Game-theoretic strengthenings of Menger's property AMS Fall Sectional Meeting at UNCG

Steven Clontz http://stevenclontz.com

Department of Mathematics and Statistics Auburn University

November 9, 2014

Steven Clontz http://stevenclontz.com Game-theoretic strengthenings of Menger's property

1-Markov Strategies k-Markov strategies for $k \ge 2$ Questions Definitions Scheeper's Proof Limited information strategies

The Menger property

Definition

A space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle \mathcal{F}_0, \mathcal{F}_1, \ldots \rangle$ such that $\mathcal{F}_n \in [\mathcal{U}_n]^{<\omega}$ and $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

Proposition

X is σ -compact \Rightarrow X is Menger \Rightarrow X is Lindelöf.

イロト 不得 とくほ とくほ とうほ

1-Markov Strategies k-Markov strategies for $k \ge 2$ Questions Definitions Scheeper's Proof Limited information strategies

The Menger property

Definition

A space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle \mathcal{F}_0, \mathcal{F}_1, \ldots \rangle$ such that $\mathcal{F}_n \in [\mathcal{U}_n]^{<\omega}$ and $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

Proposition

X is σ -compact \Rightarrow X is Menger \Rightarrow X is Lindelöf.

1-Markov Strategies k-Markov strategies for $k \ge 2$ Questions Definitions Scheeper's Proof Limited information strategies

The Menger game

Game

Let $Men_{C,F}(X)$ denote the *Menger game* with players \mathscr{C}, \mathscr{F} . In round n, \mathscr{C} chooses an open cover \mathcal{C}_n , followed by \mathscr{F} choosing $\mathcal{F}_n \in [\mathcal{C}_n]^{<\omega}$. \mathscr{F} wins the game $(\mathscr{F} \uparrow Men_{C,F}(X))$ if $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover for the space X, and \mathscr{C} wins otherwise.

Theorem (Hurewicz 1926, effectively)

X is Menger if and only if $\mathscr{C} \not \upharpoonright Men_{C,F}(X)$.

イロト イポト イヨト イヨト

3

1-Markov Strategies k-Markov strategies for $k \ge 2$ Questions Definitions Scheeper's Proof Limited information strategies

The Menger game

Game

Let $Men_{C,F}(X)$ denote the *Menger game* with players \mathscr{C}, \mathscr{F} . In round n, \mathscr{C} chooses an open cover \mathcal{C}_n , followed by \mathscr{F} choosing $\mathcal{F}_n \in [\mathcal{C}_n]^{<\omega}$. \mathscr{F} wins the game $(\mathscr{F} \uparrow Men_{C,F}(X))$ if $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover for the space X, and \mathscr{C} wins otherwise.

Theorem (Hurewicz 1926, effectively)

X is Menger if and only if $\mathscr{C} \not \upharpoonright Men_{C,F}(X)$.

ヘロト ヘアト ヘビト ヘビト

Definitions Scheeper's Proof Limited information strategies

Menger suspected that the subsets of the real line with his property were exactly the σ -compact spaces; however:

Theorem (Fremlin, Miller 1988)

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

But metrizable non- σ -compact Menger spaces will be *undetermined* for the Menger game.

Theorem (Telgarsky 1984, Scheepers 1995)

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

イロト 不得 とくほと くほとう

Definitions Scheeper's Proof Limited information strategies

Menger suspected that the subsets of the real line with his property were exactly the σ -compact spaces; however:

Theorem (Fremlin, Miller 1988)

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

But metrizable non- σ -compact Menger spaces will be *undetermined* for the Menger game.

Theorem (Telgarsky 1984, Scheepers 1995)

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Definitions Scheeper's Proof Limited information strategies

Menger suspected that the subsets of the real line with his property were exactly the σ -compact spaces; however:

Theorem (Fremlin, Miller 1988)

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

But metrizable non- σ -compact Menger spaces will be *undetermined* for the Menger game.

Theorem (Telgarsky 1984, Scheepers 1995)

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

ヘロン 人間 とくほ とくほ とう

3

Definitions Scheeper's Proof Limited information strategies

Note that for Lindelöf spaces, metrizability is characterized by regularity and secound countability.

