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Abstract

Two player games of perfect information such as chess and checkers
have been played for centuries.

Such games may be mathematically modeled as a tuple G = 〈M,W 〉,
where M represents the moves of the game, and W represents the
playthroughs (sequences of choices in M) which result in a victory for
the first player.

We will investigate the classic result that all finite length games are
determined: that is, exactly one player has a strategy which
guarantees victory in the game regardless of the moves of her
opponent.

In addition, we will learn how infinite length games are used in fields
such as set theory and topology by using a game to prove that the
real numbers are uncountable.
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Heads up

This talk is about sequential or combinatorial games of
perfect information.

Game theory is a broad subject, including classic games like
the Prisoner’s Delimma where two players make a
simultaneous choice, or Yahtzee where the players face
randomness from dice rolls.

However, we’re going to look at games in the family of Tic Tac
Toe or Chess, where two players take turns making moves with
full knowledge of their options and the history of their previous
moves.
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Some Definitions

Definition

Let ω = {0,1,2, . . . }, and let BA be the set of all functions with
domain A and range B.
Then Xω contains all functions from {0,1,2, . . . } to X , or
equivalently, all sequences of the form 〈x0, x1, x2, . . .〉 with
xi ∈ X .

Definition
A game G is a tuple 〈M,W 〉 where W ⊆ Mω. M represents the
set of possible moves of the game, and W contains certain
sequences of moves 〈a0,b0,a1,b1, . . .〉 called victories (for the
first player).
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In this context, all games have two players, and there are no
ties.

If the players of the game are A and B, then a playthrough of
the game is some sequence in Mω:

p = 〈a0,b0,a1,b1,a2,b2, . . .〉

If p is in W , then the first player A has won the game;
otherwise, the second player B has won the game.
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Example

As an example, let 〈M,W 〉 be the game Sylver Coinage with
players A , B where M = {2,3,4, . . . }.

Defining W directly as a set is usually obnoxious, so we’ll
define it implicitly by setting this rule: no player can choose a
number which is the sum of previously chosen numbers,
perhaps with repetition.

Thus, if 4 and 7 have been chosen previously, then
25 = 4 + 7 + 7 + 7 is not a legal move.

Thus a sequence 〈a0,b0,a1,b1, . . .〉 will be in W if it shows the
second player B breaking the rules before the first player A .
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For example, consider the playthrough beginning with

〈4,11,6,5,7,3,2, . . .〉

A chose 4
B chose 11
A chose 6 (legal moves remaining: {2,3,5,7,9,13})
B chose 5 (legal moves remaining: {2,3,7})
A chose 7 (legal moves remaining: {2,3})
B chose 3 (legal moves remaining: {2})
A chose 2 (legal moves remaining: ∅)
B chose something illegal and lost.
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This game, invented by John Conway, is an example of a finite
game, since eventually one of the players are forced to break
the given rules. (A puzzle I’ll leave for you to work on!)

We’ve just seen that every sequence of the form
〈4,11,6,5,7,3,2, . . .〉 is in W , since A wins those playthroughs
of the game.

An artifact of this game model is that all playthroughs are
infinite sequences. After B makes an illegal move, there’s no
point to keep playing in reality, but the sequences in W stretch
on in every possible combination...
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Strategies

Definition
A strategy is a function σ which turns a finite sequence of
moves in M into a new move in M.

Put another way, a strategy is a fixed rule which tells a player
what move to make during each round in response to all the
previous moves of the game.
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Attacks

Definition
An attack is sequence of moves in M.

Put another way, an attack is a fixed rule which tells a player
what move to make during each round ignoring all the previous
moves of the game.
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Winning Strategies

Definition
The result of a game for which A uses the strategy σ B uses
the attack 〈b0,b1, . . .〉 is the playthrough of the game
〈σ(∅),b0, σ(b0),b1, σ(b0,b1), . . .〉

(Or the similar definition when B has a strategy and A has an
attack.)

Definition
If σ is a strategy for A such that the result of the game for every
possible attack by B is in W , then σ is a winning strategy.

(Or the similar definition when B has a strategy, and all results
are not in W .)
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Definition
If one of the players has a winning strategy for a game, then
that game is said to be determined.

Obviously, both players can’t have a guaranteed way to win the
same game, but is it possible that neither player can guarantee
a way to win? That is, for every fixed strategy by either player,
could the opponent always have some chance of getting lucky
and beating it?
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Borel Determinacy Theorem

We could use a very strong topological and set-theoretic result
to prove that finite games are determined.

