Proximal compact spaces are Corson compact 2015 Joint Mathematics Meetings at San Antonio

Steven Clontz http://stevenclontz.com Gary Gruenhage

Department of Mathematics and Statistics Auburn University

January 11, 2015

ヘロト ヘ戸ト ヘヨト ヘヨト

During each round n, the first and second player take turns choosing certain topological objects from X (e.g. point, open set, open cover, etc.).

At the "end" of the game, a winner is declared by inspecting the sequences of choices made throughout the game.

The study of such games involves finding when a player has a *winning strategy* which defeats every possible counterattack by the opponent.

See Telgarsky's excellent survey on topological games for more details: [7]

イロト イポト イヨト イヨト

During each round n, the first and second player take turns choosing certain topological objects from X (e.g. point, open set, open cover, etc.).

At the "end" of the game, a winner is declared by inspecting the sequences of choices made throughout the game.

The study of such games involves finding when a player has a *winning strategy* which defeats every possible counterattack by the opponent.

See Telgarsky's excellent survey on topological games for more details: [7]

・ロット (雪) () () () ()

During each round n, the first and second player take turns choosing certain topological objects from X (e.g. point, open set, open cover, etc.).

At the "end" of the game, a winner is declared by inspecting the sequences of choices made throughout the game.

The study of such games involves finding when a player has a *winning strategy* which defeats every possible counterattack by the opponent.

See Telgarsky's excellent survey on topological games for more details: [7]

ヘロン ヘアン ヘビン ヘビン

During each round n, the first and second player take turns choosing certain topological objects from X (e.g. point, open set, open cover, etc.).

At the "end" of the game, a winner is declared by inspecting the sequences of choices made throughout the game.

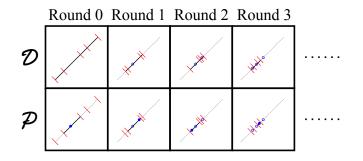
The study of such games involves finding when a player has a *winning strategy* which defeats every possible counterattack by the opponent.

ヘロト ヘアト ヘビト ヘビト

See Telgarsky's excellent survey on topological games for more details: [7]

During each round n, the first and second player take turns choosing certain topological objects from X (e.g. point, open set, open cover, etc.).

At the "end" of the game, a winner is declared by inspecting the sequences of choices made throughout the game.


The study of such games involves finding when a player has a *winning strategy* which defeats every possible counterattack by the opponent.

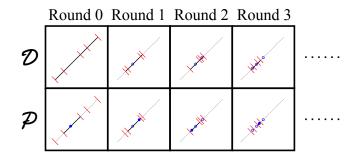
See Telgarsky's excellent survey on topological games for more details: [7]

ヘロン 人間 とくほ とくほ とう

Defintion Proximal Game

Proximal Game (2014) [1]

for compact T1 0-dim spaces


The first player \mathscr{D} wins the game if the points chosen by the second player \mathscr{P} converge. If \mathscr{D} has a winning strategy for this game, call *X* proximal.

Steven Clontz http://stevenclontz.com Gary Gruenhage

Proximal compact spaces are Corson compact

Defintion Proximal Game

Proximal Game (2014) [1]

for compact T1 0-dim spaces

The first player \mathscr{D} wins the game if the points chosen by the second player \mathscr{P} converge. If \mathscr{D} has a winning strategy for this game, call *X* proximal.

Steven Clontz http://stevenclontz.com Gary Gruenhage Proximal compact spaces are Corson compact

Defintion Proximal Game

Some results related to the Proximal Game due to Jocelyn Bell:

Proposition

If X is metrizable, then X is proximal.

Theorem

If X is proximal, then X is collectionwise normal.

Theorem

 Σ -products and closed subspaces of proximal spaces are proximal.

Corollary

The Σ -product of metrizable spaces is collectionwise normal. [4] [6]

N 11 7 N 11 7 N 2 7 N 2 7

-

Defintion Proximal Game

Some results related to the Proximal Game due to Jocelyn Bell:

Proposition

If X is metrizable, then X is proximal.

Theorem

If X is proximal, then X is collectionwise normal.

Theorem

 Σ -products and closed subspaces of proximal spaces are proximal.

Corollary

The Σ -product of metrizable spaces is collectionwise normal. [4] [6]

ヘロア 人間 アメヨア 人口 ア

A *Corson compact* space is a space homeomorphic to a compact subset of the Σ -product of real lines.

