Ul nt 32 user | D;
bj ect I ndex]] ani mati onTr acks;
Ul nt 32 user Par anet er Count ;
FOR each user paraneter...
Ul nt 32 paranmet er| D
Byt e[] par anet er Val ue;
END

The userID field may be any value.

The user parameter data contains enough datato createaj ava. uti | . Hasht abl e object. This contains key/value
pairs, with the key being the par anet er | D, and the value being the par anet er Val ue byte array. The meanings of
the IDs, and the contents of the byte arrays, are defined by the application and may have any value.

The behaviour of thej ava. uti | . Hasht abl e class does not allow multiple objects with the same key. Therefore,
duplicate par anet er | Dvalues are not allowed and must be reported as an error.

If an object has no user parameters, the user Par anet er Count field must be 0. In this case, the user object in the
resulting Object3D instance must be set to nul | , rather than indicating a Hashtabl e abject with no content. The
Hashtable containing the parameters, if it exists, can be retrieved through the API using the getUserObject method.

11.20 PolygonMode

ObjectType: 08
Superclass data: Object3D

Followed by:
Byt e cul l'i ng;
Byt e shadi ng;
Byt e wi ndi ng;
Bool ean t woSi dedLi ght i ngEnabl ed;
Bool ean | ocal Caner aLi ghti ngEnabl ed;
Bool ean per specti veCorrecti onEnabl ed;

Thecul I'i ng, shadi ng andw ndi ng fields must each hold avalid enumerated value, as specified in the class
definition. Other values must be treated as errors.

11.21 RayIntersection

Not a serializable class.

275

Mobile 3D Graphics API

11.22 SkinnedMesh

ObjectType: 16
Superclass data: Mesh

Followed by:
Obj ect | ndex skel et on;
Ul nt 32 t r ansf or nRef er enceCount ;

FOR each bone reference...

Obj ect | ndex t ransf or mMNode;
Ul nt 32 firstVertex;
Ul nt 32 vert exCount ;
| nt 32 wei ght ;
END
11.23 Sprite
ObjectType: 18
Superclass data: Node
Followed by:
bj ect | ndex i mage;
bj ect | ndex appear ance;
Bool ean i sScal ed;
| nt 32 cropX;
| nt 32 cropy,
I nt 32 cr opW dt h;
I nt 32 cropHei ght ;
11.24 Texture2D
ObjectType: 17
Superclass data: Transformable
Followed by:
bj ect | ndex i mage;
Col or RGB bl endCol or;
Byt e bl endi ng;
Byt e Wr appi ngs;
Byt e wWr appi ngT;
Byt e | evel Filter;
Byt e i mgeFilter;

Version 1.1

Thel evel Filter,i nmageFilter,w appi ngS, w appi ngT, and bl endi ng fields must each hold avalid

enumerated value, as specified in the class definition. Other values must be treated as errors.

11.25 Transform

Not a serializable class.

276

Mobile 3D Graphics API Version 1.1

11.26 Transformable

ObjectType: none (abstract base class)
Superclass data: Object3D

Followed by:

Bool ean hasConponent Tr ansf orm

| F hasConponent Tr ansf or mre=TRUE, THEN
Vect or 3D transl ation;
Vect or 3D scal e;
Fl oat 32 ori entationAngl e;
Vect or 3D orientati onAxi s;

END

Bool ean hasGener al Tr ansf orm

| F hasGener al Tr ansf or m=TRUE, THEN
Matri x transform

END

If either hasConponent Tr ansf or mor hasGener al Tr ansf or misf al se, the omitted fields will beinitialized to
their default values (equivalent to an identity transform in both cases).

11.27 TriangleStripArray

ObjectType: 11
Superclass data: IndexBuffer

Followed by
Byt e encodi ng;
| F encoding == 0, THEN
Ul nt 32 startl ndex;
ELSE | F encoding == 1, THEN
Byt e startl ndex;
ELSE | F encoding == 2, THEN
U nt 16 startl ndex;
ELSE | F encodi ng == 128, THEN
U nt 32[] i ndi ces;
ELSE | F encodi ng == 129, THEN
Byt e[] i ndi ces;
ELSE | F encodi ng == 130, THEN
U nt16[] i ndi ces;
END
U nt 32[] stripLengths;

Bit 7 of theencodi ng field isequivalent to theexpl i ci t property on the index buffer, and will be 1 if the index
buffer was constructed with explicit indices, or 0 if constructed with implicit indices. The other bits indicate the width of
each index field. O indicates that the "raw" integer values are written, 1 indicates that a single byte will suffice, and 2
indicates that a 16 bit integer is sufficient to hold all the given index values. Values for the encodi ng field other than
those explicitly nominated above are not allowed and must be treated as errors.

