
Wireless Messaging
API (WMA)

for Java™ 2 Micro Edition

Version 1.0.2
Final Release

05/17/2004

JSR 205 Expert Group
JSR-205-EG@JCP.ORG

Java Community Process (JCP)

2

Wireless Messaging API 2.0 Specification ("Specification")

Status: Final

Specification Lead: Siemens AG ("Specification Lead")
Release: May 17, 2004

Copyright 2004 Siemens AG

Portions Copyright 2003 Sun Microsystems, Inc.

All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or
more U.S. patents, foreign patents, or pending applications. Except as provided under the following license, no
part of the Specification may be reproduced in any form by any means without the prior written authorization of
the Specification Lead and its licensors, if any. Any use of the Specification and the information described
therein will be governed by the terms and conditions of this license and the Export Control Guidelines as set
forth in the Terms of Use on the Sun's website. By viewing, downloading or otherwise copying the
Specification, you agree that you have read, understood, and will comply with all of the terms and conditions set
forth herein.
The Specification Lead hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited
license (without the right to sublicense), under the Specification
Lead's intellectual property rights that are essential to practice the Specification, to internally practice the
Specification for the purpose of designing and developing your Java applets and applications intended to run on
the Java platform or creating a clean room implementation of the Specification that: (i) includes a complete
implementation of the current version of the Specification, without subsetting or supersetting; (ii) implements
all of the interfaces and functionality of the Specification without subsetting or supersetting; (iii) includes a
complete implementation of any optional components (as defined by the Specification) which you choose to
implement, without subsetting or supersetting; (iv) implements all of the interfaces and functionality of such
optional components, without subsetting or supersetting; (v) does not add any additional packages, classes or
interfaces to the "java.*" or "javax.*" packages or subpackages or other packages defined by the Specification;
(vi) satisfies all testing requirements available from the Specification Lead relating to the most recently
published version of the Specification six (6) months prior to any release of the clean room implementation or
upgrade thereto; (vii) does not derive from any of the Specification Lead's source code or binary code materials;
and (viii) does not include any of the Specification Lead's source code or binary code materials without an
appropriate and separate license from the Specification Lead. The Specification contains the proprietary
information of the Specification Lead and may only be used in accordance with the license terms set forth
herein. This license will terminate immediately without notice from the Specification Lead if you fail to
comply with any provision of this license. Upon termination or expiration of this license, you must cease use
of or destroy the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors, the
Specification Lead or the Specification Lead's licensors is granted hereunder. Sun, Sun Microsystems, the Sun
logo, Java, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries.
DISCLAIMER OF WARRANTIES

3

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY THE
SPECIFICATION LEAD. THE SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT
THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any
commitment to release or implement any portion of the Specification in any product.
THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. THE
SPECIFICATION LEAD MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such
changes in the Specification will be governed by the then-current license for the applicable version of the
Specification.
LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL THE SPECIFICATION LEAD OR
ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST
REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR
PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF
THE SPECIFICATION, EVEN IF THE SPECIFICATION LEAD AND/OR ITS LICENSORS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
You will indemnify, hold harmless, and defend the Specification Lead and its licensors from any claims arising
or resulting from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet
and/or clean room implementation; and/or (iii) any claims that later versions or releases of any Specification
furnished to you are incompatible with the Specification provided to you under this license.
RESTRICTED RIGHTS LEGEND
If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through
227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD
acquisitions).
REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your
evaluation of the Specification ("Feedback"). To the extent that you provide the Specification Lead with any
Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis,
and (ii) grant the Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license,
with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without
limitation the Feedback for any purpose related to the Specification and future versions, implementations, and
test suites thereof.
(LFI#111199/Form ID#011801)

4

3

Contents
Preface .. 5

Overview ... 1

javax.microedition.io ... 5
Connector .. 6

javax.wireless.messaging ... 11
BinaryMessage .. 13
Message ... 15
MessageConnection .. 17
MessageListener .. 23
MessagePart .. 27
MultipartMessage .. 32
SizeExceededException .. 39
TextMessage ... 40

GSM SMS Adapter .. 43

GSM Cell Broadcast Adapter ... 53

CDMA IS-637 SMS Adapter .. 55

MMS Adapter ... 57

Deploying JSR 205 Interfaces on a MIDP 2.0 Platform 65

Almanac .. 71

Index ... 75

4

7

Preface

This book provides information on the messaging API which is included in the JSR 205 Wireless Messaging
API 2.0(WMA 2.0) specification.

Who Should Use This Book
This book is intended primarily for those individuals and companies who want to implement WMA.

Before You Read This Book
This book assumes that you have experience programming in the C and Java™ languages. It also assumes that
you are familiar with the Mobile Information Device Profile (MIDP), the Connected, Limited Device
Configuration (CLDC), and the Connected Device Configuration (CDC).

Familiarity with multimedia processing recommended, but not required.

References
GSM 03.40 v7.4.0 Digital cellular telecommunications system (Phase 2+); Technical realization of the Short
Message Service (SMS). ETSI 2000

TS 100 900 v7.2.0 (GSM 03.38) Digital cellular telecommunications system (Phase 2+); Alphabets and
language-specific information. ETSI 1999
Mobile Information Device Profile (MIDP) Specification, Version 1.0 , Sun Microsystems, 2000
GSM 03.41, ETSI Digital Cellular Telecommunication Systems (phase 2+); Technical realization of Short
Message Service Cell Broadcast (SMSCB) (GSM 03.41)
Wireless Datagram Protocol , Version 14-Jun-2001, Wireless Application Protocol WAP-259-WDP-20010614-
aWAP (WDP)
TIA/EIA-637-A: Short Message Service for Spread Spectrum Systems (IS637)
Connected Device Configuration (CDC) and the Foundation Profile, a white paper, (Sun Microsystems, Inc.,
2002)
J2ME™ CDC Specification, v1.0, (Sun Microsystems, Inc., 2002)
Porting Guide for the Connected Device Configuration, Version 1.0, and the Foundation Profile, Version 1.0;
(Sun Microsystems, Inc., 2001)
WAP-209-MMSEncapsulation Version 1 01-June-2001
MMS Conformance Document Version 2.0.0 06-February-2002
RFC #822 Standard for the format of APRA Internet Text Messages August-13-1992
RFC #2045 Multipurpose Internet Mail Extensions (MIME) November-1996
RFC #2387 The MIME Multipart/Related Content-type 1998
RFC #1738 Uniform Resource Locators (URL)December-1994

Preface

8

Related Documentation
The Java™ Language Specification by James Gosling, Bill Joy, and Guy L. Steele (Addison-Wesley, 1996),
ISBN 0-201-63451-1

The Java™ Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm and Frank Yellin
(Addison-Wesley, 1999), ISBN 0-201-43294-3

Terms, Acronyms, and Abbreviations Used in this Book
SMS - Short Message Service

MMS - Multimedia Message Service
URL - Uniform Resource Locator

Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files, and directories; on-
screen computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail .

AaBbCc123 What you type, when contrasted with on-screen
computer output

% su
Password:

AaBbCc123 Book titles, new words or terms, words to be
emphasized
Command-line variable; replace with a real name or
value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename .

1

C H A P T E R 1
Overview
Description
The messaging API is based on the Generic Connection Framework (GCF), which is defined in the Connected
Limited Device Configuration (CLDC) 1.0 specification. The package javax.microedition.io defines
the framework and supports input/output and networking functionality in J2ME profiles. It provides a coherent
way to access and organize data in a resource-constrained environment.

The design of the messaging functionality is similar to the datagram functionality that is used for UDP in the
Generic Connection Framework. Like the datagram functionality, messaging provides the notion of opening a
connection based on a string address and that the connection can be opened in either client or server mode.
However, there are differences between messages and datagrams, so messaging interfaces do not inherit from
datagram. It might also be confusing to use the same interfaces for messages and datagrams.
The interfaces for the messaging API have been defined in the javax.wireless.messaging package.

Representation of a message
A message can be thought of as having an address part and a data part. A message is represented by a class that
implements the interface defined for messages in the API. This interface provides methods that are common for
all messages. In the javax.wireless.messaging package, the base interface that is implemented by all
messages is named Message. It provides methods for addresses and timestamps.

For the data part of the message, the API is designed to handle text, binary and multipart messages. These are
represented by three subinterfaces of Message: TextMessage, BinaryMessage and
MultipartMessage. These subinterfaces provide ways to manipulate the payload of the message as Strings,
byte arrays and message parts, respectively.
Other subinterfaces of Message can be defined for message payloads which are neither pure text nor pure
binary. It is also possible to create further subinterfaces of TextMessage, BinaryMessage and
MultipartMessage for possible protocol-specific features.

Sending and receiving messages
As defined by the Generic Connection Framework, the message sending and receiving functionality is
implemented by a Connection interface, in this case, MessageConnection. To make a connection, the
application obtains an object implementing the MessageConnection from the Connector class by
providing a URL connection string that identifies the address.

If the application specifies a full destination address that defines a recipient to the Connector, it gets a
MessageConnection that works in a “client” mode. This kind of Connection can only be used for
sending messages to the address specified when creating it.
The application can create a “server” mode MessageConnection by providing a URL connection string
that includes only an identifier that specifies the messages intended to be received by this application. Then it
can use this MessageConnection object for receiving and sending messages.
The format of the URL connection string that identifies the address is specific to the messaging protocol used.
For sending messages, the MessageConnection object provides factory methods for creating Message
objects. For receiving messages, the MessageConnection supports an event listener-based receiving

Overview

2

mechanism, in addition to a synchronous blocking receive() method. The methods for sending and
receiving messages can throw a SecurityException if the application does not have the permission to
perform these operations.
The generic connection framework includes convenience methods for getting InputStream and
OutputStream handles for connections which are StreamConnections. The MessageConnection
does not support stream based operations. If an application calls the Connector.open*Stream methods, it
will receive an IllegalArgumentException.

Bearer-specific Adapter
The basic MessageConnection and Message framework provides a general mechanism with establishing
a messaging application. The appendices describe the specific adapter requirements for URL connection string
formatting and bearer-specific message handling requirements.

• JavaDoc API Documentation

• Appendix A - GSM SMS Adapter

• Appendix B - GSM CBS Adapter

• Appendix C - CDMA IS-637 SMS Adapter

• Appendix D - MMS Adapter

The appendices of this specification include the definition of SMS, CBS and MMS URL connection strings.
These connection schemes MAY be reused in other adapter specifications, as long as the specified syntax is not
modified and the usage does not overlap with these specified adapters (that is, no platform can be expected to
implement two protocols for which the URI scheme would be the same, making it impossible for the platform to
distinguish which is desired by the application). Other adapter specifications MAY define new connection
schemes, as long as these do not conflict with any other connection scheme in use with the Generic Connection
Framework.

The appendices describe how the SMS, CBS and MMS adpaters MUST be implemented to conform to the
requirements of their specific wireless network environments and how these adapters supply the functionality
defined in the javax.wireless.messaging package.
When a GSM SMS message connection is established, the platform MUST use the rules in Appendix A for the
syntax of the URL connection string and for treatment of the message contents.
When a GSM CBS message connection is established, the platform MUST use the rules in Appendix B for the
syntax of the URL connection string and for treatment of the message contents.
When a CDMA SMS message connection is established, the platform MUST use the rules in Appendix C for
the syntax of the URL connection string and for treatment of the message contents.
When a MMS message connection is established, the platform MUST use the rules in Appendix D for the
syntax of the URL connection string and for treatment of the message contents.

Security
To send and receive messages using this API, applications MUST be granted a permission to perform the
requested operation. The mechanisms for granting a permission are implementation dependent.

The permissions for sending and receiving MAY depend on the type of messages and addresses being used. An
implementation MAY restrict an application’s ability to send some types of messages and/or sending messages
to certain recipient addresses. These addresses can include device addresses and/or identifiers, such as port
numbers, within a device.

Overview

3

An implementation MAY restrict certain types of messages or connection addresses, such that the permission
would never be available to an application on that device.
The applications MUST NOT assume that successfully sending one message implies that they have the
permission to send all kinds of messages to all addresses.
An application should handle SecurityExceptions when a connection handle is provided from
Connector.open(url) and for any message receive() or send() operation that potentially engages
with the network or the privileged message storage on the device.

Permissions for MIDP 1.0 Platform
When the JSR 205 interfaces are deployed on a MIDP 1.0 device, there is no formal mechanism to identify how
a permission to use a specific feature can be granted to a running application. On some systems, the decision to
permit a particular operation is left in the hands of the end user. If the user decides to deny the required
permission, then a SecurityException can be thrown from the Connector.open(), the
MessageConnection.send(), or the MessageConnection.receive() method.

Permissions for MIDP 2.0 Platform
When the JSR 205 interfaces are deployed on a MIDP 2.0 device, permissions must be granted to open a
connection and to send and receive messages. Separate permissions are provided for the SMS and CBS
protocols.

To open a connection, a MIDlet suite must have the appropriate permission to access the
MessageConnection implementation. If the permission is not granted, then Connector.open must
throw a SecurityException. To send and receive messages, the MIDlet suite can restrict certain types of
messages or connection addresses. If the application attempts to send or receive either a restricted type of
message or a message with a restricted connection address, then a SecurityException must be thrown.
For more information on the permissions that are provided by WMA 2.0, see Appendix E “Deploying JSR 205
Interfaces on a MIDP 2.0 Platform”.

How to Use the Messaging API
This section provides some examples of how the messaging API can be used.

Sending a text message to an end user
The following sample code sends the string “Hello World!” to an end user as a normal SMS message.

try {
String addr = “sms://+358401234567”;
MessageConnection conn = (MessageConnection) Connector.open(addr);
TextMessage msg =

(TextMessage)conn.newMessage(MessageConnection.TEXT_MESSAGE);
msg.setPayloadText(“Hello World!”);
conn.send(msg);

} catch (Exception e) {
...
}

A server that responds to received messages
The following sample code illustrates a server application that waits for messages sent to port 5432 and
responds to them.