Questions

By considering winning *limited-information strategies*, it turns out Scheeper's proof essentially factors into two lemmas: one for regularity and one for second-countablity.

Definitions Scheeper's Proof Limited information strategies

Note that for Lindelöf spaces, metrizability is characterized by regularity and secound countability.

By considering winning *limited-information strategies*, it turns out Scheeper's proof essentially factors into two lemmas: one for regularity and one for second-countablity.

1-Markov Strategies k-Markov strategies for $k \ge 2$ Questions Definitions Scheeper's Proof Limited information strategies

Limited information strategies

Definition

A *(perfect information) strategy* has knowledge of all the past moves of the opponent.

Definition

A *k*-Markov strategy has knowledge of only the past *k* moves of the opponent and the round number.

イロト イポト イヨト イヨト

э

1-Markov Strategies k-Markov strategies for $k \ge 2$ Questions Definitions Scheeper's Proof Limited information strategies

Limited information strategies

Definition

A *(perfect information) strategy* has knowledge of all the past moves of the opponent.

Definition

A *k*-Markov strategy has knowledge of only the past *k* moves of the opponent and the round number.

ヘロト 人間 ト ヘヨト ヘヨト

Limited info and relative compactness Limited info in second-countable spaces

Proposition

If X is σ -compact, then $\mathscr{F} \uparrow_{1-mark} Men_{C,F}(X)$.

Proof.

Let $X = \bigcup_{n < \omega} K_n$. During round n, \mathscr{F} picks a finite subcollection of the last open cover played by \mathscr{C} (the only one \mathscr{F} remembers) which covers K_n .

Limited info and relative compactness Limited info in second-countable spaces

In general that implication cannot be reversed.

Definition

A subset Y of X is *relatively compact* if for every open cover for X, there exists a finite subcollection which covers Y.

Proposition

If X is σ -relatively-compact, then $\mathscr{F} \uparrow Men_{C,F}(X)$.

ヘロン 人間 とくほ とくほ とう

э

Limited info and relative compactness Limited info in second-countable spaces

In general that implication cannot be reversed.

Definition

A subset Y of X is *relatively compact* if for every open cover for X, there exists a finite subcollection which covers Y.

Proposition

If X is σ -relatively-compact, then $\mathscr{F} \stackrel{\uparrow}{\underset{1-mark}{\to}} Men_{C,F}(X)$.

ヘロト ヘアト ヘビト ヘビト

Limited info and relative compactness Limited info in second-countable spaces

Theorem

$\mathscr{F} \uparrow_{1-mark} Men_{C,F}(X)$ if and only if X is σ -relatively-compact.

Proof.

Let $\sigma(\mathcal{U}, n)$ represent a 1-Markov strategy. For every open cover $\mathcal{U} \in \mathfrak{C}$, $\sigma(\mathcal{U}, n)$ witnesses relative compactness for the set

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

If *X* is not σ -relatively compact, fix $x \notin R_n$ for any $n < \omega$. Then \mathscr{C} can beat σ by choosing $\mathcal{U}_n \in \mathfrak{C}$ during each round such that $x \notin \bigcup \sigma(\mathcal{U}_n, n)$.

Limited info and relative compactness Limited info in second-countable spaces

Theorem

$$\mathscr{F} \uparrow \underset{1-mark}{\mathsf{Men}_{C,F}(X)}$$
 if and only if X is σ -relatively-compact.

Proof.

Let $\sigma(\mathcal{U}, n)$ represent a 1-Markov strategy. For every open cover $\mathcal{U} \in \mathfrak{C}$, $\sigma(\mathcal{U}, n)$ witnesses relative compactness for the set

$$\boldsymbol{R}_{\boldsymbol{n}} = \bigcap_{\boldsymbol{\mathcal{U}} \in \mathfrak{C}} \bigcup \sigma(\boldsymbol{\mathcal{U}}, \boldsymbol{n})$$

If *X* is not σ -relatively compact, fix $x \notin R_n$ for any $n < \omega$. Then \mathscr{C} can beat σ by choosing $\mathcal{U}_n \in \mathfrak{C}$ during each round such that $x \notin \bigcup \sigma(\mathcal{U}_n, n)$.

