Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 28 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…
| //! This crate implements the matrix 1-norm estimator by [Higham and Tisseur]. | |
| //! | |
| //! [Higham and Tisseur]: http://eprints.ma.man.ac.uk/321/1/covered/MIMS_ep2006_145.pdf | |
| use ndarray::{ | |
| prelude::*, | |
| ArrayBase, | |
| Data, | |
| DataMut, | |
| Dimension, | |
| Ix1, | |
| Ix2, | |
| s, | |
| }; | |
| use ordered_float::NotNan; | |
| use rand::{ | |
| Rng, | |
| SeedableRng, | |
| thread_rng, | |
| }; | |
| use rand_xoshiro::Xoshiro256StarStar; | |
| use std::collections::BTreeSet; | |
| use std::cmp; | |
| use std::slice; | |
| pub struct Normest1 { | |
| n: usize, | |
| t: usize, | |
| rng: Xoshiro256StarStar, | |
| x_matrix: Array2<f64>, | |
| y_matrix: Array2<f64>, | |
| z_matrix: Array2<f64>, | |
| w_vector: Array1<f64>, | |
| sign_matrix: Array2<f64>, | |
| sign_matrix_old: Array2<f64>, | |
| column_is_parallel: Vec<bool>, | |
| indices: Vec<usize>, | |
| indices_history: BTreeSet<usize>, | |
| h: Vec<NotNan<f64>>, | |
| } | |
| /// A trait to generalize over 1-norm estimates of a matrix `A`, matrix powers `A^m`, | |
| /// or matrix products `A1 * A2 * ... * An`. | |
| /// | |
| /// In the 1-norm estimator, one repeatedly constructs a matrix-matrix product between some n×n | |
| /// matrix X and some other n×t matrix Y. If one wanted to estimate the 1-norm of a matrix m times | |
| /// itself, X^m, it might thus be computationally less expensive to repeatedly apply | |
| /// X * ( * ( X ... ( X * Y ) rather than to calculate Z = X^m = X * X * ... * X and then apply Z * | |
| /// Y. In the first case, one has several matrix-matrix multiplications with complexity O(m*n*n*t), | |
| /// while in the latter case one has O(m*n*n*n) (plus one more O(n*n*t)). | |
| /// | |
| /// So in case of t << n, it is cheaper to repeatedly apply matrix multiplication to the smaller | |
| /// matrix on the RHS, rather than to construct one definite matrix on the LHS. Of course, this is | |
| /// modified by the number of iterations needed when performing the norm estimate, sustained | |
| /// performance of the matrix multiplication method used, etc. | |
| /// | |
| /// It is at the designation of the user to check what is more efficient: to pass in one definite | |
| /// matrix or choose the alternative route described here. | |
| trait LinearOperator { | |
| fn multiply_matrix<S>(&self, b: &mut ArrayBase<S, Ix2>, c: &mut ArrayBase<S, Ix2>, transpose: bool) | |
| where S: DataMut<Elem=f64>; | |
| } | |
| impl<S1> LinearOperator for ArrayBase<S1, Ix2> | |
| where S1: Data<Elem=f64>, | |
| { | |
| fn multiply_matrix<S2>(&self, b: &mut ArrayBase<S2, Ix2>, c: &mut ArrayBase<S2, Ix2>, transpose: bool) | |
| where S2: DataMut<Elem=f64> | |
| { | |
| let (n_rows, n_cols) = self.dim(); | |
| assert_eq!(n_rows, n_cols, "Number of rows and columns does not match: `self` has to be a square matrix"); | |
| let n = n_rows; | |
| let (b_n, b_t) = b.dim(); | |
| let (c_n, c_t) = b.dim(); | |
| assert_eq!(n, b_n, "Number of rows of b not equal to number of rows of `self`."); | |
| assert_eq!(n, c_n, "Number of rows of c not equal to number of rows of `self`."); | |
| assert_eq!(b_t, c_t, "Number of columns of b not equal to number of columns of c."); | |
| let t = b_t; | |
| let (a_slice, a_layout) = as_slice_with_layout(self).expect("Matrix `self` not contiguous."); | |
| let (b_slice, b_layout) = as_slice_with_layout(b).expect("Matrix `b` not contiguous."); | |
| let (c_slice, c_layout) = as_slice_with_layout_mut(c).expect("Matrix `c` not contiguous."); | |
| assert_eq!(a_layout, b_layout); | |
| assert_eq!(a_layout, c_layout); | |
| let layout = a_layout; | |
| let a_transpose = if transpose { | |
| cblas::Transpose::Ordinary | |
| } else { | |
| cblas::Transpose::None | |
| }; | |
| unsafe { | |
| cblas::dgemm( | |
| layout, | |
| a_transpose, | |
| cblas::Transpose::None, | |
| n as i32, | |
| t as i32, | |
| n as i32, | |
| 1.0, | |
| a_slice, | |
| n as i32, | |
| b_slice, | |
| t as i32, | |
| 0.0, | |
| c_slice, | |
| t as i32, | |
| ) | |
| } | |
| } | |
| } | |
| impl<S1> LinearOperator for [&ArrayBase<S1, Ix2>] | |
| where S1: Data<Elem=f64> | |
| { | |
| fn multiply_matrix<S2>(&self, b: &mut ArrayBase<S2, Ix2>, c: &mut ArrayBase<S2, Ix2>, transpose: bool) | |