Theorem
If M is given the discrete topology, and Mω is given the usual
product topology, then the game G = 〈M,W 〉 is determined
whenever W is a Borel subset of the space Mω.

With a little topology, you can show that if G is finite, then W is
an open set, which implies it’s Borel. Thus finite games are
determined: one of the players has a winning strategy.

Of course, all that requires a few semesters of graduate
topology to grok, so maybe there’s a better way...
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Decision Trees

Finite games can be modeled as a decision tree.
A

B

A

B

A

B

A

The above tree models a game where A and B alternate
choosing “left” or “right” moves to descend the tree. A player
wins if they move into a terminal node of the tree, since the
opponent cannot move farther.
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A

B

A

B

A

B

A

We can label the tree by first showing the states where A
(blue) and B (red) have already won the game.
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A

B

A

B

A

B

A

Then, we can move back and label the spaces where the active
player is able to move to a vertex of their color.
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A

B

A

B

A

B

A

Eventually, we label the entire tree based on when the active
player has the option to move into their color or not.
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A

B

A

B

A

B

A

Since the top vertex is blue, A has a winning strategy: always
make the choice which leads to another blue vertex.
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Infinite Games

Why do we care so much about determinacy? Why did we
define game playthroughs to be infinite sequences?

These topics come into play when considering infinite games.

Definition
A game G is infinite if there exists a playthrough such that it is
still possible for either player to win during every round of the
game.
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How are they played?

Even though a game could never actually be played, we can
still construct strategies (functions) and attacks (sequences),
and we can compute the result of a game given a strategy and
attack.

Put another way, for every infinite game, there is a finite analog
of the game which lasts exactly one round: one player chooses
a strategy, followed by the opponent choosing an attack based
upon it. The result of the infinite game is computed, and that
determines the result of the single-round finite game.
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Determinacy

Like many theorems about infinite mathematical objects,
whether infinite games are determined depend on your
set-theoretic axioms. Mathematicians who work in foundations
often use the Zermelo-Fraenkel (ZF) set theory, which isn’t
powerful enough to write proofs on the subject.

The Axiom of Determinacy states that all games which involve
(countably) infinite moves are determined: one of the players
always can construct a winning strategy.

But the more commonly used Axiom of Choice can be used to
construct a game where if either player fixes a strategy, the
other player can always create a counter-attack which defeats
it. (See the Banach-Mazur game and Bernstein subsets of the
real numbers.)
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Example Game

Let 〈M,W 〉 be Convergence Game A where M is the set of
real numbers R, and A is a subset of the real numbers.

Players A , B must follow the rule that every real number
chosen is strictly between the latest numbers chosen by A and
B.

The start of a playthrough could be〈
5, 12

(5<12)
, 2π
(5<2π<12)

, 7
(2π<7<12)

, 6.5
(2π<6.5<7)

, . . .

〉
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A Winning Condition

Since there’s always infinitely many numbers between every
two real numbers, A and B always have legal moves to
choose from.

That’s why we must add a winning condition: if both players
always make legal moves, then A wins if the numbers she
chose form a sequence converging to a number in the set A,
and B wins otherwise.

For example, A won the earlier playthrough if the sequence
〈5,2π,6.5, . . .〉 converges to a number in A.
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〈5,2π,6.5, . . .〉 converges to a number in A.
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Who wins?

Theorem
B has a winning strategy in Convergence Game when A can
be indexed by the non-negative integers: A = {a0,a1,a2, . . . }
(that is, when A is a countable set).
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Proof.
B’s strategy is to take the list of numbers {a0,a1, . . . }, and
every turn, B chooses the number furthest to the left of the list
which is legal to play.

Then, at the “end” of the game, assuming that A also followed
the rules, every number in the list {a0,a1, . . . } is either to the
left of one of A ’s points, or to the right of one of B’s points.

Thus, A ’s points cannot converge to any of the numbers in
{a0,a1, . . . } no matter what attack she attempts.
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The Application

Using this game, we get a classic set theory result due to
Cantor:

Theorem
The real numbers R cannot be exhaustively indexed by the
non-negative integers (they are uncountable).

Proof.
Every increasing bounded above sequence converges to a real
number (see Cal II). Thus A has a winning strategy for the
Convergence Game A = R.
But since B has a winning strategy when A is a countable set,
we’ve proven that R cannot be countable.
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Questions? Thanks for having me!
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