Overview

4

try {
String addr = “sms://:5432”;
MessageConnection conn = (MessageConnection) Connector.open(addr);
Message msg = null;

while (someExitCondition) {
// wait for incoming messages

 msg = conn.receive();
 // received a message
 if (msg instanceof TextMessage) {

 TextMessage tmsg = (TextMessage)msg;

 String receivedText = tmsg.getPayloadText();
 // respond with the same text with “Received:”
 // inserted in the beginning
 tmsg.setPayloadText(“Received:” + receivedText);
 // Note that the recipient address in the message is
 // already correct as we are reusing the same object

 conn.send(tmsg);
 } else {
 // Received message was not a text message, but e.g. binary

 ...
 }

 }
 } catch (Exception e) {

 ...
 }

 Package Summary

 Messaging Interfaces

 javax.wireless.
 messaging

 This package defines an API which allows applications to send and receive wireless
 messages.

 Networking Package

 javax.microedition.io This pacakge includes the platform networking interfaces which have been modified
 for use on platforms that support message connections.

5

C H A P T E R 2
Package
javax.microedition.io
Description
This pacakge includes the platform networking interfaces which have been modified for use on platforms that
support message connections.

This package includes the Connector class from MIDP 2.0. This class includes SecurityException as
an expected return from calls to open() which may require explicit authorization to connect.
When the message connection is implemented on a MIDP 1.0 platform, the SecurityException can be
provided by a platform-dependent authorization mechanism. For example, the user might be prompted to ask if
the application can send a message and the user’s denial interpretted as a SecurityException.

Since: MIDP2.0

Class Summary

Interfaces

Classes

Connector Factory class for creating new Connection objects.

Exceptions

Connector javax.microedition.io

6

javax.microedition.io
Connector
Declaration
public class Connector

java.lang.Object

|
+--javax.microedition.io.Connector

Description
Factory class for creating new Connection objects.

The creation of Connections is performed dynamically by looking up a protocol implementation class whose
name is formed from the platform name (read from a system property) and the protocol name of the requested
connection (extracted from the parameter string supplied by the application programmer.) The parameter string
that describes the target should conform to the URL format as described in RFC 2396. This takes the general
form:
{scheme}:[{target}][{parms}]
where {scheme} is the name of a protocol such as http.
The {target} is normally some kind of network address.
Any {parms} are formed as a series of equates of the form “;x=y”. Example: “;type=a”.
An optional second parameter may be specified to the open function. This is a mode flag that indicates to the
protocol handler the intentions of the calling code. The options here specify if the connection is going to be read
(READ), written (WRITE), or both (READ_WRITE). The validity of these flag settings is protocol dependent.
For instance, a connection for a printer would not allow read access, and would throw an
IllegalArgumentException. If the mode parameter is not specified, READ_WRITE is used by default.
An optional third parameter is a boolean flag that indicates if the calling code can handle timeout exceptions. If
this flag is set, the protocol implementation may throw an InterruptedIOException when it detects a timeout
condition. This flag is only a hint to the protocol handler, and it does not guarantee that such exceptions will
actually be thrown. If this parameter is not set, no timeout exceptions will be thrown.
Because connections are frequently opened just to gain access to a specific input or output stream, four
convenience functions are provided for this purpose. See also: DatagramConnection for information
relating to datagram addressing

Since: CLDC 1.0

Member Summary
Fields

static int READ

static int READ_WRITE

static int WRITE

Methods
static Connection open(java.lang.String name)

javax.microedition.io Connector
READ

7

Fields

READ
Declaration:
public static final int READ

Description:
Access mode READ.

The value 1 is assigned to READ.

READ_WRITE
Declaration:
public static final int READ_WRITE

Description:
Access mode READ_WRITE.

The value 3 is assigned to READ_WRITE.

WRITE
Declaration:
public static final int WRITE

Description:
Access mode WRITE.

The value 2 is assigned to WRITE.

static Connection open(java.lang.String name, int mode)

static Connection open(java.lang.String name, int mode, boolean timeouts)

static java.io.
DataInputStream

openDataInputStream(java.lang.String name)

static java.io.
DataOutputStream

openDataOutputStream(java.lang.String name)

static java.io.
InputStream

openInputStream(java.lang.String name)

static java.io.
OutputStream

openOutputStream(java.lang.String name)

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary

Connector javax.microedition.io
open(String)

8

Methods

open(String)
Declaration:
public static javax.microedition.io.Connection open(java.lang.String name)

throws IOException

Description:
Create and open a Connection.

Parameters:
name - The URL for the connection.

Returns: A new Connection object.

Throws:
java.lang.IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the requested connection cannot be made, or the protocol
type does not exist.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If a requested protocol handler is not permitted.

open(String, int)
Declaration:
public static javax.microedition.io.Connection open(java.lang.String name, int mode)

throws IOException

Description:
Create and open a Connection.

Parameters:
name - The URL for the connection.

mode - The access mode.

Returns: A new Connection object.

Throws:
java.lang.IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the requested connection cannot be made, or the protocol
type does not exist.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If a requested protocol handler is not permitted.

open(String, int, boolean)
Declaration:
public static javax.microedition.io.Connection open(java.lang.String name, int mode,

boolean timeouts)

throws IOException

Description:
Create and open a Connection.

javax.microedition.io Connector
openDataInputStream(String)

9

Parameters:
name - The URL for the connection

mode - The access mode

timeouts - A flag to indicate that the caller wants timeout exceptions

Returns: A new Connection object

Throws:
java.lang.IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - if the requested connection cannot be made, or the protocol
type does not exist.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If a requested protocol handler is not permitted.

openDataInputStream(String)
Declaration:
public static java.io.DataInputStream openDataInputStream(java.lang.String name)

throws IOException

Description:
Create and open a connection input stream.

Parameters:
name - The URL for the connection.

Returns: A DataInputStream.

Throws:
java.lang.IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If access to the requested stream is not permitted.

openDataOutputStream(String)
Declaration:
public static java.io.DataOutputStream openDataOutputStream(java.lang.String name)

throws IOException

Description:
Create and open a connection output stream.

Parameters:
name - The URL for the connection.

Returns: A DataOutputStream.

Throws:
java.lang.IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If access to the requested stream is not permitted.

Connector javax.microedition.io
openInputStream(String)

10

openInputStream(String)
Declaration:
public static java.io.InputStream openInputStream(java.lang.String name)

throws IOException

Description:
Create and open a connection input stream.

Parameters:
name - The URL for the connection.

Returns: An InputStream.

Throws:
java.lang.IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If access to the requested stream is not permitted.

openOutputStream(String)
Declaration:
public static java.io.OutputStream openOutputStream(java.lang.String name)

throws IOException

Description:
Create and open a connection output stream.

Parameters:
name - The URL for the connection.

Returns: An OutputStream.

Throws:
java.lang.IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If access to the requested stream is not permitted.

11

C H A P T E R 3
Package
javax.wireless.messaging
Description
 This package defines an API which allows applications to send and receive wireless messages. The API is
generic and independent of the underlying messaging protocol. The underlying protocol can be, for example,
GSM Short Message Service, CDMA SMS, MMS, and so on.

Overview
This package is designed to work with Message objects that may contain different elements depending on the
underlying messaging protocol. This is different from Datagrams that are assumed always to be blocks of
binary data.

An adapter specification for a given messaging protocol may define further interfaces derived from the
Message interfaces included in this generic specification.
Unlike network layer datagrams, the wireless messaging protocols that are accessed by using this API are
typically of store-and-forward nature. Messages will usually reach the recipient, even if the recipient is not
connected at the time of sending. This may happen significantly later if the recipient is disconnected for a long
period of time. Sending and possibly also receiving these wireless messages typically involves a financial cost
to the end user that cannot be neglected. Therefore, applications should not send unnecessary messages.

The MessageConnection and Message Interfaces
The MessageConnection interface represents a Connection that can be used for sending and receiving
messages. The application opens a MessageConnection with the Generic Connection Framework by
providing a URL connection string.

The MessageConnection can be opened either in “server” or in “client” mode. A “server” mode
connection is opened by providing a URL that specifies an identifier for an application on the local device for
incoming messages. A port number is an example of an identifier. Messages received with this identifier will
then be delivered to the application by using this connection. A “server” mode connection can be used both for
sending and for receiving messages.
A “client” mode connection is opened by providing a URL that points to another device. A “client” mode
connection can only be used for sending messages.
The messages are represented by the Message interface and interfaces derived from it. The Message
interface has the very basic functions that are common to all messages. Derived interfaces represent messages
of different types and provide methods for accessing type-specific features. The kinds of derived interfaces that
are supported depends on the underlying messaging protocol. If necessary, interfaces derived from Message
can be defined in the adapter definitions for mapping the API to an underlying protocol.
The mechanism to derive new interfaces from the Message is intended as an extensibility mechanism allowing
new protocols to be supported in platforms. Applications are not expected to create their own classes that
implement the Message interface. The only correct way for applications to create object instances
implementing the Message interface is to use the MessageConnection.newMessage factory method.

javax.wireless.messaging

12

Since: WMA 1.0

Class Summary

Interfaces

BinaryMessage An interface representing a binary message.

Message This is the base interface for derived interfaces that represent various types of
messages.

MessageConnection The MessageConnection interface defines the basic functionality for sending and
receiving messages.

MessageListener The MessageListener interface provides a mechanism for the application to be
notified of incoming messages.

MultipartMessage An interface representing a multipart message.

TextMessage An interface representing a text message.

Classes

MessagePart Instances of the MessagePart class can be added to a MultipartMessage.

Exceptions

SizeExceededException Inidicates, that an operation is not executable due to insufficient system resources.

javax.wireless.messaging BinaryMessage
getPayloadData()

13

javax.wireless.messaging
BinaryMessage
Declaration
public interface BinaryMessage extends Message

All Superinterfaces: Message

Description
An interface representing a binary message. This is a subinterface of Message which contains methods to get
and set the binary data payload. The setPayloadData() method sets the value of the payload in the data
container without any checking whether the value is valid in any way. Methods for manipulating the address
portion of the message are inherited from Message.

Object instances implementing this interface are just containers for the data that is passed in.

Methods

getPayloadData()
Declaration:
public byte[] getPayloadData()

Description:
Returns the message payload data as an array of bytes.

Returns null, if the payload for the message is not set.

The returned byte array is a reference to the byte array of this message and the same reference is returned
for all calls to this method made before the next call to setPayloadData.

Returns: the payload data of this message or null if the data has not been set

See Also: setPayloadData(byte[])

Member Summary
Methods

 byte[] getPayloadData()

 void setPayloadData(byte[] data)

Inherited Member Summary

Methods inherited from interface Message

getAddress(), getTimestamp(), setAddress(String)

BinaryMessage javax.wireless.messaging
setPayloadData(byte[])

14

setPayloadData(byte[])
Declaration:
public void setPayloadData(byte[] data)

Description:
Sets the payload data of this message. The payload may be set to null.

Setting the payload using this method only sets the reference to the byte array. Changes made to the
contents of the byte array subsequently affect the contents of this BinaryMessage object. Therefore,
applications should not reuse this byte array before the message is sent and the MessageConnection.
send method returns.

Parameters:
data - payload data as a byte array

See Also: getPayloadData()

javax.wireless.messaging Message
getAddress()

15

javax.wireless.messaging
Message
Declaration
public interface Message

All Known Subinterfaces: BinaryMessage, MultipartMessage, TextMessage

Description
This is the base interface for derived interfaces that represent various types of messages. This package is
designed to work with Message objects that may contain different elements depending on the underlying
messaging protocol. This is different from Datagrams that are assumed always to be just blocks of binary
data. An adapter specification for a given messaging protocol may define further interfaces derived from the
Message interfaces included in this generic specification.

The wireless messaging protocols that are accessed via this API are typically of store-and-forward nature,
unlike network layer datagrams. Thus, the messages will usually reach the recipient, even if the recipient is not
connected at the time of sending the message. This may happen significantly later if the recipient is
disconnected for a long time. Sending, and possibly also receiving, these wireless messages typically involves a
financial cost to the end user that cannot be neglected. Therefore, applications should not send many messages
unnecessarily.
This interface contains the functionality common to all messages. Concrete object instances representing a
message will typically implement other (sub)interfaces providing access to the content and other information in
the message which is dependent on the type of the message.
Object instances implementing this interface are just containers for the data that is passed in. The
setAddress() method just sets the value of the address in the data container without any checking whether
the value is valid in any way.

Methods

getAddress()
Declaration:
public java.lang.String getAddress()

Description:
Returns the address associated with this message.

If this is a message to be sent, then this address is the recipient’s address.

Member Summary
Methods

 java.lang.String getAddress()

 java.util.Date getTimestamp()

 void setAddress(java.lang.String addr)

Message javax.wireless.messaging
getTimestamp()

16

If this is a message that has been received, then this address is the sender’s address.

Returns null, if the address for the message is not set.

Note: This design allows responses to be sent to a received message by reusing the same Message object
and just replacing the payload. The address field can normally be kept untouched (unless the messaging
protocol requires some special handling of the address).

The returned address uses the same URL string syntax that Connector.open() uses to obtain this
MessageConnection.

Returns: the address of this message, or null if the address is not set

See Also: setAddress(String)

getTimestamp()
Declaration:
public java.util.Date getTimestamp()

Description:
Returns the timestamp indicating when this message has been sent.

Returns: Date indicating the timestamp in the message or null if the timestamp is not set or if the time
information is not available in the underlying protocol message

setAddress(String)
Declaration:
public void setAddress(java.lang.String addr)

Description:
Sets the address associated with this message, that is, the address returned by the getAddress method.
The address may be set to null.

The address MUST use the same URL string syntax that Connector.open() uses to obtain this
MessageConnection.