| where S2: DataMut<Elem=f64> | |
| { | |
| if self.len() > 0 { | |
| let mut reversed; | |
| let mut forward; | |
| // TODO: Investigate, if an enum instead of a trait object might be more performant. | |
| // This probably doesn't matter for large matrices, but could have a measurable impact | |
| // on small ones. | |
| let a_iter: &mut dyn DoubleEndedIterator<Item=_> = if transpose { | |
| reversed = self.iter().rev(); | |
| &mut reversed | |
| } else { | |
| forward = self.iter(); | |
| &mut forward | |
| }; | |
| let a = a_iter.next().unwrap(); // Ok because of if condition | |
| a.multiply_matrix(b, c, transpose); | |
| // NOTE: The swap in the loop body makes use of the fact that in all instances where | |
| // `multiply_matrix` is used, the values potentially stored in `b` are not required | |
| // anymore. | |
| for a in a_iter { | |
| std::mem::swap(b, c); | |
| a.multiply_matrix(b, c, transpose); | |
| } | |
| } | |
| } | |
| } | |
| impl<S1> LinearOperator for (&ArrayBase<S1, Ix2>, usize) | |
| where S1: Data<Elem=f64> | |
| { | |
| fn multiply_matrix<S2>(&self, b: &mut ArrayBase<S2, Ix2>, c: &mut ArrayBase< S2, Ix2>, transpose: bool) | |
| where S2: DataMut<Elem=f64> | |
| { | |
| let a = self.0; | |
| let m = self.1; | |
| if m > 0 { | |
| a.multiply_matrix(b, c, transpose); | |
| for _ in 1..m { | |
| std::mem::swap(b, c); | |
| self.0.multiply_matrix(b, c, transpose); | |
| } | |
| } | |
| } | |
| } | |
| impl Normest1 { | |
| pub fn new(n: usize, t: usize) -> Self { | |
| assert!(t <= n, "Cannot have more iteration columns t than columns in the matrix."); | |
| let rng = Xoshiro256StarStar::from_rng(&mut thread_rng()).expect("Rng initialization failed."); | |
| let x_matrix = unsafe { Array2::<f64>::uninitialized((n, t)) }; | |
| let y_matrix = unsafe { Array2::<f64>::uninitialized((n, t)) }; | |
| let z_matrix = unsafe { Array2::<f64>::uninitialized((n, t)) }; | |
| let w_vector = unsafe { Array1::uninitialized(n) }; | |
| let sign_matrix = unsafe { Array2::<f64>::uninitialized((n, t)) }; | |
| let sign_matrix_old = unsafe { Array2::<f64>::uninitialized((n, t)) }; | |
| let column_is_parallel = vec![false; t]; | |
| let indices = (0..n).collect(); | |
| let indices_history = BTreeSet::new(); | |
| let h = vec![unsafe { NotNan::unchecked_new(0.0) }; n]; | |
| Normest1 { | |
| n, | |
| t, | |
| rng, | |
| x_matrix, | |
| y_matrix, | |
| z_matrix, | |
| w_vector, | |
| sign_matrix, | |
| sign_matrix_old, | |
| column_is_parallel, | |
| indices, | |
| indices_history, | |
| h, | |
| } | |
| } | |
| fn calculate<L>(&mut self, a_linear_operator: &L, itmax: usize) -> f64 | |
| where L: LinearOperator + ?Sized | |
| { | |
| assert!(itmax > 1, "normest1 is undefined for iterations itmax < 2"); | |
| // Explicitly empty the index history; all other quantities will be overwritten at some | |
| // point. | |
| self.indices_history.clear(); | |
| let n = self.n; | |
| let t = self.t; | |
| let sample = [-1., 1.0]; | |
| // “We now explain our choice of starting matrix. We take the first column of X to be the | |
| // vector of 1s, which is the starting vector used in Algorithm 2.1. This has the advantage | |
| // that for a matrix with nonnegative elements the algorithm converges with an exact estimate | |
| // on the second iteration, and such matrices arise in applications, for example as a | |
| // stochastic matrix or as the inverse of an M -matrix.” | |
| // | |
| // “The remaining columns are chosen as rand {− 1 , 1 } , with a check for and correction of | |
| // parallel columns, exactly as for S in the body of the algorithm. We choose random vectors | |
| // because it is difficult to argue for any particular fixed vectors and because randomness | |
| // lessens the importance of counterexamples (see the comments in the next section).” | |
| { | |
| let rng_mut = &mut self.rng; | |
| self.x_matrix.mapv_inplace(|_| sample[rng_mut.gen_range(0, sample.len())]); | |
| self.x_matrix.column_mut(0).fill(1.); | |
| } | |
| // Resample the x_matrix to make sure no columns are parallel | |
| find_parallel_columns_in(&self.x_matrix, &mut self.y_matrix, &mut self.column_is_parallel); | |
| for (i, is_parallel) in self.column_is_parallel.iter().enumerate() { | |
| if *is_parallel { | |
| resample_column(&mut self.x_matrix, i, &mut self.rng, &sample); | |
| } | |
| } | |