Peter Nyikos observed:

Proposition

Every Corson compact space is proximal compact. [5]

C. and Gruenhage showed in [2] that any compact proximal space must be Corson compact, using another game-theoretic characterization of Corson compact due to Gruenhage:

くロト (過) (目) (日)

A *Corson compact* space is a space homeomorphic to a compact subset of the Σ -product of real lines.

Peter Nyikos observed:

Proposition

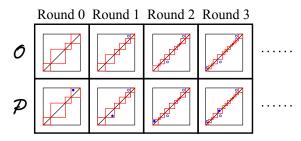
Every Corson compact space is proximal compact. [5]

C. and Gruenhage showed in [2] that any compact proximal space must be Corson compact, using another game-theoretic characterization of Corson compact due to Gruenhage:

ヘロト 人間 ト ヘヨト ヘヨト

A *Corson compact* space is a space homeomorphic to a compact subset of the Σ -product of real lines.

Peter Nyikos observed:


Proposition

Every Corson compact space is proximal compact. [5]

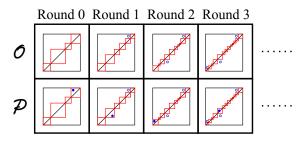
C. and Gruenhage showed in [2] that any compact proximal space must be Corson compact, using another game-theoretic characterization of Corson compact due to Gruenhage:

Corson compact Showing proximal compact implies Corson compact

Diagonal Game (1984) [3]:

for compact T_1 0-dim spaces

The first player \mathcal{O} wins the game if any open set containing the diagonal also contains infinitely many of \mathcal{P} 's chosen points.


Theorem

For X compact, \mathcal{O} has a winning strategy for the diagonal game if and only if X is Corson compact.

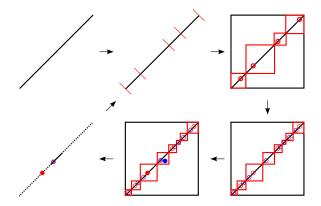
Steven Clontz http://stevenclontz.com Gary Gruenhage Proximal compact spaces are Corson compact

Corson compact Showing proximal compact implies Corson compact

Diagonal Game (1984) [3]:

for compact T_1 0-dim spaces

The first player \mathcal{O} wins the game if any open set containing the diagonal also contains infinitely many of \mathcal{P} 's chosen points.


Theorem

For X compact, \mathcal{O} has a winning strategy for the diagonal game if and only if X is Corson compact.

Steven Clontz http://stevenclontz.com Gary Gruenhage Proximal compact spaces are Corson compact

∃⇒

One may use a winning strategy σ for \mathscr{D} in the proximal game to construct a strategy τ for \mathscr{O} in the diagonal game.

くロト (過) (目) (日)

In general:

$$\tau(a) = \bigcup_{s \frown \langle i, h_{s,i}, j \rangle \in \max(T(a))} \frac{1}{4} \sigma(o_s \frown \langle h_{s,i} \rangle) [h_{s,i,j}]$$

Using the strategy τ defined for every proximal compact space, \mathscr{O} cannot be defeated in the diagonal game, and therefore all proximal compacts are Corson compact.

Open questions:

- If compactness is dropped, does the proximal game characterize all copies of *closed* subspaces of a Σ-product of reals? (Nyikos)
- If the winning strategy for the proximal game is *Markov* (relies on only the latest move and round number) for a compact space, does that imply that the space is *Eberlein* compact? (This holds for the diagonal game.)

イロト イポト イヨト イヨト

1

Jocelyn R. Bell.

An infinite game with topological consequences. *Topology Appl.*, 175:1–14, 2014.

Steven Clontz and Gary Gruenhage.

Proximal compact spaces are Corson compact. *Topology Appl.*, 173:1–8, 2014.

Gary Gruenhage.

Covering properties on $X^2 \setminus \Delta$, *W*-sets, and compact subsets of Σ -products. *Topology Appl.*, 17(3):287–304, 1984.

S. P. Gulko.

Properties of sets that lie in Σ -products. Dokl. Akad. Nauk SSSR, 237(3):505–508, 1977.

Peter J. Nyikos.

Proximal and semi-proximal spaces (preprint). 2013.

Mary Ellen Rudin.

The shrinking property. Canad. Math. Bull., 26(4):385–388, 1983.

Rastislav Telgársky.

Topological games: on the 50th anniversary of the Banach-Mazur game. *Rocky Mountain J. Math.*, 17(2):227–276, 1987.

ヘロア 人間 アメヨア 人口 ア

æ

Any questions?

Steven Clontz http://stevenclontz.com Gary Gruenhage Proximal compact spaces are Corson compact

ヘロト 人間 とくほとくほとう