Parameters:
addr - address for the message

See Also: getAddress()

javax.wireless.messaging MessageConnection
setAddress(String)

17

javax.wireless.messaging
MessageConnection
Declaration
public interface MessageConnection extends javax.microedition.io.Connection

All Superinterfaces: javax.microedition.io.Connection

Description
The MessageConnection interface defines the basic functionality for sending and receiving messages. It
contains methods for sending and receiving messages, factory methods to create a new Message object, and a
method that calculates the number of segments of the underlying protocol that are needed to send a specified
Message object.

This class is instantiated by a call to Connector.open(). An application SHOULD call close() when it
is finished with the connection. An IOException is thrown when any method (except close), which is
declared to throw an IOException, is called on the MessageConnection after the connection has been
closed.
Messages are sent on a connection. A connection can be defined as server mode or client mode.
In a client mode connection, messages can only be sent. A client mode connection is created by passing a string
identifying a destination address to the Connector.open() method. This method returns a
MessageConnection object.
In a server mode connection, messages can be sent or received. A server mode connection is created by passing
a string that identifies an end point (protocol dependent identifier, for example, a port number) on the local host
to the Connector.open() method. If the requested end point identifier is already reserved, either by some
system application or by another Java application, Connector.open() throws an IOException. Java
applications can open MessageConnections for any unreserved end point identifier, although security
permissions might not allow it to send or receive messages using that end point identifier.
The scheme that identifies which protocol is used is specific to the given protocol. This interface does not
assume any specific protocol and is intended for all wireless messaging protocols.
An application can have several MessageConnection instances open simultaneously; these connections
can be both client and server mode.
The application can create a class that implements the MessageListener interface and register an instance
of that class with the MessageConnection(s) to be notified of incoming messages. With this technique, a
thread does not have to be blocked, waiting to receive messages.

Member Summary
Fields

static java.lang.
String

BINARY_MESSAGE

static java.lang.
String

MULTIPART_MESSAGE

static java.lang.
String

TEXT_MESSAGE

MessageConnection javax.wireless.messaging
BINARY_MESSAGE

18

Fields

BINARY_MESSAGE
Declaration:
public static final java.lang.String BINARY_MESSAGE

Description:
Constant for a message type for binary messages (value = “binary”). If this constant is used for the type
parameter in the newMessage() methods, then the newly created Message will be an instance
implementing the BinaryMessage interface.

MULTIPART_MESSAGE
Declaration:
public static final java.lang.String MULTIPART_MESSAGE

Description:
Constant for a message type for multipart MIME messages (value = “multipart”). Using this constant as
the type parameter in the newMessage() methods will cause the newly created Message to be an
instance implementing the MultipartMessage interface.

Since: WMA 2.0

TEXT_MESSAGE
Declaration:
public static final java.lang.String TEXT_MESSAGE

Description:
Constant for a message type for text messages (value = “text”). If this constant is used for the type
parameter in the newMessage() methods, then the newly created Message will be an instance
implementing the TextMessage interface.

Methods
 Message newMessage(java.lang.String type)

 Message newMessage(java.lang.String type, java.lang.String address)

 int numberOfSegments(Message msg)

 Message receive()

 void send(Message msg)

 void setMessageListener(MessageListener l)

Inherited Member Summary

Methods inherited from interface Connection

close()

Member Summary

javax.wireless.messaging MessageConnection
newMessage(String)

19

Methods

newMessage(String)
Declaration:
public javax.wireless.messaging.Message newMessage(java.lang.String type)

Description:
Constructs a new message object of a given type. When the type TEXT_MESSAGE is passed in, the created
object implements the TextMessage interface. When type BINARY_MESSAGE constant is passed in, the
created object implements the BinaryMessage interface. When type MULTIPART_MESSAGE is passed
in, the created object implements the MultipartMessage interface. Adapter definitions for messaging
protocols can define new constants and new subinterfaces for the Messages. The type strings are case-
sensitive. The parameter is compared with the String.equals() method and does not need to be
instance equivalent with the constants specified in this class.

For adapter definitions that are not defined within the JCP process, the strings used MUST begin with an
inverted domain name controlled by the defining organization, as is used for Java package names. Strings
that do not contain a full stop character “.” are reserved for specifications done within the JCP process and
MUST NOT be used by other organizations defining adapter specification.

When this method is called from a client mode connection, the newly created Message has the destination
address set to the address identified when this Connection was created.

When this method is called from a server mode connection, the newly created Message does not have the
destination address set. It must be set by the application before trying to send the message.

If the connection has been closed, this method still returns a Message instance.

Parameters:
type - the type of message to be created. There are constants for basic types defined in this interface.

Returns: Message object for a given type of message

Throws:
java.lang.IllegalArgumentException - if the type parameters is not equal to the value of
TEXT_MESSAGE, BINARY_MESSAGE, MULTIPART_MESSAGE or any other type value specified
in a private or publicly standardized adapter specification that is supported by the implementation

newMessage(String, String)
Declaration:
public javax.wireless.messaging.Message newMessage(java.lang.String type, java.lang.

String address)

Description:
Constructs a new Message object of a given type and initializes it with the given destination address. The
semantics related to the parameter type are the same as for the method signature with just the type
parameter.

If the connection has been closed, this method still returns a Message instance.

Parameters:
type - the type of message to be created. There are constants for basic types defined in this interface.

address - destination address for the new message

Returns: Message object for a given type of message

MessageConnection javax.wireless.messaging
numberOfSegments(Message)

20

Throws:
java.lang.IllegalArgumentException - if the type parameters is not equal to the value of
TEXT_MESSAGE, BINARY_MESSAGE, MULTIPART_MESSAGE or any other type value specified in
a private or publicly standardized adapter specification that is supported by the implementation

See Also: newMessage(String)

numberOfSegments(Message)
Declaration:
public int numberOfSegments(javax.wireless.messaging.Message msg)

Description:
Returns the number of segments in the underlying protocol that would be needed for sending the specified
Message.

Note that this method does not actually send the message. It will only calculate the number of protocol
segments needed for sending the message.

This method will calculate the number of segments needed when this message is split into the protocol
segments using the appropriate features of the underlying protocol. This method does not take into account
possible limitations of the implementation that may limit the number of segments that can be sent using this
feature. These limitations are protocol-specific and are documented with the adapter definition for that
protocol.

If the connection has been closed, this method returns a count of the message segments that would be sent
for the provided Message.

Parameters:
msg - the message to be used for the calculation

Returns: number of protocol segments needed for sending the message. Returns 0 if the Message object
cannot be sent using the underlying protocol.

receive()
Declaration:
public javax.wireless.messaging.Message receive()

throws IOException, InterruptedIOException

Description:
Receives a message.

If there are no Messages for this MessageConnection waiting, this method will block until either a
message for this Connection is received or the MessageConnection is closed.

Returns: a Message object representing the information in the received message

Throws:
java.io.IOException - if any of these situations occur:

• there is an error while receiving a message

• this method is called while the connection is closed

• this method is called on a client mode MessageConnection

java.io.InterruptedIOException - if this MessageConnection object is closed during
this receive method call

javax.wireless.messaging MessageConnection
send(Message)

21

java.lang.SecurityException - if the application does not have permission to receive messages using the
given port number

See Also: send(Message)

send(Message)
Declaration:
public void send(javax.wireless.messaging.Message msg)

throws IOException, InterruptedIOException

Description:
Sends a message.

Parameters:
msg - the message to be sent

Throws:
java.io.IOException - if the message could not be sent due to a network failure or if the
connection is closed

java.lang.IllegalArgumentException - if the message is incomplete or contains invalid
information. This exception is also thrown if the payload of the message exceeds the maximum length
for the given messaging protocol. One specific case when the message is considered to contain invalid
information is if the Message is not of the right type to be sent using this MessageConnection;
the Message should be created using the newMessage() method of the same
MessageConnection as will be used for sending it to ensure that it is of the right type.

java.io.InterruptedIOException - if a timeout occurs while either trying to send the
message or if this Connection object is closed during this send operation

java.lang.NullPointerException - if the parameter is null

java.lang.SecurityException - if the application does not have permission to send the message

See Also: receive()

setMessageListener(MessageListener)
Declaration:
public void setMessageListener(javax.wireless.messaging.MessageListener l)

throws IOException

Description:
Registers a MessageListener object that the platform can notify when a message has been received on
this MessageConnection.

If there are incoming messages in the queue of this MessageConnection that have not been retrieved
by the application prior to calling this method, the newly registered listener object will be notified
immediately once for each such incoming message in the queue.

There can be at most one listener object registered for a MessageConnection object at any given point
in time. Setting a new listener will de-register any previously set listener.

Passing null as the parameter will de-register any currently registered listener.

Parameters:
l - MessageListener object to be registered. If null, any currently registered listener will be de-
registered and will not receive notifications.

MessageConnection javax.wireless.messaging
setMessageListener(MessageListener)

22

Throws:
java.lang.SecurityException - if the application does not have permission to receive messages using the
given port number

java.io.IOException - if the connection has been closed, or if an attempt is made to register a
listener on a client connection

javax.wireless.messaging MessageListener
setMessageListener(MessageListener)

23

javax.wireless.messaging
MessageListener
Declaration
public interface MessageListener

Description
The MessageListener interface provides a mechanism for the application to be notified of incoming
messages.

When an incoming message arrives, the notifyIncomingMessage() method is called. The application
MUST retrieve the message using the receive() method of the MessageConnection.
MessageListener should not call receive() directly. Instead, it can start a new thread which will
receive the message or call another method of the application (which is outside of the listener) that will call
receive(). For an example of how to use MessageListener, see A Sample MessageListener Implementation.
The listener mechanism allows applications to receive incoming messages without needing to have a thread
blocked in the receive() method call.
If multiple messages arrive very closely together in time, the implementation has the option of calling this
listener from multiple threads in parallel. Applications MUST be prepared to handle this and implement any
necessary synchronization as part of the application code, while obeying the requirements set for the listener
method.

A Sample MessageListener Implementation
The following sample code illustrates how lightweight and resource-friendly a MessageListener can be. In
the sample, a separate thread is spawned to handle message reading. The MIDlet life cycle is respected by
releasing connections and signaling threads to terminate when the MIDlet is paused or destroyed.

MessageListener javax.wireless.messaging
setMessageListener(MessageListener)

24

// Sample message listener program.
import java.io.IOException;
import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.wireless.messaging.*;
public class Example extends MIDlet implements MessageListener
{

MessageConnection messconn;
boolean done;
Reader reader;
// Initial tests setup and execution.
public void startApp()
{

try
{

// Get our receiving port connection.
messconn = (MessageConnection)

Connector.open(“sms://:6222”);
// Register a listener for inbound messages.
messconn.setMessageListener(this);
// Start a message-reading thread.
done = false;
reader = new Reader();
new Thread(reader).start();

} catch (IOException e)
{

// Handle startup errors
}

}
// Asynchronous callback for inbound message.

public void notifyIncomingMessage(MessageConnection conn)
{

if (conn == messconn)
{

reader.handleMessage();
}

}

// Required MIDlet method - release the connection and
// signal the reader thread to terminate.
public void pauseApp()
{

done = true;
try
{

messconn.close();
} catch (IOException e)
{

// Handle errors
}

}

// Required MIDlet method - shutdown.
// @param unconditional forced shutdown flag
public void destroyApp(boolean unconditional)
{

done = true;
try
{

messconn.setMessageListener(null);
messconn.close();

} catch (IOException e)
{

// Handle shutdown errors.
}

}
}

javax.wireless.messaging MessageListener
notifyIncomingMessage(MessageConnection)

25

// Isolate blocking I/O on a separate thread, so callback
// can return immediately.
class Reader implements Runnable
{

private int pendingMessages = 0;

// The run method performs the actual message reading.
public void run()
{

while (!done)
{

synchronized(this)
{

if (pendingMessages == 0)
{

try
{

wait();
} catch (Exception e)

{
// Handle interruption

}
}
pendingMessages--;
}

// The benefit of the MessageListener is here.
// This thread could via similar triggers be
// handling other kind of events as well in
// addition to just receiving the messages.

try
{

Message mess = messconn.receive();
} catch (IOException ioe)

{
// Handle reading errors

}
}

}

public synchronized void handleMessage()
{

pendingMessages++;
notify();

}

}

Methods

notifyIncomingMessage(MessageConnection)
Declaration:
public void notifyIncomingMessage(javax.wireless.messaging.MessageConnection conn)

Member Summary
Methods

 void notifyIncomingMessage(MessageConnection conn)

MessageListener javax.wireless.messaging
notifyIncomingMessage(MessageConnection)

26

Description:
Called by the platform when an incoming message arrives to a MessageConnection where the
application has registered this listener object.

This method is called once for each incoming message to the MessageConnection.

NOTE: The implementation of this method MUST return quickly and MUST NOT perform any extensive
operations. The application SHOULD NOT receive and handle the message during this method call.
Instead, it should act only as a trigger to start the activity in the application’s own thread.

Parameters:
conn - the MessageConnection where the incoming message has arrived

javax.wireless.messaging MessagePart
notifyIncomingMessage(MessageConnection)

27

javax.wireless.messaging
MessagePart
Declaration
public class MessagePart

java.lang.Object

|
+--javax.wireless.messaging.MessagePart

Description
Instances of the MessagePart class can be added to a MultipartMessage. Each MessagePart
consists of the content element, MIME type and content-id. The Content can be of any type. Additionally it’s
possible to specify the content location and the encoding scheme.

Since: WMA 2.0

Member Summary
Constructors

MessagePart(byte[] contents, int offset, int length, java.
lang.String mimeType, java.lang.String contentId, java.lang.
String contentLocation, java.lang.String enc)

MessagePart(byte[] contents, java.lang.String mimeType, java.
lang.String contentId, java.lang.String contentLocation,
java.lang.String enc)

MessagePart(java.io.InputStream is, java.lang.String
mimeType, java.lang.String contentId, java.lang.String
contentLocation, java.lang.String enc)

Methods
 byte[] getContent()

 java.io.InputStream getContentAsStream()

 java.lang.String getContentID()

 java.lang.String getContentLocation()

 java.lang.String getEncoding()

 int getLength()

 java.lang.String getMIMEType()

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

MessagePart javax.wireless.messaging
MessagePart(byte[], int, int, String, String, String, String)

28

Constructors

MessagePart(byte[], int, int, String, String, String, String)
Declaration:
public MessagePart(byte[] contents, int offset, int length, java.lang.String mimeType,

java.lang.String contentId, java.lang.String contentLocation, java.lang.

