
Cloud Native with
Microservices

Prepared by Akshay Nanda, Senior Technical Consultant at StatusNeo.

CONTENTS

01

02

03

04

06

08

11

Introduction

What is cloud-native and why cloud-native?

Cloud-native with Microservices based
development

Why are Monoliths not the best architecture
for the cloud?

What are microservices and how are they
better?

Considerations while building a
microservices stack.

Transitioning from monolithic architecture
to microservice architecture

12 Conclusion

C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

The rise of cloud providers such as AWS, Azure, and Google Cloud has resulted in a

market shift in which enterprises of all sizes, large and small, are abandoning their

own physical infrastructures in favour of using space within a specialist cloud

provider's environment.

The cloud is allowing businesses to link people, data, and processes in new ways in

order to take advantage of the opportunities provided by contemporary technology.

Business leaders are bringing business and IT closer together and improving

operations to provide new value for customers to succeed in a digital-first

environment.

The Cloud notion has progressed from an appealing potential source of cost savings

to just the way that enterprises must function.Today, as firms continue their digital

transformation initiatives, leveraging the cloud is a critical strategy.

The requirement for agility and flexibility in the face of growing innovation and

disruption from competitors is the key driver for cloud adoption across enterprises

of all sizes. However, an increasing number of businesses are discovering that just

relocating and migrating their legacy systems to the cloud is insufficient to meet

their demands. Their monolithic architecture systems are preventing them from

achieving their objectives.

In this whitepaper we explore the Cloud native approach to development, the

challenges with monoliths, and why we need a different architecture to get the most

out of our cloud investments. We'll also talk about how microservice architecture is

better suited to cloud native programming. Finally, we go over a design approach for

modernising applications with microservices.

INTRODUCTION

P A G E 0 1C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

WHAT IS CLOUD-NATIVE
AND WHY CLOUD-NATIVE?

The term cloud native refers to the concept of building

and running applications to take advantage of the

distributed computing offered by the cloud delivery

model. Cloud native apps are designed and built to

exploit the scale, elasticity, resiliency, and flexibility

the cloud provides.

Cloud native technologies empower organizations to

build and run scalable applications in public, private,

and hybrid clouds. Features such as containers,

service meshes, microservices, immutable

infrastructure, and declarative application

programming interfaces (APIs) best illustrate this

approach.

Going cloud-native means abstracting away many

layers of infrastructure—networks, servers, operating

systems etc.—allowing them to be defined in code.

These features enable loosely coupled systems that

are scalable, resilient, manageable, and observable.

They allow engineers to make high-impact changes

frequently and with minimal effort.

P A G E 0 2C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

P A G E 0 3

Independence
Scalability
Resiliency
Standards-based
Business agility
Automation
No downtime

They have many benefits, like

Cloud native applications have become a key way to increase business strategy
and value, because they can provide a consistent experience across private,
public, and hybrid clouds. They allow your organization to take full advantage of
cloud computing by running responsive and reliable cloud native apps that are
scalable and reduce risk.

For most applications running in production today, monolithic
architectures are the norm, but they are not the best fit for complex
cloud-based systems. Enterprise applications rely on large, monolithic
codebases, making it difficult to quickly introduce new services, while
distributed development and operations teams make alignment difficult.
Moreover, users are more demanding than ever before - enterprises
need to scale efficiently and monitor deployments to ensure high
performance and consistency for their customers.

Companies like Amazon and Netflix popularized the use of
microservices and use them to build massive scalability and decrease
time between releases. While such companies are digital first, large
enterprises with legacy systems to support can also benefit from a
microservice architecture. And though the challenges—such as
monolithic systems, legacy technology, skills gaps and cultural issues—
might be great, the rewards can be far greater.

Cloud-native with Microservices
based development

C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

A database — consisting of many tables usually in a relational
database management system.

A client-side user interface — consisting of HTML pages and/or
JavaScript running in a browser).

A server-side application — which will handle HTTP requests,
execute domain-specific logic, retrieve and update data from the
database, and populate the HTML views to be sent to the browser.

In the past, an application was usually designed using a monolithic
architecture. In this mode of development, the application is built,
tested, and packaged, as well as deployed as a single unit. Codebases
are also compiled together, and the application is deployed as a single
entity. Scaling required copying instances of the application binaries
and the required libraries to different servers, and the application code
typically ran as a single process. Continuous delivery — an approach
that involves fast, iterative software development and safe updates to
the deployed application — was challenging since the full monolithic
application stack needed to be recompiled, relinked, and tested for even
the smallest incremental release.

Before we discuss more around the problems with monolithic
application, lets first understand what they are.

