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1 Structure factor from dynamical correlations
Our interest is estimating dynamical expectation values for a classical system
with a prescribed dynamics. For concreteness, consider a system of spins S
in equilibrium, obeying the Boltzmann distribution, P [S] ∼ exp(−βH[S]). To
estimate dynamical quantities, we must also introduce a model for the physi-
cal time-dynamics. This might be the energy-conserving Landau-Lifshitz (LL)
equation, or a Langevin spin dynamics that includes damping and noise terms.
The latter can be used to model the effective coupling of spins to a thermal
bath.

Let A(x, t) and B(x, t) denote local observables at position x for the time-
evolved spin configuration S(t), starting from some initial configuration, S(0) =
S0. A dynamical time correlation is then,

C(x, t) = ⟨A(0, 0)B(x, t)⟩, (1)

where the bracket denotes an average over initial conditions S0 sampled from
thermal equilibrium. Time-evolution preserves the Boltzmann distribution (un-
der either LL or Langevin dynamics), so the correlation function is invariant
under an arbitrary time shift. The average over equilibrium configurations S0

also ensures translation invariance in space. This translation invariances justify
averaging over many space-time shifts,

C(x, t) =
1

Ω
⟨
∫
Ω

A(x′, t′)B(x′ + x, t′ + t)dx′dt′⟩, (2)

where the volume Ω should be sufficiently large such that “surface effects” can
be ignored.

This integral can be written compactly as a cross correlation,

C(x, t) =
1

Ω
⟨(A ⋆ B)(x, t)⟩. (3)

The convolution theorem allows simplification in Fourier space,

Ĉ(q, ω) =
1

Ω
⟨Â∗(q, ω)B̂(q, ω)⟩. (4)
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For concreteness, we employ the Fourier transformation convention,

Â(q, ω) = Fq,ω[A] ≡
∫

e−i(qx+ωt)A(x, t). (5)

Because the classical observable A(x, t) is real, we can also write

Ĉ(q, ω) =
1

Ω
⟨Â(−q,−ω)B̂(q, ω)⟩. (6)

This makes contact with the usual notion of “structure factor”.

2 Estimates of dynamical correlations
In practice, our data A(x, t) and B(x, t) will be periodic in x, but will be nonpe-
riodic in t. If we naively take the FFT of this data to plug into Eq. (6), we are
effectively assuming periodic boundaries in time, and this can lead to aliasing
effects due to the discontinuity at the edges of the time interval.

An alternative approach, proposed by Sam, is to treat the real-space cor-
relation function C(x, t) as the more fundamental object to be estimated, and
only take its Fourier transform at the end of the calculation. This viewpoint is
useful because it allows mitigation of artifacts that would otherwise arise when
periodically extending time.

Since the data is properly periodic in x, it is convenient to work in a mixed
space where the position variable x has been Fourier transformed, but time t
has not,

Cq(t) ≡
∫

dxe−iqxC(x, t). (7)

This evaluates to (I think),

Cq(t) =
1

V
⟨ 1
T

∫
A∗

q(t
′)Bq(t

′ + t)dt′⟩, (8)

where we have decomposed Ω into separate volumes for space V and time T .
Recall that the remaining integral over t′ is optional. That is, we could get

the same result (in principle) without any time averaging,

Cq(t) =
1

V
⟨A∗

q(t
′)Bq(t

′ + t)⟩, (9)

which is valid for arbitrary reference time t′. To improve the quality of the
statistical estimate, however, it is best to make use of all possible data. Assum-
ing there is trajectory data over the interval 0 ≤ t < T , we can integrate over
all reference times t′ subject to the restriction that the indexing is within the
allowed bounds,

Cq(t) =
1

V

⟨
∫
A∗

q(t
′)Bq(t

′ + t)P (t, t′)dt′⟩∫
P (t, t′)dt′

, (10)
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where

P (t, t′) =

{
1 (0 ≤ t′ < T and 0 ≤ t+ t′ < T )

0 otherwise
. (11)

An efficient way to implement the integral of Eq. (10) is to define a periodic
extension of the data that includes zero-padding of length T , e.g.,

Ãq(t) =

{
Aq(s) (0 ≤ s < T )

0 (T ≤ s < 2T )
, (12)

where t can be any real number and

s = mod(t, 2T ). (13)

This leads to,

Cq(t) =
1

V (T − |t|)
⟨
∫ 2T

0

Ã∗
q(t

′)B̃q(t
′ + t)dt′⟩, (14)

which is exactly consistent with Eq. (9).
The integral can be recognized as a discrete circular cross correlation,

Cq(t) =
1

V (T − |t|)
⟨(Ãq ⋆ B̃q)t⟩, (15)

which can be evaluated efficiently through the fast Fourier transform of the
zero-padded data Ãq and B̃q.

In a practical implementation, a final procedure might be:

1. Fourier transform the signals A(x, t) and B(x, t) in space to get Aq(t) and
Bq(t).

2. Zero-pad in time to get Ãq(t) and B̃q(t), which effectively doubles the size
of this dimension.

3. Use FFTs in time to naively perform a circular cross correlation in the t
index, for each q independently.

4. Apply an overall scaling factor V −1(T − |t|)−1 to obtain Cq(t).

5. The desired structure factor Ĉ(q, ω) is related to Cq(t) by a final Fourier
transform in time.

3 Limiting artifacts due to finite trajectory length
and equilibrium samples

The above procedure is formally correct, but suffers from two issues at finite
trajectory length T :
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1. The Cq(t) data is available only over the finite range −T < t < T , whereas
the true Fourier transformation requires data over all real time-shifts t.

2. The ensemble average ⟨·⟩ will be estimated from a finite number of samples,
and statistical estimates of Cq(t) become especially noisy when t → ±T .

The first issue amounts to an unavoidable introduction of some windowing func-
tion which sets C(t) = 0 whenever |t| > T . Given the unavoidal presence of
some window, it is advantageous to select a smooth window which moves conti-
nously to zero as |t| → T . This empirically resolves the second issue, by damping
statistical noise associated with low numbers of samples.

A reasonable choice for the smooth window function might be

f(t) = cos2(πt/2T ). (16)

Beyond |t| > T , we may zero-pad the estimated correlation function some ar-
bitary amount,

Cq(t) ≈

{
f(t)

V (T−|t|) ⟨(Ãq ⋆ B̃q)t⟩ (−T ≤ t < T )

0 (some finite domain)
. (17)

To obtain the structure factor estimate in Eq. (6), only the temporal Fourier
transform remains to be evaluated,

Ĉ(q, ω) =

∫
e−iωtCq(t)dt. (18)

In the special case that t = 0, the window function disappears, f(0) = 1,
and

Cq(0) =
1

V T

∫ T

0

A∗
q(t

′)Bq(t
′)dt′. (19)

This ensures that the “classical sum rule” will be exactly respected.
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