String enc)

throws SizeExceededException

Description:
Constructs a MessagePart object from a subset of the byte array. This constructor is only useful, if the
data size is small (roughly less than 10K). For larger content the InputStream based constructor should
be used.

Parameters:
contents - byte array containing the contents for the MessagePart

offset - start position

length - the number of bytes to be included in the MessagePart

mimeType - the MIME Content-Type for the MessagePart [RFC 2046]

contentId - the content-id header field value for the MessagePart [RFC 2045]. The content-id is
unique over all MessageParts of a MultipartMessage and must always be set for each
message part

contentLocation - the content location which specifies the file name of the file that is attached. If
the content location is set to null no content location will be set for this MessagePart.

enc - the encoding scheme for the MessagePart. If enc is set to null no encoding will be used for
this MessagePart.

Throws:
java.lang.IllegalArgumentException - if mimeType or contentId is null. This
exception will be thrown if contentID or contentLocation contains other characters than
specified in US-ASCII format This exception will be thrown if either length is less than 0 or
offset + length exceeds the length of the content or if offset is less than 0 or if the
specified encoding scheme is unknown.

SizeExceededException - if the contents is larger than the available memory or supported
size for the message part.

MessagePart(byte[], String, String, String, String)
Declaration:
public MessagePart(byte[] contents, java.lang.String mimeType, java.lang.

String contentId, java.lang.String contentLocation, java.lang.String enc)

throws SizeExceededException

Description:
Constructs a MessagePart object from a byte array. This constructor is only useful, if the data size is
small (roughly less than 10K). For larger content the InputStream based constructor should be used.

Parameters:
contents - byte array containing the contents for the MessagePart. The contents of the array will
be copied into the MessagePart.

javax.wireless.messaging MessagePart
MessagePart(InputStream, String, String, String, String)

29

mimeType - the MIME Content-Type for the MessagePart [RFC 2046]

contentId - the content-id header field value for the MessagePart [RFC 2045]. The content-id is
unique over all MessageParts of a MultipartMessage and must always be set for each
message part

contentLocation - the content location which specifies the file name of the file that is attached. If
the content location is set to null no content location will be set for this MessagePart.

enc - the encoding scheme for the MessagePart. If enc is set to null no encoding will be used for
this MessagePart.

Throws:
java.lang.IllegalArgumentException - if mimeType or contentId is null. This
exception will be thrown if contentID or contentLocation contains other characters than
specified in US-ASCII format or if the specified encoding scheme is unknown

SizeExceededException - if the contents is larger than the available memory or supported
size for the message part.

MessagePart(InputStream, String, String, String, String)
Declaration:
public MessagePart(java.io.InputStream is, java.lang.String mimeType, java.lang.

String contentId, java.lang.String contentLocation, java.lang.String enc)

throws IOException, SizeExceededException

Description:
Constructs a MessagePart object from an InputStream. The contents of the MessagePart are
loaded from the InputStream during the constructor call until the end of stream is reached.

Parameters:
is - InputStream from which the contents of the MessagePart are read

mimeType - the MIME Content-Type for the MessagePart [RFC 2046]

contentId - the content-id header field value for the MessagePart [RFC 2045]. The content-id is
unique over all MessageParts of a MultipartMessage and must always be set for each
message part

contentLocation - the content location which specifies the file name of the file that is attached. If
the content location is set to null no content location will be set for this MessagePart.

enc - the encoding scheme for the MessagePart. If enc is set to null no encoding will be used for
this MessagePart.

Throws:
java.io.IOException - if the reading of the InputStream causes an exception other than
EOFException

java.lang.IllegalArgumentException - if mimeType or contentId is null. This
exception will be thrown if contentID or contentLocation contains other characters than
specified in US-ASCII format or if the specified encoding scheme is unknown.

SizeExceededException - if the content from the InputStream is larger than the available
memory or supported size for the message part.

MessagePart javax.wireless.messaging
getContent()

30

Methods

getContent()
Declaration:
public byte[] getContent()

Description:
Returns the content of the MessagePart as an array of bytes. If it’s not possible to create an array, which
can contain all data, this method must throw an OutOfMemoryError.

Returns: MessagePart data as byte array

getContentAsStream()
Declaration:
public java.io.InputStream getContentAsStream()

Description:
Returns an InputStream for reading the contents of the MessagePart. Returns an empty stream if no
content is available.

Returns: an InputStream that can be used for reading the contents of this MessagePart

getContentID()
Declaration:
public java.lang.String getContentID()

Description:
Returns the content-id value of the MessagePart

Returns: the value of content-id as a String, or null if the content-id is not set It might happen if the
message was sent from a not JSR 205 compliant client.

getContentLocation()
Declaration:
public java.lang.String getContentLocation()

Description:
Returns content location of the MessagePart

Returns: content location

getEncoding()
Declaration:
public java.lang.String getEncoding()

Description:
Returns the encoding of the content, e.g. “US-ASCII”, “UTF-8”, “UTF-16”, ... as a String

Returns: encoding of the MessagePart content or null if the encoding scheme of the MessagePart
cannot be determined

javax.wireless.messaging MessagePart
getLength()

31

getLength()
Declaration:
public int getLength()

Description:
Returns the content size of this MessagePart

Returns: Content size (in bytes) of this MessagePart or 0 if the MessagePart is empty.

getMIMEType()
Declaration:
public java.lang.String getMIMEType()

Description:
Returns the mime type of the MessagePart

Returns: MIME type of the MessagePart

MultipartMessage javax.wireless.messaging
getMIMEType()

32

javax.wireless.messaging
MultipartMessage
Declaration
public interface MultipartMessage extends Message

All Superinterfaces: Message

Description
An interface representing a multipart message. This is a subinterface of Message which contains methods to
add and get MessageParts. The interface also allows to specify the subject of the message. The basic
methods for manipulating the address portion of the message are inherited from Message. Additional this
interface defines methods for adding and removing addresses to/from the “to”, “cc” or “bcc” fields.
Furthermore it offers methods to get and set special header fields of the message. The contents of the
MultipartMessage are assembled during the invocation of the MessageConnection.send() method. The contents
of each MessagePart are copied before the send message returns. Changes to the MessagePart contents after
send must not appear in the transmitted message.

Since: WMA 2.0

Member Summary
Methods

 boolean addAddress(java.lang.String type, java.lang.String address)

 void addMessagePart(MessagePart part)

 java.lang.String getAddress()

 java.lang.String[] getAddresses(java.lang.String type)

 java.lang.String getHeader(java.lang.String headerField)

 MessagePart getMessagePart(java.lang.String contentID)

 MessagePart[] getMessageParts()

 java.lang.String getStartContentId()

 java.lang.String getSubject()

 boolean removeAddress(java.lang.String type, java.lang.String
address)

 void removeAddresses()

 void removeAddresses(java.lang.String type)

 boolean removeMessagePart(MessagePart part)

 boolean removeMessagePartId(java.lang.String contentID)

 boolean removeMessagePartLocation(java.lang.String contentLocation)

 void setAddress(java.lang.String addr)

 void setHeader(java.lang.String headerField, java.lang.String
headerValue)

 void setStartContentId(java.lang.String contentId)

 void setSubject(java.lang.String subject)

javax.wireless.messaging MultipartMessage
addAddress(String, String)

33

Methods

addAddress(String, String)
Declaration:
public boolean addAddress(java.lang.String type, java.lang.String address)

Description:
Adds an address to the multipart message.

Parameters:
type - the address type (“to”, “cc” or “bcc”) as a String. Each message can have none or multiple
“to”, “cc” and “bcc” addresses. Each address is added separately. The type is not case sensitive. The
implementation of MessageConnection.send() makes sure that the “from” address is set
correctly.

address - the address as a String

Returns: true if it was possible to add the address, else false

Throws:
java.lang.IllegalArgumentException - if type is none of “to”, “cc”, or “bcc” or if
address is not valid.

See Also: setAddress(String)

addMessagePart(MessagePart)
Declaration:
public void addMessagePart(javax.wireless.messaging.MessagePart part)

throws SizeExceededException

Description:
Attaches a MessagePart to the multipart message

Parameters:
part - MessagePart to add

Throws:
java.lang.IllegalArgumentException - if the Content-ID of the MessagePart conflicts
with a Content-ID of a MessagePart already contained in this MultipartMessage. The
Content-IDs must be unique within a MultipartMessage.

NullPointerException - if the parameter is null

SizeExceededException - if it’s not possible to attach the MessagePart.

getAddress()
Declaration:
public java.lang.String getAddress()

Inherited Member Summary

Methods inherited from interface Message

getTimestamp()

MultipartMessage javax.wireless.messaging
getAddresses(String)

34

Description:
Returns the “from” address associated with this message, e.g. address of the sender. If message is a newly
created message, e.g. not a received one, then the first “to” address is returned.

Returns null, if the “from” or “to” addresses for the message, dependent on the case, are not set.

Note: This design allows sending responses to a received message easily by reusing the same Message
object and just replacing the payload. The address field can normally be kept untouched (unless the used
messaging protocol requires some special handling of the address).

Overrides: getAddress in interface Message

Returns: the “from” or “to” address of this message, or null if the address that is expected as a result of
the method is not set

See Also: setAddress(String)

getAddresses(String)
Declaration:
public java.lang.String[] getAddresses(java.lang.String type)

Description:
Gets the addresses of the multipart message of the specified type. (e.g. “to”, “cc”, “bcc” or “from”) as
String. The method is not case sensitive.

Returns: the addresses as a String array or null if the address of the specified type is not present.

getHeader(String)
Declaration:
public java.lang.String getHeader(java.lang.String headerField)

Description:
Gets the content of the specific header field of the multipart message.

Parameters:
headerField - the name of the header field as a String

Returns: the content of the specified header field as a String or null if the specified header field is not
present.

Throws:
SecurityException - if the access to specified header field is restricted

java.lang.IllegalArgumentException - if headerField is unknown

See Also: Appendix D for known headerFields

getMessagePart(String)
Declaration:
public javax.wireless.messaging.MessagePart getMessagePart(java.lang.String contentID)

Description:
This method returns a MessagePart from the message that matches the content-id passed as a parameter

Parameters:
contentID - the content-id for the MessagePart to be returned

javax.wireless.messaging MultipartMessage
getMessageParts()

35

Returns: MessagePart that matches the provided content-id or null if there is no MessagePart in
this message with the provided content-id

Throws:
NullPointerException - if the parameter is null

getMessageParts()
Declaration:
public javax.wireless.messaging.MessagePart[] getMessageParts()

Description:
Returns an array of all MessageParts of this message

Returns: array of MessageParts, or null, if no MessageParts are available

getStartContentId()
Declaration:
public java.lang.String getStartContentId()

Description:
Returns the contentId of the start MessagePart. The start MessagePart is set in
setStartContentId(String)

Returns: the content-id of the start MessagePart or null if the start MessagePart is not set.

See Also: setStartContentId(String)

getSubject()
Declaration:
public java.lang.String getSubject()

Description:
Gets the subject of the multipart message.

Returns: the message subject as a String or null if this value is not present.

removeAddress(String, String)
Declaration:
public boolean removeAddress(java.lang.String type, java.lang.String address)

Description:
Removes an address from the multipart message.

Parameters:
type - the address type (“to”, “cc”, or “bcc”) as a String.

address - the address as a String

Returns: true if it was possible to delete the address, else false

Throws:
NullPointerException - if type is null

java.lang.IllegalArgumentException - if type is none of “to”, “cc”, or “bcc”

MultipartMessage javax.wireless.messaging
removeAddresses()

36

removeAddresses()
Declaration:
public void removeAddresses()

Description:
Removes all addresses of types “to”, “cc”, and bcc“ from the multipart message.

See Also: setAddress(String), addAddress(String, String)

removeAddresses(String)
Declaration:
public void removeAddresses(java.lang.String type)

Description:
Removes all addresses of the specified type from the multipart message.

Parameters:
type - the address type (“to”, “cc”, or “bcc”) as a String.

Throws:
NullPointerException - if type is null

java.lang.IllegalArgumentException - if type is none of “to”, “cc”, or “bcc”

removeMessagePart(MessagePart)
Declaration:
public boolean removeMessagePart(javax.wireless.messaging.MessagePart part)

Description:
Removes a MessagePart from the multipart message

Parameters:
part - MessagePart to delete

Returns: true, if it was possible to remove the MessagePart, else false

Throws:
NullPointerException - if the parameter is null

removeMessagePartId(String)
Declaration:
public boolean removeMessagePartId(java.lang.String contentID)

Description:
Removes a MessagePart with the specific contentID from the multipart message

Parameters:
contentID - identifiers which MessagePart must be deleted.

Returns: true, if it was possible to remove the MessagePart, else false

Throws:
NullPointerException - if the parameter is null

removeMessagePartLocation(String)
Declaration:
public boolean removeMessagePartLocation(java.lang.String contentLocation)

javax.wireless.messaging MultipartMessage
setAddress(String)

37

Description:
Removes MessageParts with the specific content location from the multipart message. All
MessageParts with the specified contentLocation are removed

Parameters:
contentLocation - content location (file name) of the MessagePart

Returns: true, if it was possible to remove the MessagePart, else false

Throws:
NullPointerException - if the parameter is null

setAddress(String)
Declaration:
public void setAddress(java.lang.String addr)

Description:
Sets the “to” address associated with this message. It works the same way as addAddress (“to”, addr) The
address may be set to null.

Overrides: setAddress in interface Message

Parameters:
addr - address for the message

Throws:
java.lang.IllegalArgumentException - if address is not valid.

See Also: getAddress(), addAddress(String, String)

setHeader(String, String)
Declaration:
public void setHeader(java.lang.String headerField, java.lang.String headerValue)

Description:
Sets the specific header of the multipart message. The header value can be null.