Limited info and relative compactness Limited info in second-countable spaces

Theorem

$$\mathscr{F} \uparrow \underset{1-mark}{\mathsf{Men}_{C,F}(X)}$$
 if and only if X is σ -relatively-compact.

Proof.

Let $\sigma(\mathcal{U}, n)$ represent a 1-Markov strategy. For every open cover $\mathcal{U} \in \mathfrak{C}$, $\sigma(\mathcal{U}, n)$ witnesses relative compactness for the set

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

If *X* is not σ -relatively compact, fix $x \notin R_n$ for any $n < \omega$. Then \mathscr{C} can beat σ by choosing $\mathcal{U}_n \in \mathfrak{C}$ during each round such that $x \notin \bigcup \sigma(\mathcal{U}_n, n)$.

Limited info and relative compactness Limited info in second-countable spaces

Corollary

For regular spaces $X, \mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Theorem

For second countable spaces $X, \mathscr{F} \uparrow Men_{C,F}(X)$ if and only if $\mathscr{F} \uparrow Men_{C,F}(X)$. 1-mark

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Limited info and relative compactness Limited info in second-countable spaces

Corollary

For regular spaces $X, \mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Theorem

For second countable spaces $X, \mathscr{F} \uparrow Men_{C,F}(X)$ if and only if $\mathscr{F} \uparrow Men_{C,F}(X)$. 1-mark

Limited info and relative compactness Limited info in second-countable spaces

Proof

It's sufficient to consider only basic open sets, and since X is a second-countable space, there are only countably many finite collections of basic open sets.

Let σ be a perfect information strategy, and suppose we've defined open covers $\mathcal{U}_{s'}$ for $s' \leq s \in \omega^{<\omega}$. If \mathcal{U} is an arbitrary open cover, then there are only countably many choices for the finite subcollection

 $\sigma(\mathcal{U}_{s\restriction 1},\ldots,\mathcal{U}_{s},\mathcal{U})\subseteq\mathcal{U}$

ヘロン 人間 とくほ とくほ とう

Limited info and relative compactness Limited info in second-countable spaces

Proof

It's sufficient to consider only basic open sets, and since X is a second-countable space, there are only countably many finite collections of basic open sets.

Let σ be a perfect information strategy, and suppose we've defined open covers $\mathcal{U}_{s'}$ for $s' \leq s \in \omega^{<\omega}$. If \mathcal{U} is an arbitrary open cover, then there are only countably many choices for the finite subcollection

$$\sigma(\mathcal{U}_{\boldsymbol{s}|1},\ldots,\mathcal{U}_{\boldsymbol{s}},\mathcal{U})\subseteq\mathcal{U}$$

Limited info and relative compactness Limited info in second-countable spaces

Proof (cont.)

Thus we may define open covers $U_{s^{\frown}\langle n \rangle}$ for each $n < \omega$ such that for an arbitrary open cover U,

$$\sigma(\mathcal{U}_{\boldsymbol{s}\restriction 1},\ldots,\mathcal{U}_{\boldsymbol{s}},\mathcal{U})=\sigma(\mathcal{U}_{\boldsymbol{s}\restriction 1},\ldots,\mathcal{U}_{\boldsymbol{s}},\mathcal{U}_{\boldsymbol{s}^\frown\langle n
angle})$$

for some $n < \omega$.

Let $t: \omega \to \omega^{<\omega}$ be a bijection. We define a 1-Markov strategy τ as follows:

$$\tau(\mathcal{U}, n) = \sigma(\mathcal{U}_{t(n)\restriction 1}, \dots, \mathcal{U}_{t(n)}, \mathcal{U})$$

Limited info and relative compactness Limited info in second-countable spaces

Proof (cont.)

