Algorithmique et fonctions affines

Niveau

Seconde

Prérequis

- ✓ Syntaxe d'un algorithme : entrées, traitement, sortie
- ✓ Programmes de calcul, fonctions affines

Objectifs

A partir d'algorithmes simples, introduire l'utilisation du logiciel Algobox, puis introduire les instructions conditionnelles, la boucle « pour » et les outils de dessin.

Le travail s'effectue progressivement en lien avec les notions de base sur les fonctions.

Les exercices 1 et 2 demandent à l'élève d'analyser un algorithme simple, puis de traduire à l'aide d'un algorithme un programme de calcul. L'exercice 3 est un travail de modification d'algorithmes utilisant des instructions conditionnelles.

Dans l'exercice 4 il est demandé à l'élève de construire un algorithme pour répondre à un problème donné ; cet algorithme étant ensuite complété en plusieurs étapes par une visualisation graphique et un problème d'optimisation.

Déroulement de la séance

En salle informatique. La séquence peut être traitée en plusieurs fois.

Les exercices 1 à 3 peuvent être traités en autonomie.

L'exercice 4 sous-entend l'intervention du professeur pour introduire la boucle « pour » ainsi que les outils de dessin d'Algobox.

Algorithmique et fonctions affines

Fiche élève

Exercice 1:

Voici un algorithme créé avec le logiciel Algobox

```
1
      VARIABLES
2
        x EST DU TYPE NOMBRE
3
        y EST_DU_TYPE NOMBRE
4
      DEBUT_ALGORITHME
5
        LIRE x
6
        y PREND_LA_VALEUR -15*x+59
7
        AFFICHER "y="
        AFFICHER y
8
9
      FIN_ALGORITHME
```

1) Faire fonctionner cet algorithme pour les valeurs suivantes :

```
x = -30 x = 160 x = 2/3
```

2) Que fait cet algorithme?

Exercice 2:

1) Faire fonctionner ce programme de calcul pour les valeurs de *x* suivantes :

Choisir un nombre x

Ajouter 1/3

Multiplier par 2

Soustraire 4

Donner le résultat

$$x = -3$$
 $x = 1/6$ $x = 15$

- 2) Écrire l'algorithme correspondant à ce programme de calcul.
- 3) Le tester à l'aide du logiciel Algobox.

Exercice 3:

1) Réécrire l'algorithme ci-dessous en utilisant deux instructions « sialors » indépendantes.

```
VARIABLES
1
     x EST DU TYPE NOMBRE
3
      y EST_DU_TYPE NOMBRE
4
    DEBUT_ALGORITHME
5
     LIRE x
6
      SI (x<=3) ALORS
7
       DEBUT_SI
8
        y PREND_LA_VALEUR -2*x+3
9
        FIN_SI
10
        SINON
11
          DEBUT SINON
          y PREND_LA_VALEUR -3
12
13
          FIN SINON
     AFFICHER y
14
15
     FIN_ALGORITHME
```

Algorithmique et fonctions affines

2) Réécrire l'algorithme ci-dessous en utilisant une instruction « si alorssinon »

```
1
      VARIABLES
2
        x EST DU TYPE NOMBRE
3
        y EST DU TYPE NOMBRE
4
      DEBUT_ALGORITHME
5
        LIRE x
6
        SI (x<=3) ALORS
7
          DEBUT SI
8
          y PREND_LA_VALEUR 4*x-3
9
          FIN SI
10
        SI (x>3) ALORS
          DEBUT_SI
11
12
          y PREND_LA_VALEUR 2*x+3
13
          FIN_SI
14
        AFFICHER y
15
      FIN ALGORITHME
```

Exercice 4:

Une agence de location de voitures propose la formule suivante :

Un forfait de 20€et 0,35 €par kilomètre parcouru.

- 1) Créer un algorithme permettant d'afficher les montants d'une location pour 1 ; 2 ; 3 ;100 km.
- 2) Faire tracer les points de coordonnées (x; y) dans un repère. (« dessiner dans un repère »). Que constate-t-on ?
- 3) Modifier l'algorithme afin d'obtenir la représentation graphique du montant d'une location en fonction du nombre de kilomètres parcourus.
- 4) L'agence propose deux autres formules :
 - Formule 2 : Un forfait de 30 €et 0,20 €par kilomètre parcouru.
 - Formule 3 : Un forfait de 70 €quelque soit la distance parcourue.

Créer un algorithme permettant de déterminer la formule la plus avantageuse en fonction du nombre de kilomètres parcourus.