Parameters:
headerField - the name of the header field as a String

headerValue - the value of the header as a String

Throws:
java.lang.IllegalArgumentException - if headerField is unknown, or if
headerValue is not correct (depends on headerField!)

NullPointerException - if headerField is null

SecurityException - if the access to specified header field is restricted

See Also: getHeader(String), Appendix D

setStartContentId(String)
Declaration:
public void setStartContentId(java.lang.String contentId)

MultipartMessage javax.wireless.messaging
setSubject(String)

38

Description:
Sets the Content-ID of the start MessagePart of a multipart related message. The Content-ID
may be set to null. The StartContentId is set for the MessagePart that is used to reference the other
MessageParts of the MultipartMessage for presentation or processing purposes.

Parameters:
contentId - as a String

Throws:
java.lang.IllegalArgumentException - if contentId is none of the added
MessageParts objects matches the contentId

See Also: getStartContentId()

setSubject(String)
Declaration:
public void setSubject(java.lang.String subject)

Description:
Sets the Subject of the multipart message. This value can be null.

Parameters:
subject - the message subject as a String

See Also: getSubject()

javax.wireless.messaging SizeExceededException
SizeExceededException(String)

39

javax.wireless.messaging
SizeExceededException
Declaration
public class SizeExceededException extends java.io.IOException

java.lang.Object

|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.io.IOException

|
+--javax.wireless.messaging.SizeExceededException

Description
Inidicates, that an operation is not executable due to insufficient system resources.

Since: WMA 2.0

Constructors

SizeExceededException(String)
Declaration:
public SizeExceededException(java.lang.String reason)

Description:
Constructs e new exception

Member Summary
Constructors

SizeExceededException(java.lang.String reason)

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from class Throwable

getMessage(), printStackTrace(), toString()

SizeExceededException javax.wireless.messaging
SizeExceededException(String)

40

Parameters:
reason - The reason why this exception occurs

javax.wireless.messaging TextMessage
getPayloadText()

41

javax.wireless.messaging
TextMessage
Declaration
public interface TextMessage extends Message

All Superinterfaces: Message

Description
An interface representing a text message. This is a subinterface of Message which contains methods to get
and set the text payload. The setPayloadText method sets the value of the payload in the data container
without any checking whether the value is valid in any way. Methods for manipulating the address portion of
the message are inherited from Message.

Object instances implementing this interface are just containers for the data that is passed in.

Character Encoding Considerations
Text messages using this interface deal with Strings encoded in Java. The underlying implementation will
convert the Strings into a suitable encoding for the messaging protocol in question. Different protocols
recognize different character sets. To ensure that characters are transmitted correctly across the network, an
application should use the character set(s) recognized by the protocol. If an application is unaware of the
protocol, or uses a character set that the protocol does not recognize, then some characters might be transmitted
incorrectly.

Methods

getPayloadText()
Declaration:
public java.lang.String getPayloadText()

Member Summary
Methods

 java.lang.String getPayloadText()

 void setPayloadText(java.lang.String data)

Inherited Member Summary

Methods inherited from interface Message

getAddress(), getTimestamp(), setAddress(String)

TextMessage javax.wireless.messaging
setPayloadText(String)

42

Description:
Returns the message payload data as a String.

Returns: the payload of this message, or null if the payload for the message is not set

See Also: setPayloadText(String)

setPayloadText(String)
Declaration:
public void setPayloadText(java.lang.String data)

Description:
Sets the payload data of this message. The payload data may be null.

Parameters:
data - payload data as a String

See Also: getPayloadText()

43

A P P E N D I X A
GSM SMS Adapter

This appendix describes an adapter that uses the messaging API with the GSM Short Message Service.

A.1.0 GSM SMS Message Structure
The GSM SMS messages are defined in the GSM 03.40 standard [1]. The message consists of a fixed header
and a field called TP-User-Data. The TP-User-Data field carries the payload of the short message and optional
header information that is not part of the fixed header. This optional header information is contained in a field
called User-Data-Header. The presence of optional header information in the TP-User-Data field is indicated by
a separate field that is part of the fixed header.

The TP-User-Data can use different encodings depending on the type of the payload content. Possible
encodings are a 7-bit alphabet defined in the GSM 03.38 standard, 8-bit binary data, or 16-bit UCS-2 alphabet.

A.1.1 Message Payload Length
The maximum length of the SMS protocol message payload depends on the encoding and whether there are
optional headers present in the TP-User-Data field. If the optional header information specifies a port number,
then the payload which fits into the SMS protocol message will be smaller. Typically, the message is displayed
to the end user. However, this Java API supports the use of port numbers to specify a Java application as the
message target.

The messages that the Java application sends can be too long to fit in a single SMS protocol message. In this
case, the implementation MUST use the concatenation feature specified in sections 9.2.3.24.1 and 9.2.3.24.8 of
the GSM 03.40 standard [1]. This feature can be used to split the message payload given to the Java API into
multiple SMS protocol messages. Similarly, when receiving messages, the implementation MUST
automatically concatenate the received SMS protocol messages and pass the fully reassembled payload to the
application via the API.

A.1.2 Message Payload Concatenation
The GSM 03.40 standard [1] specifies two mechanisms for the concatenation, specified in sections 9.2.3.24.1
and 9.2.3.24.8. They differ in the length of the reference number. For messages that are sent, the implementation

44

can use either mechanism. For received messages, implementations MUST accept messages with both
mechanisms.

Note: Depending on which mechanism is used for sending messages, the maximum length of the payload of a
single SMS protocol message differs by one character/byte. For concatenation to work, regardless of which
mechanism is used by the implementation, applications are recommended to assume the 16-bit reference
number length when estimating how many SMS protocol messages it will take to send a given message. The
lengths in Table A-1 below are calculated assuming the 16-bit reference number length.

Implementations of this API MUST support at least 3 SMS protocol messages to be received and concatenated
together. Similarly, for sending, messages that can be sent with up to 3 SMS protocol messages MUST be
supported. Depending on the implementation, these limits may be higher. However, applications are advised not
to send messages that will take up more than 3 SMS protocol messages, unless they have reason to assume that
the recipient will be able to handle a larger number. The MessageConnection.numberOfSegments
method allows the application to check how many SMS protocol messages a given message will use when sent.

Table A-1: Number of SMS protocol messages needed for different payload lengths

Table A-1 assumes for the GSM 7-bit alphabet that only characters that can be encoded with a single septet are
used. If a character that encodes into two septets (using the escape code to the extension table) is used, it counts
as two characters in this length calculation.

Note: the values in Table A-1 include a concatenation header in all messages, when the message can not be sent
in a single SMS protocol message.

Character Mapping Table

Optional
Headers
Encoding

No port number present (message
to be displayed to the end user)

Port number present (message
targeted at an application)

Length SMS messages Length SMS messages
GSM 7-bit alphabet 0-160 chars 1 0-152 chars 1

161-304 chars 2 153-290 chars 2
305-456 chars 3 291-435 chars 3

8-bit binary data 0-140 bytes 1 0-133 bytes 1
41-266 bytes 2 134-254 bytes 2
267-399 bytes 3 255-381 bytes 3

UCS-2 alphabet 0-70 chars 1 0-66 chars 1
71-132 chars 2 67-126 chars 2

133-198 chars 3 127-189 chars 3

GSM 7-bit UCS-2 Character name
 0x00 0x0040 COMMERCIAL AT
 0x01 0x00a3 POUND SIGN
 0x02 0x0024 DOLLAR SIGN
 0x03 0x00a5 YEN SIGN
 0x04 0x00e8 LATIN SMALL LETTER E WITH GRAVE
 0x05 0x00e9 LATIN SMALL LETTER E WITH ACUTE
 0x06 0x00f9 LATIN SMALL LETTER U WITH GRAVE

45

 0x07 0x00ec LATIN SMALL LETTER I WITH GRAVE
 0x08 0x00f2 LATIN SMALL LETTER O WITH GRAVE
 0x09 0x00c7 LATIN CAPITAL LETTER C WITH CEDILLA
 0x0a 0x000a control: line feed
 0x0b 0x00d8 LATIN CAPITAL LETTER O WITH STROKE
 0x0c 0x00f8 LATIN SMALL LETTER O WITH STROKE
 0x0d 0x000d control: carriage return
 0x0e 0x00c5 LATIN CAPITAL LETTER A WITH RING ABOVE
 0x0f 0x00e5 LATIN SMALL LETTER A WITH RING ABOVE
 0x10 0x0394 GREEK CAPITAL LETTER DELTA
 0x11 0x005f LOW LINE
 0x12 0x03a6 GREEK CAPITAL LETTER PHI
 0x13 0x0393 GREEK CAPITAL LETTER GAMMA
 0x14 0x039b GREEK CAPITAL LETTER LAMDA
 0x15 0x03a9 GREEK CAPITAL LETTER OMEGA
 0x16 0x03a0 GREEK CAPITAL LETTER PI
 0x17 0x03a8 GREEK CAPITAL LETTER PSI
 0x18 0x03a3 GREEK CAPITAL LETTER SIGMA
 0x19 0x0398 GREEK CAPITAL LETTER THETA
 0x1a 0x039e GREEK CAPITAL LETTER XI
 0x1b xxx escape to extension table
 0x1c 0x00c6 LATIN CAPITAL LETTER AE
 0x1d 0x00e6 LATIN SMALL LETTER AE
 0x1e 0x00df LATIN SMALL LETTER SHARP S
 0x1f 0x00c9 LATIN CAPITAL LETTER E WITH ACUTE
 0x20 0x0020 SPACE
 0x21 0x0021 EXCLAMATION MARK
 0x22 0x0022 QUOTATION MARK
 0x23 0x0023 NUMBER SIGN
 0x24 0x00a4 CURRENCY SIGN
 0x25 0x0025 PERCENT SIGN
 0x26 0x0026 AMPERSAND
 0x27 0x0027 APOSTROPHE
 0x28 0x0028 LEFT PARENTHESIS
 0x29 0x0029 RIGHT PARENTHESIS
 0x2a 0x002a ASTERISK
 0x2b 0x002b PLUS SIGN
 0x2c 0x002c COMMA
 0x2d 0x002d HYPHEN-MINUS
 0x2e 0x002e FULL STOP
 0x2f 0x002f SOLIDUS
 0x30 0x0030 DIGIT ZERO
 0x31 0x0031 DIGIT ONE
 0x32 0x0032 DIGIT TWO
 0x33 0x0033 DIGIT THREE
 0x34 0x0034 DIGIT FOUR
 0x35 0x0035 DIGIT FIVE
 0x36 0x0036 DIGIT SIX
 0x37 0x0037 DIGIT SEVEN
 0x38 0x0038 DIGIT EIGHT

GSM 7-bit UCS-2 Character name

46

 0x39 0x0039 DIGIT NINE
 0x3a 0x003a COLON
 0x3b 0x003b SEMICOLON
 0x3c 0x003c LESS-THAN SIGN
 0x3d 0x003d EQUALS SIGN
 0x3e 0x003e GREATER-THAN SIGN
 0x3f 0x003f QUESTION MARK
 0x40 0x00a1 INVERTED EXCLAMATION MARK
 0x41 0x0041 LATIN CAPITAL LETTER A
 0x42 0x0042 LATIN CAPITAL LETTER B
 0x43 0x0043 LATIN CAPITAL LETTER C
 0x44 0x0044 LATIN CAPITAL LETTER D
 0x45 0x0045 LATIN CAPITAL LETTER E
 0x46 0x0046 LATIN CAPITAL LETTER F
 0x47 0x0047 LATIN CAPITAL LETTER G
 0x48 0x0048 LATIN CAPITAL LETTER H
 0x49 0x0049 LATIN CAPITAL LETTER I
 0x4a 0x004a LATIN CAPITAL LETTER J
 0x4b 0x004b LATIN CAPITAL LETTER K
 0x4c 0x004c LATIN CAPITAL LETTER L
 0x4d 0x004d LATIN CAPITAL LETTER M
 0x4e 0x004e LATIN CAPITAL LETTER N
 0x4f 0x004f LATIN CAPITAL LETTER O
 0x50 0x0050 LATIN CAPITAL LETTER P
 0x51 0x0051 LATIN CAPITAL LETTER Q
0x52 0x0052 LATIN CAPITAL LETTER R
0x53 0x0053 LATIN CAPITAL LETTER S
0x54 0x0054 LATIN CAPITAL LETTER T
0x55 0x0055 LATIN CAPITAL LETTER U
0x56 0x0056 LATIN CAPITAL LETTER V
0x57 0x0057 LATIN CAPITAL LETTER W
0x58 0x0058 LATIN CAPITAL LETTER X
0x59 0x0059 LATIN CAPITAL LETTER Y
0x5a 0x005a LATIN CAPITAL LETTER Z
0x5b 0x00c4 LATIN CAPITAL LETTER A WITH DIARESIS
0x5c 0x00d6 LATIN CAPITAL LETTER O WITH DIARESIS
 0x5d 0x00d1 LATIN CAPITAL LETTER N WITH TILDE
 0x5e 0x00dc LATIN CAPITAL LETTER U WITH DIARESIS
 0x5f 0x00a7 SECTION SIGN
 0x60 0x00bf INVERTED QUESTION MARK
 0x61 0x0061 LATIN SMALL LETTER A
 0x62 0x0062 LATIN SMALL LETTER B
 0x63 0x0063 LATIN SMALL LETTER C
 0x64 0x0064 LATIN SMALL LETTER D
 0x65 0x0065 LATIN SMALL LETTER E
 0x66 0x0066 LATIN SMALL LETTER F
 0x67 0x0067 LATIN SMALL LETTER G
 0x68 0x0068 LATIN SMALL LETTER H
 0x69 0x0069 LATIN SMALL LETTER I
 0x6a 0x006a LATIN SMALL LETTER J

GSM 7-bit UCS-2 Character name

47

The GSM 7-bit characters that use the escape code for a two septet combination are represented in this table
with the hexadecimal representations of the two septets separately. In the encoded messages, the septets are
encoded together with no extra alignment to octet boundaries.