Thus we may define open covers $U_{s^{\frown}\langle n \rangle}$ for each $n < \omega$ such that for an arbitrary open cover U,

$$\sigma(\mathcal{U}_{\boldsymbol{s}\restriction 1},\ldots,\mathcal{U}_{\boldsymbol{s}},\mathcal{U})=\sigma(\mathcal{U}_{\boldsymbol{s}\restriction 1},\ldots,\mathcal{U}_{\boldsymbol{s}},\mathcal{U}_{\boldsymbol{s}^\frown\langle n
angle})$$

for some $n < \omega$.

Let $t: \omega \to \omega^{<\omega}$ be a bijection. We define a 1-Markov strategy τ as follows:

$$\tau(\mathcal{U}, \mathbf{n}) = \sigma(\mathcal{U}_{t(\mathbf{n})\upharpoonright 1}, \dots, \mathcal{U}_{t(\mathbf{n})}, \mathcal{U})$$

Limited info and relative compactness Limited info in second-countable spaces

Proof (cont.)

Suppose there exists a counter-attack $\langle \mathcal{V}_0, \mathcal{V}_1, \ldots \rangle$ which defeats the 1-Markov strategy τ . Then there exists $f : \omega \to \omega$ such that, if $\mathcal{V}^n = \mathcal{V}_{t^{-1}(f \upharpoonright n)}$

$$\begin{array}{rcl} x & \notin & \bigcup \tau(\mathcal{V}^n, t^{-1}(f \upharpoonright n)) \\ & = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{V}^n) \\ & = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{U}_{f \upharpoonright (n+1)}) \end{array}$$

Thus $\langle \mathcal{U}_{f|1}, \mathcal{U}_{f|2}, \ldots \rangle$ is a successful counter-attack by \mathscr{C} against the perfect information strategy σ , showing $\mathscr{O} \uparrow Men_{C,F}(X) \Rightarrow \mathscr{O} \uparrow Men_{C,F}(X).$

Limited info and relative compactness Limited info in second-countable spaces

Proof (cont.)

Suppose there exists a counter-attack $\langle \mathcal{V}_0, \mathcal{V}_1, \ldots \rangle$ which defeats the 1-Markov strategy τ . Then there exists $f : \omega \to \omega$ such that, if $\mathcal{V}^n = \mathcal{V}_{t^{-1}(f \upharpoonright n)}$

$$\begin{array}{rcl} x & \notin & \bigcup \tau(\mathcal{V}^n, t^{-1}(f \upharpoonright n)) \\ & = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{V}^n) \\ & = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{U}_{f \upharpoonright (n+1)}) \end{array}$$

Thus $\langle \mathcal{U}_{f|1}, \mathcal{U}_{f|2}, \ldots \rangle$ is a successful counter-attack by \mathscr{C} against the perfect information strategy σ , showing $\mathscr{O} \uparrow Men_{C,F}(X) \Rightarrow \mathscr{O} \stackrel{\uparrow}{\longrightarrow} Men_{C,F}(X).$

イロト 不得 とくほ とくほ とう

3

It's speculated that there are spaces X_k such that for the Banach-Mazur game, $\mathscr{N} \underset{k+1-\text{tact}}{\uparrow} BM_{E,N}(X_k)$ but $\mathscr{N} \underset{k-\text{tact}}{\uparrow} BM_{E,N}(X_k)$. (This is true for k = 1.)

Theorem

$$\mathscr{F} \underset{k+2-mark}{\uparrow} Men_{C,F}(X) \text{ if and only if } \mathscr{F} \underset{2-mark}{\uparrow} Men_{C,F}(X).$$

Proof.

$$\tau(\langle \mathcal{U}, \mathcal{V} \rangle, n+1) = \bigcup_{m < k+2} \sigma(\langle \underbrace{\mathcal{U}, \dots, \mathcal{U}}_{k+1-m}, \underbrace{\mathcal{V}, \dots, \mathcal{V}}_{m+1} \rangle, (n+1)(k+2) + m)$$

Steven Clontz http://stevenclontz.com Game-theoretic strengthenings of Menger's property

イロト イポト イヨト イヨト

э

 Menger Spaces and the Menger Game

 1-Markov Strategies

 k-Markov strategies for k ≥ 2

 Questions

It's speculated that there are spaces X_k such that for the Banach-Mazur game, $\mathscr{N} \underset{k+1-\text{tact}}{\uparrow} BM_{E,N}(X_k)$ but $\mathscr{N} \underset{k-\text{tact}}{\uparrow} BM_{E,N}(X_k)$. (This is true for k = 1.)

