Skip to content

Latest commit

 

History

History
73 lines (52 loc) · 2.01 KB

bin-prior.md

File metadata and controls

73 lines (52 loc) · 2.01 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2020-01-23 15:38:00 -0800
Conjugate prior distribution for binomial observations
Statistical Models
Count data
Binomial observations
Conjugate prior distribution
authors year title in pages url
Wikipedia
2020
Binomial distribution
Wikipedia, the free encyclopedia
retrieved on 2020-01-23
P29
bin-prior
JoramSoch

Theorem: Let $y$ be the number of successes resulting from $n$ independent trials with unknown success probability $p$, such that $y$ follows a binomial distribution:

$$ \label{eq:Bin} y \sim \mathrm{Bin}(n,p) ; . $$

Then, the conjugate prior for the model parameter $p$ is a beta distribution:

$$ \label{eq:Beta} \mathrm{p}(p) = \mathrm{Bet}(p; \alpha_0, \beta_0) ; . $$

Proof: With the probability mass function of the binomial distribution, the likelihood function implied by \eqref{eq:Bin} is given by

$$ \label{eq:Bin-LF} \mathrm{p}(y|p) = {n \choose y} , p^y , (1-p)^{n-y} ; . $$

In other words, the likelihood function is proportional to a power of $p$ times a power of $(1-p)$:

$$ \label{eq:Bin-LF-prop} \mathrm{p}(y|p) \propto p^y , (1-p)^{n-y} ; . $$

The same is true for a beta distribution over $p$

$$ \label{eq:Bin-prior-s1} \mathrm{p}(p) = \mathrm{Bet}(p; \alpha_0, \beta_0) $$

the probability density function of which

$$ \label{eq:Bin-prior-s2} \mathrm{p}(p) = \frac{1}{B(\alpha_0,\beta_0)} , p^{\alpha_0-1} , (1-p)^{\beta_0-1} $$

exhibits the same proportionality

$$ \label{eq:Bin-prior-s3} \mathrm{p}(p) \propto p^{\alpha_0-1} , (1-p)^{\beta_0-1} $$

and is therefore conjugate relative to the likelihood.