A monolithic application is built as a single unit. Enterprise applications
are built in three parts (3-Tier):

Why are Monoliths not the best
architecture for the cloud?

P A G E 0 4C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

As application functionality and fixes grow, a monolithic code base
grows, putting more strain on the technological stack and the
development environment's capabilities.

Changing the technological stack of a monolith can be difficult
because it consists of a single executable.

As the monolith becomes more sophisticated, the deployment and
testing effort (even if automated) grows exponentially.

Refactoring code becomes more complex since it becomes more
difficult to foresee how it will affect application functionality.

If any single function or component fails, the entire application will
go down.

Issues with one module's performance can have a negative impact
on the entire application.

When a single function consumes more resources than expected,
overall performance suffers.

Scaling a monolithic application is commonly done by deploying it to
additional servers (i.e., horizontal scaling). Each parallel monolith
then places an equal load on the underlying resources, which is a
highly inefficient design.

Problems presented by monoliths include:

P A G E 0 5C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

01
Monolithic applications require redeploying the
entire stack of the application for even small
changes, resulting in higher risk and complexity.
This leads to longer release cycles. With
microservices, small changes to services can be
committed, tested, and deployed immediately
since they are isolated from other components
of the system.

FASTER TIME TO MARKET

What are microservices and how
are they better?

02
Microservices enable higher quality code by
encouraging more focus. Since individual
microservices, by definition, are smaller than
monolithic applications, they have less scope and
less code. This makes experimentation and
testing with incremental code updates much
easier.

EASIER TO BUILD AND ENHANCE

P A G E 0 6C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

M i c r o s e r v i c e s i s a s o f t w a r e a r c h i t e c t u r e t h a t d i v i d e s p r o g r a m m e s i n t o
s m a l l , s e l f - c o n t a i n e d s e r v i c e s . S e r v i c e s a r e o f t e n d i s c o n n e c t e d a l o n g
c o r p o r a t e b o u n d a r i e s a n d f o c u s e d o n a s i n g l e , d i s t i n c t p u r p o s e o r
f u n c t i o n . S e p a r a t i n g s e r v i c e s a l o n g b u s i n e s s l i n e s a l l o w s t e a m s t o f o c u s
o n t h e r e l e v a n t g o a l s w h i l e a l s o e n s u r i n g s e r v i c e a u t o n o m y . E a c h s e r v i c e
i s b u i l t , t e s t e d , a n d d e p l o y e d s e p a r a t e l y , a n d s e r v i c e s a r e n o r m a l l y s p l i t a s
d i f f e r e n t p r o c e s s e s t h a t c o m m u n i c a t e a c r o s s a n e t w o r k v i a a g r e e d - u p o n
A P I s , t h o u g h t h e n e t w o r k m a y b e l o c a l t o t h e s y s t e m i n s o m e s i t u a t i o n s .

BENEFITS OF MICROSERVICES

M a n y o r g a n i z a t i o n s c a n b e t t e r m e e t t h e n e e d s o f m o d e r n a p p l i c a t i o n
d e v e l o p m e n t b y i m p l e m e n t i n g m i c r o s e r v i c e s . T h e b e n e f i t s i n c l u d e :

04
Microservices more seamlessly enable ongoing
maintenance and fault tolerance, which are major
challenges in any large-scale software
environment. The distributed nature of
microservices across multiple computer servers
and resources helps with fault tolerance
strategies to enable 24x7 deployments. Any
given microservice can be deployed redundantly
so that there is no single source of failure.

EASIER TO MAINTAIN, TROUBLESHOOT,
AND EXTEND

05
One of the challenges of any large-scale software
development effort is the risk of over-
complicating the integration points. In a
microservice, the internal workflow can be as
simple as reading data from a source, performing
an action on the data, and then sending outputs
to a destination. Microservices typically deal with
small amounts of data at a time, so it is easier to
manage and share the output once the data is
processed. This simplicity in the processing and
the data scope leads to simplicity in the handoff.

SIMPLIFY CROSS-TEAM COORDINATION

P A G E 0 7C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

03
Microservices are easier to deploy than
monolithic applications because they are smaller
and thus have fewer environmental
dependencies. The reduction of dependency
discrepancies from development to production is
also a key advantage of a containerized
architecture.

EASIER TO DEPLOY

Real-time processing introduces many challenges
around performance, scale, reliability, and
maintainability, and the microservices approach
can help alleviate the difficulty.

MICROSERVICES SIMPLIFY REAL-TIME
PROCESSING

P A G E 0 8C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

06
The distributed architecture of microservices
opens opportunities for increasing performance
and scaling out. Just as each microservice can be
run redundantly for fault tolerance, this
redundancy also enables greater parallelism that
adds performance and scale.