Theorem

$$\mathscr{F} \underset{k+2-mark}{\uparrow} Men_{C,F}(X) \text{ if and only if } \mathscr{F} \underset{2-mark}{\uparrow} Men_{C,F}(X).$$

Proof.

$$\tau(\langle \mathcal{U}, \mathcal{V} \rangle, n+1) = \bigcup_{m < k+2} \sigma(\langle \underbrace{\mathcal{U}, \ldots, \mathcal{U}}_{k+1-m}, \underbrace{\mathcal{V}, \ldots, \mathcal{V}}_{m+1} \rangle, (n+1)(k+2) + m)$$

Steven Clontz http://stevenclontz.com Game-theoretic strengthenings of Menger's property

ヘロン 人間 とくほ とくほう

э

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Having knowledge of *two* of an opponent's moves allows a player to react when the opponent changes her moves, something impossible to do using a 1-tactical or 1-Markov strategy.

Definition

Let $\kappa^{\dagger} = \kappa \cup \{\infty\}$ be the *one point Lindelöf-ication* of discrete κ : neighborhoods of ∞ are exactly the co-countable sets containing it.

 κ^{\dagger} is a simple space which is a regular and Lindelöf, but not second-countable or σ -compact. Thus $\mathscr{F} \begin{picture}{c} \psi & Men_{C,F}(\kappa^{\dagger}), but \\ 1-mark \end{picture}$ it's easy to see that $\mathscr{F} \uparrow Men_{C,F}(\kappa^{\dagger})$. What about 2-Markov strategies?

ヘロン ヘアン ヘビン ヘビン

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Having knowledge of *two* of an opponent's moves allows a player to react when the opponent changes her moves, something impossible to do using a 1-tactical or 1-Markov strategy.

Definition

Let $\kappa^{\dagger} = \kappa \cup \{\infty\}$ be the *one point Lindelöf-ication* of discrete κ : neighborhoods of ∞ are exactly the co-countable sets containing it.

 κ^{\dagger} is a simple space which is a regular and Lindelöf, but not second-countable or σ -compact. Thus $\mathscr{F} \begin{picture}{c} \gamma & Men_{\mathcal{C},\mathcal{F}}(\kappa^{\dagger}), \ how the the test of test$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Having knowledge of *two* of an opponent's moves allows a player to react when the opponent changes her moves, something impossible to do using a 1-tactical or 1-Markov strategy.

Definition

Let $\kappa^{\dagger} = \kappa \cup \{\infty\}$ be the *one point Lindelöf-ication* of discrete κ : neighborhoods of ∞ are exactly the co-countable sets containing it.

 κ^{\dagger} is a simple space which is a regular and Lindelöf, but not second-countable or σ -compact. Thus $\mathscr{F} \underset{1-\text{mark}}{\gamma} Men_{C,F}(\kappa^{\dagger})$, but it's easy to see that $\mathscr{F} \uparrow Men_{C,F}(\kappa^{\dagger})$. What about 2-Markov strategies?

ヘロン ヘアン ヘビン ヘビン

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

The game $Men_{C,F}(\kappa^{\dagger})$ essentially involves choosing countable and finite subsets of κ . Conveniently, there already exists an infinite game also involving the countable and finite subsets of κ in the literature (Scheepers 1991). An adaptation follows:

Game

Let $Fill_{C,F}^{\cap}(\kappa)$ denote the *intersection filling game* with two players \mathscr{C}, \mathscr{F} . In round 0, \mathscr{C} chooses $C_0 \in [\kappa]^{\leq \omega}$, followed by \mathscr{F} choosing $F_0 \in [\kappa]^{\leq \omega}$. In round n + 1, \mathscr{C} chooses $C_{n+1} \in [\kappa]^{\leq \omega}$, followed by \mathscr{F} choosing $F_{n+1} \in [\kappa]^{<\omega}$. \mathscr{F} wins the game if $\bigcup_{n < \omega} F_n \supseteq \bigcap_{n < \omega} C_n$; otherwise, \mathscr{C} wins.