 0x6b 0x006b LATIN SMALL LETTER K
 0x6c 0x006c LATIN SMALL LETTER L
 0x6d 0x006d LATIN SMALL LETTER M
 0x6e 0x006e LATIN SMALL LETTER N
 0x6f 0x006f LATIN SMALL LETTER O
 0x70 0x0070 LATIN SMALL LETTER P
 0x71 0x0071 LATIN SMALL LETTER Q
 0x72 0x0072 LATIN SMALL LETTER R
 0x73 0x0073 LATIN SMALL LETTER S
 0x74 0x0074 LATIN SMALL LETTER T
 0x75 0x0075 LATIN SMALL LETTER U
 0x76 0x0076 LATIN SMALL LETTER V
 0x77 0x0077 LATIN SMALL LETTER W
 0x78 0x0078 LATIN SMALL LETTER X
 0x79 0x0079 LATIN SMALL LETTER Y
 0x7a 0x007a LATIN SMALL LETTER Z
 0x7b 0x00e4 LATIN SMALL LETTER A WITH DIARESIS
 0x7c 0x00f6 LATIN SMALL LETTER O WITH DIARESIS
 0x7d 0x00f1 LATIN SMALL LETTER N WITH TILDE
 0x7e 0x00fc LATIN SMALL LETTER U WITH DIARESIS
 0x7f 0x00e0 LATIN SMALL LETTER A WITH GRAVE
 0x1b 0x14 0x005e CIRCUMFLEX ACCENT
 0x1b 0x28 0x007b LEFT CURLY BRACKET
 0x1b 0x29 0x007d RIGHT CURLY BRACKET
 0x1b 0x2f 0x005c REVERSE SOLIDUS
 0x1b 0x3c 0x005b LEFT SQUARE BRACKET
 0x1b 0x3d 0x007e TILDE
 0x1b 0x3e 0x005d RIGHT SQUARE BRACKET
 0x1b 0x40 0x007c VERTICAL LINE
 0x1b 0x65 0x20ac EURO SIGN

GSM 7-bit UCS-2 Character name

48

A.2.0 Message Addressing
The syntax of the URL connection strings that specify the address are described in Table A-2.

Table A-2: Connection Strings for Message Addresses

Examples of valid URL connection strings are:
sms://+358401234567
sms://+358401234567:6578
sms://:3381

When this adapter is used and the Connector.open() method is passed a URL with this syntax, it MUST
return an instance implementing the javax.wireless.messaging.MessageConnection interface.

A.2.1 Specifying Recipient Addresses
In this URL connection string, the MSISDN part identifies the recipient phone number and the port number part
of the application port number address as specified in the GSM 3.40 SMS specification [1] (sections 9.2.3.24.3
and 9.2.3.24.4). The same mechanism is used, for example, for the WAP WDP messages.

When the port number is present in the address, the TP-User-Data of the SMS MUST contain a User-Data-
Header with the Application port addressing scheme information element.

When the recipient address does not contain a port number, the TP-User-Data MUST NOT contain the
Application port addressing header. Java applications cannot receive this kind of message, but it will be handled
as usual in the recipient device; for example, text messages will be displayed to the end user.

A.2.2 Client Mode and Server Mode Connections
Messages can be sent using this API via client or server type MessageConnections. When a message
identifying a port number is sent from a server type MessageConnection, the originating port number in
the message is set to the port number of the MessageConnection. This allows the recipient to send a
response to the message that will be received by this MessageConnection.

However, when a client type MessageConnection is used for sending a message with a port number, the
originating port number is set to an implementation-specific value and any possible messages received to this
port number are not delivered to the MessageConnection.

Thus, only the server mode MessageConnections can be used for receiving messages. Any messages to
which the other party is expected to respond should be sent using the appropriate server mode
MessageConnection.

String Definition
 smsurl ::== "sms://" address_part
 address_part ::== foreign_host_address | local_host_address
 local_host_address ::== port_number_part
 port_number_part ::== ":" digits
 foreign_host_address ::== msisdn | msisdn port_number_part
 msisdn ::== "+" digits | digits
 digit ::== "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
 digits ::== digit | digit digits

49

A.2.3 Handling Received Messages
When SMS messages are received by an application, they are removed from the SIM/ME memory where they
may have been stored.

If the message information MUST be stored more persistently, then the application is responsible for saving it.
For example, the application could could save the message information by using the RMS facility of the MIDP
API or any other available mechanism.

The GSM SMS protocol does not guarantee to preserve the ordering when multiple messages are sent. When a
large message is split into multiple GSM SMS sections as specified in A.1.2, ordering is handled correctly when
they are automatically concatenated back into a single Message object. If the application sends multiple
Messages to the same recipient, they might not be delivered in the correct order. The application must be
written so that it is able to deal with this issue appropriately. However, even when the ordering may change
during the delivery in the network, the implementation MUST guarantee that the messages are delivered to the
application in the same order as they were received by the implementation of the recipient terminal.

A.3.0 Short Message Service Center Address
Applications might need to obtain the Short Message Service Center (SMSC) address to decide which recipient
number to use. For example, the application might need to do this because it is using service numbers for
application servers which might not be consistent in all networks and SMSCs.

The SMSC address used for sending the messages MUST be made available using System.getProperty
with the property name described in Table A-3.

Table A-3: Property Name and Description for SMSC Addresses

A.4.0 Using Port Numbers
The receiving application in a device is identified with the port number included in the message. When opening
the server mode MessageConnection, the application specifies the port number that it will use for
receiving messages.

The first application to allocate a given port number will get it. If other applications try to allocate the same port
number while it is being used by the first application, an IOException will be thrown when they attempt to open
the MessageConnection. The same rule applies if a port number is being used by a system application in
the device. In this case, the Java applications will not be able to use that port number.

As specified in the GSM 03.40 standard [1], the port numbers are split into ranges. The IANA (Internet
Assigned Numbers Authority) controls one of the ranges. If an application author wants to ensure that an
application can always use a specific port number value, then it can be registered with IANA. Otherwise, the
author can pick a number at random from the freely usable range and hope that the same number is not used by

Property name Description
wireless.messaging.sms.smsc The address of the SMS expressed using the syntax expressed by the msisdn

item of thefollowing BNF definition:
msisdn ::== "+" digits | digits
digit ::== "0" | "1" | "2" | "3" | "4" | "5" | "6"
| "7" |"8" | "9"
digits ::== digit | digit digits

50

another application that might be installed in the same device. This is exactly the same way that port numbers
are currently used with TCP and UDP in the Internet.

A.5.0 Message Types
SMS messages can be sent using the TextMessage or the BinaryMessage message type of the API. The
encodings used in the SMS protocol are defined in the GSM 03.38 standard (Part 4 SMS Data Coding Scheme)
[2].

When the application uses the TextMessage type, the TP-Data-Coding-Scheme in the SMS MUST indicate
the GSM default 7-bit alphabet or UCS-2. The TP-User-Data MUST be encoded appropriately using the chosen
alphabet. The 7-bit alphabet MUST be used for encoding if the String that is given by the application only
contains characters that are present in the GSM 7-bit alphabet. If the String given by the application contains at
least one character that is not present in the GSM 7-bit alphabet, the UCS-2 encoding MUST be used.

When the application uses the BinaryMessage, the TP-Data-Coding-Scheme in the SMS MUST indicate 8-
bit data.

The application is responsible for ensuring that the message payload fits in an SMS message when encoded as
defined in this specification. If the application tries to send a message with a payload that is too long, the
MessageConnection.send() method will throw an IllegalArgumentException and the message
will not be sent. This specification contains the information that applications need to determine the maximum
payload for the message type they are trying to send.

All messages sent via this API MUST be sent as Class 1 messages GSM 3.40 SMS specification [1], Section 9.
2.3.9 "TP-Protocol-Identifier".

A.6.0 Restrictions on Port Numbers for SMS Messages
For security reasons, Java applications are not allowed to send SMS messages to the port numbers listed in
Table A-4. Implementations MUST throw a SecurityException in the MessageConnection.
send() method if an application tries to send a message to any of these port numbers.

Table A-4: Port Numbers Restricted to SMS Messages

Port number Description
 2805 WAP WTA secure connection-less session service
 2923 WAP WTA secure session service
 2948 WAP Push connectionless session service (client side)
 2949 WAP Push secure connectionless session service (client side)
 5502 Service Card reader
 5503 Internet access configuration reader
 5508 Dynamic Menu Control Protocol
 5511 Message Access Protocol
 5512 Simple Email Notification
 9200 WAP connectionless session service
 9201 WAP session service
 9202 WAP secure connectionless session service

51

 9203 WAP secure session service
 9207 WAP vCal Secure
 49996 SyncML OTA configuration
 49999 WAP OTA configuration

Port number Description

52

53

A P P E N D I X B
GSM Cell Broadcast Adapter

This appendix describes an adapter that uses the messaging API with the GSM Cell Broadcast short message
Service (CBS).

The Cell Broadcast service is a unidirectional data service where messages are broadcast by a base station and
received by every mobile station listening to that base station. The Wireless Messaging API is used for
receiving these messages.

B.1.0 GSM CBS message structure
The GSM CBS messages are defined in the GSM 03.41 standard [4].

The source/type of a CBS message is defined by its Message-Identifier field, which is used to choose topics to
subscribe to. Applications can receive messages of a specific topic by opening a MessageConnection with
a URL connection string in the format defined below. In the format, Message-Identifier is analogous to a port
number.

Cell broadcast messages can be encoded using the same data coding schemes as GSM SMS messages (See
Character Mapping Table in Appendix A, GSM SMS Adapter). The implementation of the API will convert
messages encoded with the GSM 7-bit alphabet or UCS-2 into TextMessage objects and messages encoded
in 8-bit binary to BinaryMessage objects.

Because the cell broadcast messages do not contain any timestamps, the Message.getTimeStamp method
MUST always return null for received cell broadcast messages.

B.2.0 Addressing
Table B-1 describes the syntax of the URL connection strings that specify the address.

Table B-1: Syntax for URL Connection Strings

String Description

cbsurl ::== "cbs://" address_part
address_part ::== message_identifier_part
message_identifier_par ::== ":" digits

54

Examples of valid URL connection strings are:
 cbs://:3382
 cbs://:3383

In this URL, the message identifier part specifies the message identifier of the cell broadcast messages that the
application wants to receive.

When this adapter is used and the Connector.open() method is passed a URL with this syntax, it MUST
return an instance implementing the javax.wireless.messaging.MessageConnection interface.
These MessageConnection instances can be used only for receiving messages. Attempts to call the send
method on these MessageConnection instances MUST result in an IOException being thrown.

digit ::== "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
digits ::== digit | digit digits

String Description

55

A P P E N D I X C
CDMA IS-637 SMS Adapter

This appendix describes an adapter that uses the messaging API with the CDMA IS-637 SMS service.

C.1.0 CDMA IS-637 SMS Message Structure
CDMA SMS messages are defined in the CDMA IS-637 standard [6].

C.2.0 Addressing
The same sms: URL connection string is used as for GSM SMS (See Appendix A).

C.3.0 Port Numbers
The IS-637 SMS protocol does not include a port number or any other field for differentiating between
recipient applications. For this purpose, the WAP WDP for IS-637 SMS defined in section 6.5 of the WAP
Forum WDP specification[5] MUST be used.

Similarly, any rules for segmentation and reassembly follow the WAP WDP guidelines for adapting CDMA
SMS messages for a common behavior with corresponding GSM SMS bearer capabilities.

Messages without a port number are sent as normal SMS messages targeted for presentation to the end user.

CDMA SMS messages MUST support a minimum of 3 concatenated messages to be consistent with the
GSM SMS message adapter.

56

57

A P P E N D I X D
MMS Adapter

This appendix describes an adapter that uses the messaging API with the Multimedia Message Service.

D.1.0 MMS Message Structure

The MMS Protocol Data Unit (PDU) structure is specified in the WAP- 209-MMS-Encapsulation standard. The
MMS PDU contains a header and a multipart message body. Some of the MMS header fields originate from
standard RFC 822 headers and others are specific to multimedia messaging. The message body may contain any
content type and MIME multipart is used to represent and encode a wide variety of media types for transmission
via multimedia messaging. The MIME multipart [RFC 2045-7] is used in e-mail systems and therefore
compatible. The content type of the MMS PDU is application/vnd.wap.mms-message. Figure D-1 shows the
graphical representation of a conceptual model of the message encapsulation.

MMS-headers contain MMS-specific information of the PDU. This information contains mainly information
how to transfer the multimedia message from the message originator to the recipient.

In the multimedia messaging use case, the message body consists of multipart/related structure [RFC2387]
including multimedia objects, each in separate message part (further referred as MessagePart), as well as an
optional presentation part. The order of the parts has no significance. The presentation part is related by the start
parameter and its content identifier.

The MIME type of the message body and related to the MIME type parameters are stored in the Content-Type
Header of the message. Multipart/related MIME type requires "start" parameter that is used for identifying the
MessagePart with the presentation information (SMIL) . If the Content-Type does not contain "start" parameter,
the MIME type is multipart/mixed.

If a MMS is targeted for the default MMS viewer, the application should respect the OMA-MMS-CONF-V1_2
OMA MMS conformance document V1.2 or, if available, a newer one.

Each of the MessageParts consists of multipart identification information and content. The headers of each part
contain e.g. the following fields:

58

-MIME-Type indicating the content in the MessagePart, (e.g. image/jpeg or text/plain),
and possible
-Content-Location can be used as SMIL reference, and/or as file name hint, e.g. "image.jpeg" or "hello.txt".
-Content-Identifier (Content-ID) identifies the content (used for start parameter and as SMIL reference)

Figure D-1: Multimedia Message Structure

D.1.1 Accessible Header Fields

MMS message header contains several header fields. Nevertherless, due to the security reasons not all of them
can be accessed from the Java application.