11.28 VertexArray

ObjectType: 20

277

Mobile 3D Graphics API Version 1.1

Superclass data: Object3D

Followed by:
Byte conponent Si ze;
Byt e component Count ;
Byte encodi ng;
U nt 16 vert exCount;

FOR each vertex...
| F component Si ze==1, THEN
| F encodi ng==0, THEN
Byt e[conmponent Count] conponents;
ELSE | F encodi ng==1, THEN
Byt e[conmponent Count] conponent Del t as;
END
ELSE
| F encodi ng==0, THEN
I nt 16[conmponent Count] conponents;
ELSE | F encodi ng==1, THEN
I nt 16[conmponent Count] conponent Del t as;
END
END
END

Theconponent Si ze and conponent Count fields must each hold avalid value, as specified in the constructor
definition. Other values must be treated as errors.

Theencodi ng field indicates the encoding scheme to be used for the keyframe data. Only the nominated values above
are allowed. Other values must be treated as errors.

. Encoding 0 indicates that the values are stored "raw" as bytes or 16 bit integers.

. Encoding 1 indicates that the values are stored as differences from the previous value. Each component is
treated separately, so that the difference istaken from the corresponding component in the previous vertex. For
the first vertex, the previous value is taken to be 0. Decoding proceeds by initializing an accumulator to O for
each component, and adding each value to the accumulator. In order that the deltas can be represented within the
same number of bits as the raw values, the accumulators should be the same length as the values required (i.e. 8
or 16 bites) and be allowed to overflow. This also means that the accumulation is not dependent on the signed or
unsigned nature of the deltas. (For example, the 8-bit sequence 0, 127, 126 can equally well be represented
using deltas of 0, 127, -1 or 0, 127, 255.)

11.29 VertexBuffer

ObjectType: 21
Superclass data: Object3D

Followed by:
Col or RGBA def aul t Col or ;
bj ect | ndex positions;
Fl oat 32[3] positionBi as;
Fl oat 32 posi tionScal e;

bj ect | ndex nor mal s;
bj ect | ndex col ors;

278

Mobile 3D Graphics API Version 1.1

Ul nt 32 t excoor dAr rayCount ;
FOR each texture coordinate array...
bj ect | ndex t exCoor ds;
Fl oat 32[3] t exCoor dBi as;
Fl oat 32 t exCoor dScal e;
END

If atexture coordinate array has only two components, the corresponding t exCoor dBi as[2] element must be 0.0.

Null texture coordinate arrays are never serialized, regardless of their position. A single texture coordinate array will
therefore always be serialized as belonging to texturing unit O, regardless of its original unit it was assigned to.

There are as many referencesin the texture coordinates array as there are active texture units for this geometry. The
texture coordinate references are loaded sequentially from texture unit O. If the implementation supports more texture
units than are specified, these are left in their default, inactive state, with anull texture coordinate reference and an
undefined bias and scale.

If more texture coordinate references are specified than are supported by the implementation, then this must be treated as
an error, asit would be in the API. The application can then decide on an appropriate course of action to handle this case.

11.30 World

ObjectType: 22
Superclass data: Group
Followed by:

Obj ect | ndex acti veCaner a;
Obj ect | ndex backgr ound;

12 ObjectType Values

Thislist shows what object type a specific ObjectType value maps to.

ObjectType value | Object Type

00 Header Object

01 AnimationController
02 AnimationTrack

03 Appearance

04 Background

05 Camera

06 CompositingMode
07 Fog

08 PolygonMode

279

Mobile 3D Graphics API

09 Group

10 Image2D

11 TriangleStripArray
12 Light

13 Material

14 Mesh

15 MorphingMesh

16 SkinnedMesh

17 Texture2D

18 Sprite

19 KeyframeSequence
20 VertexArray

21 VertexBuffer

22 World

23..254 Reserved for use in future versions of the file format
255 External Reference

Version 1.1

Note that Object3D, Transformable, Node, and IndexBuffer are abstract classes and cannot be instantiated directly. They
therefore do not appear in thislist.

280

	Mobile 3D Graphics API
	Contents
	Overview
	Package javax.microedition.m3g
	Class Hierarchy
	AnimationController
	AnimationTrack
	Appearance
	Background
	Camera
	CompositingMode
	Fog
	Graphics3D
	Group
	Image2D
	IndexBuffer
	KeyframeSequence
	Light
	Loader
	Material
	Mesh
	MorphingMesh
	Node
	Object3D
	PolygonMode
	RayIntersection
	SkinnedMesh
	Sprite3D
	Texture2D
	Transform
	Transformable
	TriangleStripArray
	VertexArray
	VertexBuffer
	World
	Constant Field Values

	M3G File Format