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

The game $Men_{C,F}(\kappa^{\dagger})$ essentially involves choosing countable and finite subsets of κ . Conveniently, there already exists an infinite game also involving the countable and finite subsets of κ in the literature (Scheepers 1991). An adaptation follows:

Game

Let $Fill_{C,F}^{\cap}(\kappa)$ denote the *intersection filling game* with two players \mathscr{C}, \mathscr{F} . In round 0, \mathscr{C} chooses $C_0 \in [\kappa]^{\leq \omega}$, followed by \mathscr{F} choosing $F_0 \in [\kappa]^{<\omega}$. In round n + 1, \mathscr{C} chooses $C_{n+1} \in [\kappa]^{\leq \omega}$, followed by \mathscr{F} choosing $F_{n+1} \in [\kappa]^{<\omega}$. \mathscr{F} wins the game if $\bigcup_{n < \omega} F_n \supseteq \bigcap_{n < \omega} C_n$; otherwise, \mathscr{C} wins.

・ロト ・ 理 ト ・ ヨ ト ・

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

$$\mathscr{F} \underset{k\text{-mark}}{\uparrow} \operatorname{Men}_{C,F}(\kappa^{\dagger}) \text{ if and only if } \mathscr{F} \underset{k\text{-mark}}{\uparrow} \operatorname{Fill}_{C,F}^{\cap}(\kappa).$$

Definition

For two functions f, g we say f is almost compatible with g if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa)$ states that there exist functions $f_A : A \to \omega$ for each $A \in [\kappa]^{\leq \omega}$ such that $|f_A^{-1}(n)| < \omega$ for all $n < \omega$ and f_A , f_B are almost compatible for all $A, B \in [\kappa]^{\omega}$.

イロト 不得 とくほと くほとう

3

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

$$\mathscr{F} \stackrel{\uparrow}{\underset{k\text{-mark}}{}} \operatorname{Men}_{C,F}(\kappa^{\dagger}) \text{ if and only if } \mathscr{F} \stackrel{\uparrow}{\underset{k\text{-mark}}{}} \operatorname{Fill}_{C,F}^{\cap}(\kappa).$$

Definition

For two functions f, g we say f is almost compatible with g if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa)$ states that there exist functions $f_A : A \to \omega$ for each $A \in [\kappa]^{\leq \omega}$ such that $|f_A^{-1}(n)| < \omega$ for all $n < \omega$ and f_A , f_B are almost compatible for all $A, B \in [\kappa]^{\omega}$.

イロト 不得 とくほ とくほ とう

Э

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

$$\mathscr{F} \underset{k\text{-mark}}{\uparrow} \operatorname{Men}_{C,F}(\kappa^{\dagger}) \text{ if and only if } \mathscr{F} \underset{k\text{-mark}}{\uparrow} \operatorname{Fill}_{C,F}^{\cap}(\kappa).$$

Definition

For two functions f, g we say f is almost compatible with g if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa)$ states that there exist functions $f_A : A \to \omega$ for each $A \in [\kappa]^{\leq \omega}$ such that $|f_A^{-1}(n)| < \omega$ for all $n < \omega$ and f_A , f_B are almost compatible for all $A, B \in [\kappa]^{\omega}$.

イロト 不得 とくほと くほとう

3

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem (Scheepers 1991)

 $S(\omega_1)$; $\neg S(\kappa)$ for $\kappa > 2^{\omega}$; $Con(S(2^{\omega}) + \neg CH)$.

Theorem

If $S(\kappa)$, then $\mathscr{F} \stackrel{\uparrow}{\underset{2-mark}{\longrightarrow}} Fill^{\cap}_{C,F}(\kappa)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem (Scheepers 1991)

$$S(\omega_1)$$
; $\neg S(\kappa)$ for $\kappa > 2^{\omega}$; $Con(S(2^{\omega}) + \neg CH)$.