MICROSERVICES DELIVER PERFORMANCE
AND SCALE

07

Does the platform provide a lightweight,
dynamic container? This is most likely the most
important criterion.

L I G H T W E I G H T C O N T A I N E R S

Is the platform capable of supporting a polyglot
environment—that is, more than one
programming model? The platform should never
impose a specific programming paradigm, style,
or language on its users. Instead, it should be
"agnostic" and provide multi-channel, multi-
container support, allowing a single instance to
host native code, python, Java, and node,
among other things.

P R O G R A M M I N G E N V I R O N M E N T
W I T H M A N Y L A N G U A G E S

What out-of-the-box capabilities does this
platform have to reduce overhead during
implementation? How soon, for example, can a
messaging infrastructure be put in place? How
much does it cost to run? How well are the
framework's capabilities integrated?

O U T - O F - T H E - B O X C A P A B I L I T I E S

P A G E 0 9C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

Considerations while building a
microservices stack.

It's critical to discover the correct ingredients in a microservices-
enabled technology stack or platform after the decision to pursue a
microservices approach has been taken. Look for the following items:

Is hot-swapping of microservices possible on the
platform? Getting a container provisioned at
runtime is only one part of the process. How
dynamic the changes are when microservices are
replaced, deprecated, or new services are added
is another factor to consider.

H O T " S W A P - A B I L I T Y "

How much standardisation is there for security
interoperability? Are there any tools for
managing certificates? Is it possible to use
different types of credentials inside a single
implementation, and, more importantly, is that
capacity abstracted away from the service
implementation? Selecting a system where
security, interconnectivity, and interoperability
are baked into the service implementation is a
significant error. They have to be kept apart.

S E C U R I T Y I N T E R O P E R A B I L I T Y

P A G E 1 0C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

Despite all of the advantages of microservices,
one of the drawbacks is that due to the widely
distributed nature of the architectural style,
microservices can be difficult to manage,
control, and isolate errors. How will IT
operations determine the source of any issues?
How will they monitor the system to figure out
what's broken, what's functioning, and what's
not? What methods will they use to carry out
upgrades and corrections? Any technological
platform should include the ability to monitor a
microservice-based end-to-end implementation
without requiring any instrumentation in the
microservice itself.

M A N A G E A B I L I T Y A N D M O N I T O R I N G

P A G E 1 1C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

When looking at how to approach the introduction of microservices to
an enterprise, taking a design-based approach is very helpful. This
approach can be broken down into five different steps of design:

Transitioning from monolithic
architecture to microservice
architecture

Look at your goals and ask, "Why are you doing this?" It's not enough
to say: "Everybody's on the microservice bandwagon, let's jump on
too." It's important that you understand the value points you're going
after.

O U T C O M E D E S I G N

Examine how you identify the scope of the system that you're going
to be architecting. This is about decomposing the domain.

S Y S T E M D E S I G N

Once you have a picture of what your domain is and what all its
services are going to be, look at the design of all those individual
services to make sure they're built in the right way, so that they can
evolve and interact in the correct way for the system you want to
build.

S E R V I C E D E S I G N

The previous steps have been very technology-agnostic. So now, you
need to look at the underlying capabilities - the technological tools
and platforms that will be required to build out the system best-
suited to the needs of your organization.

F O U N D A T I O N D E S I G N

Look at the organization itself, the people side. How do you make
sure that the culture and methodologies you're using and even the
organizational structure, match what you hope to achieve?

O R G A N I Z A T I O N A L D E S I G N

01

02

03

04

05

P A G E 1 2

Microservices architecture embodies the failures of monolithic applications
and can be seen as a logical response in this age of frequent functionality
changes and constant operational churn. Unlike the monolithic
architecture, this is a sustainable architecture as with it, technical debt is
contained, and rapidly changing business requirements are met by adding
new microservices, not modifying (and breaking) old ones.

Conclusion

C l o u d N a t i v e w i t h M i c r o s e r v i c e s / S t a t u s N e o

Find out more @ statusneo.com

We accelerate your business transformation by
leveraging best fit CLOUD NATIVE technologies
wherever feasible.

We are DIGITAL consultants who partner with
you to solve & deliver.

A l m o s t a l l t h e s u c c e s s f u l m i c r o s e r v i c e s t o r i e s
h a v e s t a r t e d w i t h a m o n o l i t h t h a t g o t t o o b i g
a n d w a s b r o k e n u p .

- M a r t i n F o w l e r