The following header fields can be accessed via the MultipartMessage methods setHeader() and getHeader():

- X-Mms-Delivery-Time: The date and time of the delivery. This value specifies when MMS message must be
delivered to the recipient. For example, a birthday card must be delivered exactly on day of birthday. The value
must be given in milliseconds since 1.Jan. 1970 GMT as string value.

Subject:
DeliveryDate:
Priority:
From:
To:
Bcc:
Cc:

MIME-Type:
Content-ID:
Content-Location:

Content

MIME-Type:
Content-ID:
Content-Location:

Content

Message Header

MessagePart
Header

Message Body

MessagePart
Body

MessagePart
Header

MessagePart
Body

Start
MessagePart

59

- X-Mms-Priority : The importance of the message. The value could be "high", "normal" or "low".

The following header fields are accessible indirectly via other methods of MultipartMessage:

- X-Mms-Subject : Message subject in UTF-16 encoding.
- X-Mms-From : From address which is set automatically.
- X-Mms-To : Address or list of addresses of the recipient.
- X-Mms-CC : Address or list of addresses where copy of the message must be sent.
- X-Mms-BCC : Address or list of addresses where copy of the message must be sent without notifying other
recipients. Please note that the BCC address is optional. It is up to the implementation whether it supports this
header field or not.

D.2.0 MMS Message Addressing
The multipart message addressing model contains different types of addresses:

- global telephone number of recipient user, including telephone number, ipv4, ipv6 addresses

- e-mail address as specified in RFC 822

- short-code of the service (Note: not valid for MMS version 1.0)

The syntax of the URL connection strings that specify the address are described in Table D-2. The
application-id is mandatory in the case of addressing a MMS to a Java application and specifies the recipient
application.

Notation

1*x includes at least one occurrence of x
*x includes zero or more occurrences of x
1*4(x) includes at least 1 and as maximum 4 occurrences of x
[x] x is an optional element
(x) x is an regular expression
 x|y x and y are alternatives
"a" char ’a’ is a part of the expression
; separator for the comments
<text> non formal textual description.

Table D-2: Connection Strings for Message Addresses
 Note that RFC 2822 limits the character repertoire to ASCII

Note: E-mail address grammer is specified in RFC 822
Note: IPv6 and IPv4 address format is specified in RFC 1884, 2373

60

Note that application_id is maximum 32 characters

Examples of valid URL connection strings are:

String Definition
mms_url ::== "mms:// " address-part
address-part ::== (e-mail-address| device-address| shortcode-address| application-id)
device-address ::== general-phone-address [application-id]
general-phone-address ::== (global-telephone-type) | (ipv4) | (ipv6)
global-telephone-type ::== "+" 1*digit| 1*digit
ipv6 ::== ipv6-atom ":" ipv6-atom ":" ipv6-atom ":" ipv6-atom ":" ipv6-atom ":" ipv6-atom

":" ipv6-atom ":" ipv6-atom
ipv6-atom ::== 1*4 (DIGIT|HEX-ALPHA)
ipv4 ::== 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
application-id ::== ":" [manufacture_domain] [1*(package-name)] class-name
manufacture_domain ::== 1*applicationID-symbol "."
package-name ::== 1*applicationID-symbol "."
class-name ::== 1*applicationID-symbol
applicationID-symbol ::== ALPHA | DIGIT |"."|"_"
e-mail-address ::== mailbox | group
group ::== phrase ":" [mailbox *("," mailbox)] ";"
phrase ::== 1* word
mailbox ::== addr-spec | [phrase] route-addr
route-addr ::== "<" [route] addr-spec ">"
route ::== ("@" domain) [1*("," ("@" domain))] ":"
addr-spec ::== local-part "@" domain
local-part ::== word *("." word)
domain ::== sub-domain *("." sub-domain)
sub-domain ::== domain-ref | domain-literal
domain-ref ::== atom
domain-literal ::== "[" *(dtext | qpair) "]"
atom ::== 1* <any CHAR except SPECIALS, CTL and SPACE >
word ::== atom | quoted-string
quoted-string ::== """ *(qtext | qpair) """
qtext ::==<any CHAR excluding """, "\" and CR and including LINEAR-WHITE-SPACE>
dtext ::= <any CHAR excluding "[", "]", "\" and CR and including LINEAR-WHITE-

SPACE>
LINEAR-WHITE-SPACE ::== 1* ([CRLF] LWSP-char)
SPECIALS ::== "(" | ")" | "<" | ">" | "@" | "," | ";" | ":" | "\" | """| "."| "[" | "]"
qpair ::== "\" ALPHA
shortcode-address ::== shortcode-string
shortcode-string ::== 1* (ALPHA| DIGIT)
HEX-ALPHA ::== "A".."F"
ALPHA ::== "A".."Z"|"a".."z"
DIGIT ::== "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
CHAR ::== <any ASCII character>; (0-177, 0. -127)
LWSP-char ::== SP| HT

61

mms://+35467890
mms://+356728900:com.siemens.MyMessenger
mms://:com.siemens.MyMessenger4567
mms://test@domain.com
mms://12shortcode

When this adapter is used and the Connector.open() method is passed a URL with this syntax, it MUST
return an instance implementing the javax.wireless.messaging.MessageConnection interface.

D.2.1 Sending and Receiving MMS Messages
To ensure sending and receiving wireless messages between Java applications using MMS as a transport
medium, the MMS client has to support sending of MMS messages to concrete Java applications. In order to
enable this, the following additional parameters are added to the Content-Type header field as additional
Content-Type parameters:

Table D-3: Additional Content-Type parameters

Usually the MMS client hands over an incoming MM to the presentation level. The scope of addressing scheme
is to cause the MMS client to hand over the MM that contains an application identifier to the addressed
application instead of using the normal path to the presentation level. The addressing scheme has to be
implemented inside the MMS PDU (protocol data unit) sent to and received from the server.
If no application-id is specified in the connection string, the implementation must not use the additional
Content-Type parameters.
Table D-4: Example of MMS header

Content-Type Parameter Value
Application-ID application-id (see Table D-2)
Reply-To-Application-ID application-id (see Table D-2)

Header Field Header Value
X-Mms-Message-Type m-send-req
X-Mms-Transaction-ID 543210
X-Mms-Version 1.0
X-Mms-Message-Class Personal
X-Mms-Expiry 36000
X-Mms-Priority Normal
From +49170123456789
To +490171123456789
Date Fri, 7 Jul 2000 20:59:30 +0100
Subject A multimedia message
Content-Type application/vnd.wap.multipart.related; start = <start>;

type = application/smil;
Application-ID= com.siemens.Messenger;
Reply-To-Application-ID = com.siemens.Messenger

nEntries 2
Content-Type text/plain ; name="test.txt"
content-id <a>
text data

62

D.2.2 Client Mode and Server Mode Connection
Messages can be sent using this API via client or server type MessageConnections. When a message
identifying an application-id is sent from a server type MessageConnection, the Reply-To-Application-ID
in the message is set to the application-id of the MessageConnection. This allows the recipient to send a
response to the message that is received by this MessageConnection.

However, when a client type MessageConnection is used for sending a message with an application-id, the
Reply-To-Application-ID is set to an implementation-specific value and any possible messages received to this
application-id are not delivered to the MessageConnection.

Thus, only the server mode MessageConnections can be used for receiving messages. Any messages to
which the other party is expected to respond should be sent using the appropriate server mode
MessageConnection.

D.2.3 Handling Received Messages
MMS message is received only in case the user confirms accepting the message after receiving a notification.
The application is started if the application is registered to receive MMS with the specific application_id that
must be specified inside the MMS message. If user confirmation is enabled, the Java application receives the
MMS only after the user has confirmed the delivery.

When MMS messages are received by an application, they may be removed from the SIM/ME memory where
they may have been stored.

If the message information MUST be stored more persistently, then the application is responsible for saving it.
If the application cannot save the message due to the lack of space, the message may get lost. It is the
application responsibility to ensure that there is enough space for storage. For example, the application could
save the message information by using the RMS facility of the MIDP API or any other available mechanism.

D.3.0 Multimedia Message Service Center Address
Applications might need to obtain the Multimedia Message Service Center (MMSC) address to decide which
recipient number to use. For example, the application might need to do this because it is using service numbers
for application servers which might not be consistent in all networks and MMSCs.

The MMSC address used for sending the messages MUST be made available using System.getProperty
with the property name described in Table D-5.

Content-Type application/smil; name="first.sml"
content-id <start>
smil file

Header Field Header Value

63

Table D-5: Property Name and Description for MMSC Addresses

D.4.0 Using the Application-ID
The receiving application running on a device is identified with the application-id included in the message. The
application-id must be specified only if the message is addressed to a special application. When opening the
server mode MessageConnection, the application specifies the Application-ID that it uses for
receiving messages.

The first application to allocate a given Application-ID gets it. If other applications try to allocate the
same application-id while it is being used by the first application, an IOException is thrown when they
attempt to open the MessageConnection. The same rule applies if an Application-ID is being used by
a system application in the device. In this case, the Java applications is not be able to use that Application-
ID.

The application must register with the Application-ID specified in a form that is described in the table D-
2.

It's only possible to specify one Application-ID per MultipartMessage. If the application is calling
addAddress() or setAddress() with different Application-IDs on the same
MultipartMessage, the implementation must throw an IllegalArgumentException. To avoid this
exception, the application must ensure that all specified addresses that contain an Application-ID have the
same Application-ID, or just one Application-ID is specified per message (this Application-ID
will then be used for all recipients). Please note that this makes it impossible to send a single message to
applications (with Application-IDs) and native MMS clients (without them) in the same operation. To
send the same message to an applications and native MMS clients the application must send the message twice

Property name Description
wireless.messaging.mms.mmsc The address of the MMSC expressed using the syntax expressed by the

MSISDN item of the following BNF definition:
url ::== "http://" domain
domain ::== sub-domain *("." sub-domain)
sub-domain ::== domain-ref | domain-literal
domain-ref ::== atom
domain-literal ::== "[" *(dtext | qpair) "]"
dtext :: == <any CHAR excluding "[", "]", "\" and
CR and including LINEAR-WHITE-SPACE>
qpair :: == "\" ALPHA
atom ::== 1* <any CHAR except SPECIALS, CTL and
SPACE >
LINEAR-WHITE-SPACE ::== 1* ([CRLF] LWSP-char)
LWSP-char ::== SP| HT
CHAR ::== <any ASCII character>; (0-177, 0. -127)
ALPHA ::== "A".."Z"| "a".."z"
DIGIT ::== "0" | "1" | "2" | "3" | "4" | "5" | "6"
| "7" |"8" | "9"

64

- once to the application-recipients with the Application-ID specified and once to the non-application
recipients without any Application-ID specified.

D 5.0 DRM and MMS Content
The content that is sent via MMS can be DRM-protected. DRM protection can only be applied to individual
parts. Handling of DRM-protected content is implementation specific. Only authorized applications must have
access to the DRM-protected MMSs.

65

A P P E N D I X E
Deploying JSR 205 Interfaces
on a MIDP 2.0 Platform

E.1.0 Introduction
This section provides implementation notes for platform developers deploying the JSR 205 interfaces on a
MIDP 2.0 platform.

This section addresses features available in a MIDP 2.0 device that can be used to enhance WMA applications.
In particular, this document describes how to:

• use the MIDP 2.0 security features to control access to WMA capabilities

• use the MIDP 2.0 Push mechanism with SMS, MMS and CBS messages

• write applications to remain portable between the MIDP 1.0 and MIDP 2.0 platforms

If a custom connection type is used other than sms, mms and cbs connections, that adapter specification MUST
define permissions for use with that connection. If the sms, mms or cbs connection is reused in another adapter
specification, then it MUST also reuse the sms, mms and cbs permissions defined in this section.

E.2.0 Security
To send and receive messages using this API, applications MUST be granted a permission to perform the
requested operation. The mechanisms for granting a permission are implementation dependent.

E.2.1 Permissions for Opening Connections
The JSR 118 MIDP 2.0 specification defines a mechanism for granting permissions to use privileged features.
This mechanism is based on a policy mechanism enforced in the platform implementation. The following
permissions are defined for the JSR 205 messaging functionality, when deployed with a JSR 118 MIDP 2.0
implementation.

To open a connection, a MIDlet suite requires an appropriate permission to access the MessageConnection
implementation. If the permission is not granted, then Connector.open methods MUST throw a
SecurityException. The following table indicates the permission that must be granted for each protocol.

66

Table E-1: Permissions for Opening Connections

E.2.2 Permissions for Send and Receive Operations
To send and receive messages, the MIDlet suite requires the appropriate permissions. If the permission is not
granted, then the MessageConnection.send and the MessageConnection.receive methods
MUST throw a SecurityException. The following table indicates the permission that must be granted for
each requested operation.

Table E-2: Permissions for Send and Receive Operations

The ability for sending and receiving MAY depend on the type of messages and addresses being used. An
implementation MAY restrict an application’s ability to send some types of messages and/or sending messages
to certain recipient addresses. These addresses can include device addresses and/or identifiers, such as port
numbers, within a device.

An implementation MAY restrict certain types of messages or connection addresses, such that sending such
messages will fail and throw a SecurityException even when the application has the permission to send
messages in general.

The applications MUST NOT assume that successfully sending one message implies that they have the
permission to send all kinds of messages to all addresses.

An application should handle SecurityException when a connection handle is provided from
Connector.open(url) and for any message receive or send operation that potentially engages with
the network or the privileged message storage on the device.

An Application MUST receive an user permission to send a MMS. The user makes a decision based on the
following information provided by the application:

• List of all recipient addresses: all addresses set in the "to", "cc" and "bcc" fields

• The total size of the message, which includes the size of all message attachments and the size of the subject.

The presentation of this information to the user is up to the implementation.

E.3.0 WMA Push Capabilities
MIDP 2.0 includes a mechanism to register a MIDlet when a connection notification event is detected. Once the
MIDlet has been launched it performs the same I/O operations it would normally use to open a connection and
read and write data.