Theorem

If
$$S(\kappa)$$
, then $\mathscr{F} \underset{2-mark}{\uparrow} Fill_{C,F}^{\cap}(\kappa)$.

ヘロト 人間 とくほとくほとう

3

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

If
$$S(\kappa)$$
, then $\mathscr{F} \stackrel{\uparrow}{\underset{2\text{-mark}}{\text{ fill}}} Fill_{C,F}^{\cap}(\kappa)$.

Proof.

Let $f_A : A \to \omega$ witness $S(\kappa)$. Then we define the winning 2-Markov strategy σ as follows:

$$\sigma(\langle \mathbf{A} \rangle, \mathbf{0}) = \{ \alpha \in \mathbf{A} : f_{\mathbf{A}}(\alpha) = \mathbf{0} \}$$

 $\sigma(\langle A, B \rangle, n+1) = \{ \alpha \in A \cap B : f_B(\alpha) \le n+1 \text{ or } f_A(\alpha) \neq f_B(\alpha) \}$

Corollary

$$\mathscr{F} \uparrow Men_{C,F}(\omega_1^{\dagger}), but \mathscr{F} \not Men_{C,F}(\omega_1^{\dagger}).$$

Steven Clontz http://stevenclontz.com

Game-theoretic strengthenings of Menger's property

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

If
$$S(\kappa)$$
, then $\mathscr{F} \stackrel{\uparrow}{\underset{2\text{-mark}}{\uparrow}} Fill^{\cap}_{C,F}(\kappa)$.

Proof.

Let $f_A : A \to \omega$ witness $S(\kappa)$. Then we define the winning 2-Markov strategy σ as follows:

$$\sigma(\langle \mathbf{A} \rangle, \mathbf{0}) = \{ \alpha \in \mathbf{A} : f_{\mathbf{A}}(\alpha) = \mathbf{0} \}$$

 $\sigma(\langle A, B \rangle, n+1) = \{ \alpha \in A \cap B : f_B(\alpha) \le n+1 \text{ or } f_A(\alpha) \neq f_B(\alpha) \}$

Corollary

$$\mathscr{F} \stackrel{\uparrow}{\underset{2-mark}{\wedge}} Men_{C,F}(\omega_1^{\dagger}), but \mathscr{F} \stackrel{\gamma}{\underset{1-mark}{\wedge}} Men_{C,F}(\omega_1^{\dagger}).$$

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Characterizing 2-Markov strategies topologically

Game

Let $Men_{C,F}(X, Y)$ proceed analogously to the Menger game, except that \mathscr{F} only need cover $Y \subseteq X$.

Definition

A subset *Y* of *X* is *relatively robustly Menger* if there exist functions $r_{\mathcal{V}} : Y \to \omega$ for each open cover \mathcal{V} of *X* such that for all open covers \mathcal{U}, \mathcal{V} and numbers $n < \omega$, the following sets are finitely coverable by \mathcal{V} :

 $c(\mathcal{V},n) = \{x \in Y : r_{\mathcal{V}}(x) \le n\}$

 $p(\mathcal{U}, \mathcal{V}, n+1) = \{x \in Y : n < r_{\mathcal{U}}(x) < r_{\mathcal{V}}(x)\}$

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Characterizing 2-Markov strategies topologically

Game

Let $Men_{C,F}(X, Y)$ proceed analogously to the Menger game, except that \mathscr{F} only need cover $Y \subseteq X$.

Definition

A subset *Y* of *X* is *relatively robustly Menger* if there exist functions $r_{\mathcal{V}} : Y \to \omega$ for each open cover \mathcal{V} of *X* such that for all open covers \mathcal{U}, \mathcal{V} and numbers $n < \omega$, the following sets are finitely coverable by \mathcal{V} :

$$c(\mathcal{V},n) = \{x \in Y : r_{\mathcal{V}}(x) \le n\}$$

$$p(\mathcal{U}, \mathcal{V}, n+1) = \{x \in Y : n < r_{\mathcal{U}}(x) < r_{\mathcal{V}}(x)\}$$

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

If Y is relatively robustly Menger to X, then

$$\mathscr{F} \uparrow Men_{C,F}(X,Y).$$

Theorem

If
$$\mathscr{F} \uparrow Men_{C,F}(X, X_i)$$
 for $i < \omega$, then

$$\mathscr{F} \uparrow Men_{C,F}(X, \bigcup_{i < \omega} X_i).$$
2-mark

Theorem

$$Men_{C,F}(X,X) = Men_{C,F}(X).$$

イロン 不同 とくほう イヨン

ъ

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

 $S(\kappa)$ implies ω_1^{\dagger} is relatively robustly Menger to itself.