Permission Protocol
javax.microedition.io.Connector.sms sms
javax.microedition.io.Connector.cbs cbs
javax.microedition.io.Connector.mms mms

Permission Protocol
javax.wireless.messaging.sms.send sms
javax.wireless.messaging.sms.receive sms
javax.wireless.messaging.cbs.receive cbs
javax.wireless.messaging.mms.send mms
javax.wireless.messaging.mms.receive mms

67

For WMA applications this capability allows the application to be launched if messages arrive either while the
MIDlet is not running or while another MIDlet is running.

In order to perform a Push registration for a WMA connection the suite must request the permission to use the
PushRegistry and the permission to open the connection. If the application will also perform read and write data
operations, it must also request those permissions for access to the send and receive methods.

E.3.1 WMA Push Registration Entry
Push registrations are either defined in the application descriptor or made dynamically at runtime via
PushRegistry. The entry for a WMA protocol will include the connection URL string which identifies the
scheme and port number or application id of the inbound message connection. The entry also contains a filter
field that designates which senders are permitted to send messages that launch the registered MIDlet. An
asterisk ("*") and question mark ("?") can be used in the filter field as wild cards as specified in the MIDP 2.0
specification.

For the sms: protocol, the filter field is matched against the MSISDN part of the sender address, as defined by
the msisdn element of the sms: URL syntax in section A.2.0 of the WMA API specification. The sender port
number is not included in matching the filter. Wildcard characters can be used in the filter as specified in the
MIDP 2.0 specification. The leading plus of a MSIDN is also matched between a filter and a sender address.

For the cbs: protocol, the filtering is not performed. The filter field is ignored. The filter may be set to "*" to
indicate any sender is accepted.

For the mms: protocol, the filter field is matched against the from address, as defined by the address_part
element of the mms: URL syntax in section D.2.0 of the WMA API specification. The sender application id is
not included in matching the filter. Wildcard characters can be used in the filter as specified in the MIDP 2.0
specification.

For example :
MIDlet-Push-1: sms://:12345, SmsExample, 123456789
MIDlet-Push-2: cbs://:54321, CbsExample, *
MIDlet-Push-3: mms://:com.siemens.Messenger, Messenger, *

Unlike the initial push connections defined in JSR 118 for MIDP 2.0, the SMS protocol includes an explicit
buffering mechanism where messages are held until processed by some application that reads and deletes
messages when they are done with the data. If a message is delivered to the device and does not pass the
specified filter, the message will be deleted by the Application Management Software.

When the application is started in response to a Push message, the application SHOULD read and process all
messages that are buffered for it. If an application fails to read and process the messages when started or if
starting of the application is denied (for example, by the end user), the platform implementation MAY delete
unread messages from the buffer, if it becomes necessary to do so. For example, the platform implementation
may delete messages when the buffer becomes full.

Another difference between the WMA interface and other JSR 118 protocol handlers in MIDP 2.0, is that WMA
includes a MessageListener which provides asynchronous callbacks when messages become available
while the application is running.

68

E.4.0 Portable WMA Applications
If permitted by the device security policy, a WMA application written for a MIDP 1.0 platform will work
without any modification on a MIDP 2.0 system. This behavior is defined by the JSR 118 specification of
untrusted applications.

MIDP 2.0 also supports the concept of trusted applications. For these applications, the device can automatically
handle trust decisions based on signed JAR files and a platform-specific policy mechanism that associates
specific permissions with the signed application.

The security model also allows for the definition of user-granted permissions on a one-shot, session or blanket
authorization. In many cases, the platform-dependent policy for permissions on MIDP 1.0 will be able to be
mapped onto the MIDP 2.0 defined permissions.

An application designed to work only on a MIDP 2.0 device can use the methods in the PushRegistry class
to check if there are active connections (listConnections) or to add or remove registered connections at
runtime (registerConnection or unregisterConnection).

An application designed to run portably on MIDP 1.0 or MIDP 2.0 platforms will only use the application
descriptor and attributes in the manifest to describe requested permissions and push registration entries. See the
JSR 118 MIDP 2.0 specification for details about the MIDlet-Permissions and MIDlet-Push-<n> attributes. On
a MIDP 1.0 platforms these properties will be ignored. On a MIDP 2.0 platform, these properties will direct the
application management software to perform the necessary checks and registrations when the application is
installed and removed from the system.

1

2

ALMANAC LEGEND
The almanac presents classes and intefaces in alphabetic order, regardless of their package. Fields, methods and
constructors are in alphabetic order in a single list.

This almanac is modeled after the style introduced by Patrick Chan in his excellent book Java Developers
Almanac.

1. Name of the class, interface, nested class or nested interface. Interfaces are italic.

2. Name of the package containing the class or interface.

3. Inheritance hierarchy. In this example, RealtimeThread extends Thread, which extends Object.

4. Implemented interfaces. The interface is to the right of, and on the same line as, the class that implements
it. In this example, Thread implements Runnable, and RealtimeThread implements Schedula-
ble.

5. The first column above is for the value of the @since comment, which indicates the version in which the
item was introduced.

6. The second column above is for the following icons. If the “protected” symbol does not appear, the mem-
ber is public. (Private and package-private modifiers also have no symbols.) One symbol from each group
can appear in this column.

7. Return type of a method or declared type of a field. Blank for constructors.

8. Name of the constructor, field or method. Nested classes are listed in 1, not here.

Modifiers
❍ abstract
● final
❏ static
■ static final

Access Modifiers
♦ protected

Constructors and Fields
❉ constructor
✍ field

Object
➥ Thread Runnable

➥ RealtimeThread Schedulable

RealtimeThread javax.realtime

void addToFeasibility()
RealtimeThread currentRealtimeThread()

Scheduler getScheduler()
❉ RealtimeThread()
❉ RealtimeThread(SchedulingParameters scheduling)
❏ void sleep(Clock clock, HighResolutionTime time)

➊ ➋

➌
➍

➎ ➏

➐ ➑

➘➘

➙
➙

➘

➚

➘
1.3 ❏

1.3

throws InterruptedException➚

71

Almanac

BinaryMessage Message

Object
➥ Connector

Message

MessageConnection javax.microedition.io.Connection

BinaryMessage javax.wireless.messaging

byte[] getPayloadData()

void setPayloadData(byte[] data)

Connector javax.microedition.io

❏ Connection open(String name) throws java.io.IOException

❏ Connection open(String name, int mode) throws java.io.IOException

❏ Connection open(String name, int mode, boolean timeouts) throws java.io.
IOException

❏ java.io.DataInputStream openDataInputStream(String name) throws java.io.IOException

❏ java.io.DataOutputStream openDataOutputStream(String name) throws java.io.IOException

❏ java.io.InputStream openInputStream(String name) throws java.io.IOException

❏ java.io.OutputStream openOutputStream(String name) throws java.io.IOException

✍■ int READ

✍■ int READ_WRITE

✍■ int WRITE

Message javax.wireless.messaging

String getAddress()

java.util.Date getTimestamp()

void setAddress(String addr)

MessageConnection javax.wireless.messaging

✍■ String BINARY_MESSAGE

wma
2.0

✍■ String MULTIPART_MESSAGE

Message newMessage(String type)

Message newMessage(String type, String address)

int numberOfSegments(Message msg)

Message receive() throws java.io.IOException, java.io.InterruptedIOException

Almanac

72

MessageListener

Object
➥ MessagePart

MultipartMessage Message

void send(Message msg) throws java.io.IOException, java.io.
InterruptedIOException

void setMessageListener(MessageListener l) throws java.io.IOException

✍■ String TEXT_MESSAGE

MessageListener javax.wireless.messaging

void notifyIncomingMessage(MessageConnection conn)

MessagePart javax.wireless.messaging

byte[] getContent()

java.io.InputStream getContentAsStream()

String getContentID()

String getContentLocation()

String getEncoding()

int getLength()

String getMIMEType()

❉ MessagePart(byte[] contents, int offset, int length, String mimeType,
String contentId, String contentLocation, String enc)
throws SizeExceededException

❉ MessagePart(byte[] contents, String mimeType, String contentId,
String contentLocation, String enc) throws SizeExceededException

❉ MessagePart(java.io.InputStream is, String mimeType, String contentId,
String contentLocation, String enc) throws java.io.IOException,
SizeExceededException

MultipartMessage javax.wireless.messaging

boolean addAddress(String type, String address)

void addMessagePart(MessagePart part) throws SizeExceededException

String getAddress()

String[] getAddresses(String type)

String getHeader(String headerField)

MessagePart getMessagePart(String contentID)

MessagePart[] getMessageParts()

String getStartContentId()

String getSubject()

boolean removeAddress(String type, String address)

void removeAddresses()

void removeAddresses(String type)

boolean removeMessagePart(MessagePart part)

boolean removeMessagePartId(String contentID)

boolean removeMessagePartLocation(String contentLocation)

void setAddress(String addr)

Almanac

73

Object
➥ Throwable

➥ Exception
➥ java.io.IOException

➥ SizeExceededException

TextMessage Message

void setHeader(String headerField, String headerValue)

void setStartContentId(String contentId)

void setSubject(String subject)

SizeExceededException javax.wireless.messaging

❉ SizeExceededException(String reason)

TextMessage javax.wireless.messaging

String getPayloadText()

void setPayloadText(String data)

Almanac

74

75

Index
A
addAddress(String, String)

of javax.wireless.messaging.MultipartMessage 33
addMessagePart(MessagePart)

of javax.wireless.messaging.MultipartMessage 33

B
BINARY_MESSAGE

of javax.wireless.messaging.MessageConnection 18
BinaryMessage

of javax.wireless.messaging 13

C
Connector

of javax.microedition.io 6

G
getAddress()

of javax.wireless.messaging.Message 15
of javax.wireless.messaging.MultipartMessage 33

getAddresses(String)
of javax.wireless.messaging.MultipartMessage 34

getContent()
of javax.wireless.messaging.MessagePart 30

getContentAsStream()
of javax.wireless.messaging.MessagePart 30

getContentID()
of javax.wireless.messaging.MessagePart 30

getContentLocation()
of javax.wireless.messaging.MessagePart 30

getEncoding()
of javax.wireless.messaging.MessagePart 30

getHeader(String)
of javax.wireless.messaging.MultipartMessage 34

getLength()
of javax.wireless.messaging.MessagePart 31

getMessagePart(String)
of javax.wireless.messaging.MultipartMessage 34

getMessageParts()
of javax.wireless.messaging.MultipartMessage 35

getMIMEType()
of javax.wireless.messaging.MessagePart 31

76

getPayloadData()
of javax.wireless.messaging.BinaryMessage 13

getPayloadText()
of javax.wireless.messaging.TextMessage 41

getStartContentId()
of javax.wireless.messaging.MultipartMessage 35

getSubject()
of javax.wireless.messaging.MultipartMessage 35

getTimestamp()
of javax.wireless.messaging.Message 16

J
java.applet - package 69

M
Message

of javax.wireless.messaging 15
MessageConnection

of javax.wireless.messaging 17
MessageListener

of javax.wireless.messaging 23
MessagePart

of javax.wireless.messaging 27
MessagePart(byte[], int, int, String, String, String, String)

of javax.wireless.messaging.MessagePart 28
MessagePart(byte[], String, String, String, String)

of javax.wireless.messaging.MessagePart 28
MessagePart(InputStream, String, String, String, String)

of javax.wireless.messaging.MessagePart 29
MULTIPART_MESSAGE

of javax.wireless.messaging.MessageConnection 18
MultipartMessage

of javax.wireless.messaging 32

N
newMessage(String)

of javax.wireless.messaging.MessageConnection 19
newMessage(String, String)

of javax.wireless.messaging.MessageConnection 19
notifyIncomingMessage(MessageConnection)

of javax.wireless.messaging.MessageListener 25
numberOfSegments(Message)

of javax.wireless.messaging.MessageConnection 20

O
open(String)

of javax.microedition.io.Connector 8

77

open(String, int)
of javax.microedition.io.Connector 8

open(String, int, boolean)
of javax.microedition.io.Connector 8

openDataInputStream(String)
of javax.microedition.io.Connector 9

openDataOutputStream(String)
of javax.microedition.io.Connector 9

openInputStream(String)
of javax.microedition.io.Connector 10

openOutputStream(String)
of javax.microedition.io.Connector 10

R
READ

of javax.microedition.io.Connector 7
READ_WRITE

of javax.microedition.io.Connector 7
receive()

of javax.wireless.messaging.MessageConnection 20
removeAddress(String, String)

of javax.wireless.messaging.MultipartMessage 35
removeAddresses()

of javax.wireless.messaging.MultipartMessage 36
removeAddresses(String)

of javax.wireless.messaging.MultipartMessage 36
removeMessagePart(MessagePart)

of javax.wireless.messaging.MultipartMessage 36
removeMessagePartId(String)

of javax.wireless.messaging.MultipartMessage 36
removeMessagePartLocation(String)

of javax.wireless.messaging.MultipartMessage 36

S
send(Message)

of javax.wireless.messaging.MessageConnection 21
setAddress(String)

of javax.wireless.messaging.Message 16
of javax.wireless.messaging.MultipartMessage 37

setHeader(String, String)
of javax.wireless.messaging.MultipartMessage 37

setMessageListener(MessageListener)
of javax.wireless.messaging.MessageConnection 21

setPayloadData(byte[])
of javax.wireless.messaging.BinaryMessage 14

setPayloadText(String)
of javax.wireless.messaging.TextMessage 42

78

setStartContentId(String)
of javax.wireless.messaging.MultipartMessage 37

setSubject(String)
of javax.wireless.messaging.MultipartMessage 38

SizeExceededException
of javax.wireless.messaging 39

SizeExceededException(String)
of javax.wireless.messaging.SizeExceededException 39

T
TEXT_MESSAGE

of javax.wireless.messaging.MessageConnection 18
TextMessage

of javax.wireless.messaging 41

W
WRITE

of javax.microedition.io.Connector 7