Definition

Let R_{ω} be the real line with the topology generated by open intervals with countably many points removed.

Theorem

 $S(2^{\omega}) \text{ implies } \mathscr{F} \stackrel{\uparrow}{\underset{2-mark}{}} Men_{C,F}(R_{\omega})$

イロン 不得 とくほ とくほ とうほ

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

 $S(\kappa)$ implies ω_1^{\dagger} is relatively robustly Menger to itself.

Definition

Let R_{ω} be the real line with the topology generated by open intervals with countably many points removed.

Theorem

 $S(2^{\omega}) ext{ implies } \mathscr{F} \stackrel{\uparrow}{\underset{2\text{-mark}}{\text{ mark}}} Men_{\mathcal{C},\mathcal{F}}(\mathcal{R}_{\omega})$

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

$$S(2^{\omega}) ext{ implies } \mathscr{F} \stackrel{\uparrow}{\underset{2-mark}{\to}} Men_{\mathcal{C},\mathcal{F}}(\mathcal{R}_{\omega})$$

Proof.

Proceeds by showing that [0, 1] is relatively robustly Menger (as a subspace of R_{ω}). Let f_C witness S([0, 1]).

Choose a finite subcover of \mathcal{V} for $[0,1] \setminus C_{\mathcal{V}}$. Let $r_{\mathcal{V}}(x) = 0$ for $x \notin C_{\mathcal{V}}$, and $r_{\mathcal{V}}(x) = f_{C_{\mathcal{V}}}(x)$ otherwise. Then $c(\mathcal{V}, n)$ is finitely coverable by \mathcal{V} and $p(\mathcal{U}, \mathcal{V}, n + 1)$ is just finite.

k-Markov implies 2-Markov 2-Markov but not 1-Markov Relatively Robustly Menger

Theorem

$$S(2^{\omega}) ext{ implies } \mathscr{F} \stackrel{\uparrow}{\underset{2-mark}{\to}} Men_{\mathcal{C},\mathcal{F}}(\mathcal{R}_{\omega})$$

Proof.

Proceeds by showing that [0, 1] is relatively robustly Menger (as a subspace of R_{ω}). Let f_C witness S([0, 1]).

Choose a finite subcover of \mathcal{V} for $[0, 1] \setminus C_{\mathcal{V}}$. Let $r_{\mathcal{V}}(x) = 0$ for $x \notin C_{\mathcal{V}}$, and $r_{\mathcal{V}}(x) = f_{C_{\mathcal{V}}}(x)$ otherwise. Then $c(\mathcal{V}, n)$ is finitely coverable by \mathcal{V} and $p(\mathcal{U}, \mathcal{V}, n + 1)$ is just finite.

イロト 不得 とくほ とくほとう

Some questions:

- $S(\kappa)$ implies $\mathscr{F} \underset{2-\text{mark}}{\uparrow} Fill_{C,F}^{\cap}(\kappa)...$ what about the other direction?
- Is there a space with $\mathscr{F} \uparrow Men_{C,F}(X)$ but $\mathscr{F} \hspace{0.1cm} \overset{\gamma}{\xrightarrow{}} \hspace{0.1cm} \underset{\text{2-mark}}{Men_{C,F}(X)}$?
- Is there a non-σ-relatively-robustly-Menger space where

$$\mathscr{F} \stackrel{\uparrow}{\underset{\text{2-mark}}{\stackrel{\text{Men}_{C,F}(X)?}{\stackrel{}{}}}} Men_{C,F}(X)?$$

Questions from any of you? Thanks!

イロト イポト イヨト イヨト

э