| // Set all columns to unit vectors | |
| self.x_matrix.mapv_inplace(|x| x / n as f64); | |
| let mut estimate = 0.0; | |
| let mut best_index = 0; | |
| 'optimization_loop: for k in 0..itmax { | |
| // Y = A X | |
| a_linear_operator.multiply_matrix(&mut self.x_matrix, &mut self.y_matrix, false); | |
| // est = max{‖Y(:,j)‖₁ : j = 1:t} | |
| let (max_norm_index, max_norm) = matrix_onenorm_with_index(&self.y_matrix); | |
| // if est > est_old or k=2 | |
| if max_norm > estimate || k == 1 { | |
| // ind_best = indⱼ where est = ‖Y(:,j)‖₁, w = Y(:, ind_best) | |
| estimate = max_norm; | |
| best_index = self.indices[max_norm_index]; | |
| self.w_vector.assign(&self.y_matrix.column(max_norm_index)); | |
| } else if k > 1 && max_norm <= estimate { | |
| break 'optimization_loop | |
| } | |
| if k >= itmax { | |
| break 'optimization_loop | |
| } | |
| // S = sign(Y) | |
| assign_signum_of_array( | |
| &self.y_matrix, | |
| &mut self.sign_matrix | |
| ); | |
| // TODO: Combine the test checking for parallelity between _all_ columns between S | |
| // and S_old with the “if t > 1” test below. | |
| // | |
| // > If every column of S is parallel to a column of Sold, goto (6), end | |
| // | |
| // NOTE: We are reusing `y_matrix` here as a temporary value. | |
| if are_all_columns_parallel_between(&self.sign_matrix_old, &self.sign_matrix, &mut self.y_matrix) { | |
| break 'optimization_loop; | |
| } | |
| // FIXME: Is an explicit if condition here necessary? | |
| if t > 1 { | |
| // > Ensure that no column of S is parallel to another column of S | |
| // > or to a column of Sold by replacing columns of S by rand{-1,+1} | |
| // | |
| // NOTE: We are reusing `y_matrix` here as a temporary value. | |
| resample_parallel_columns( | |
| &mut self.sign_matrix, | |
| &self.sign_matrix_old, | |
| &mut self.y_matrix, | |
| &mut self.column_is_parallel, | |
| &mut self.rng, | |
| &sample, | |
| ); | |
| } | |
| // > est_old = est, Sold = S | |
| // NOTE: Other than in the original algorithm, we store the sign matrix at this point | |
| // already. This way, we can reuse the sign matrix as additional workspace which is | |
| // useful when performing matrix multiplication with A^m or A1 A2 ... An (see the | |
| // description of the LinearOperator trait for explanation). | |
| // | |
| // NOTE: We don't “save” the old estimate, because we are using max_norm as another name | |
| // for the new estimate instead of overwriting/reusing est. | |
| self.sign_matrix_old.assign(&self.sign_matrix); | |
| // Z = A^T S | |
| a_linear_operator.multiply_matrix(&mut self.sign_matrix, &mut self.z_matrix, true); | |
| // hᵢ= ‖Z(i,:)‖_∞ | |
| let mut max_h = 0.0; | |
| for (row, h_element) in self.z_matrix.genrows().into_iter().zip(self.h.iter_mut()) { | |
| let h = vector_maxnorm(&row); | |
| max_h = if h > max_h { h } else { max_h }; | |
| // Convert f64 to NotNan for using sort_unstable_by below | |
| *h_element = h.into(); | |
| } | |
| // TODO: This test for equality needs an approximate equality test instead. | |
| if k > 0 && max_h == self.h[best_index].into() { | |
| break 'optimization_loop | |
| } | |
| // > Sort h so that h_1 >= ... >= h_n and re-order correspondingly. | |
| // NOTE: h itself doesn't need to be reordered. Only the order of | |
| // the indices is relevant. | |
| { | |
| let h_ref = &self.h; | |
| self.indices.sort_unstable_by(|i, j| h_ref[*j].cmp(&h_ref[*i])); | |
| } | |
| self.x_matrix.fill(0.0); | |
| if t > 1 { | |
| // > Replace ind(1:t) by the first t indices in ind(1:n) that are not in ind_hist. | |
| // | |
| // > X(:, j) = e_ind_j, j = 1:t | |
| // | |
| // > ind_hist = [ind_hist ind(1:t)] | |
| // | |
| // NOTE: It's not actually needed to operate on the `indices` vector. What's important | |
| // is that the history of indices, `indices_history`, gets updated with visited indices, | |
| // and that each column of `x_matrix` is assigned that unit vector that is defined by the | |
| // respective index. | |
| // | |
| // If so many indices have already been used that `n_cols - indices_history.len() < t` | |
| // (which means that we have less than `t` unused indices remaining), we have to use a few | |
| // historical indices when filling up the columns in `x_matrix`. For that, we put the | |
| // historical indices after the fresh indices, but otherwise keep the order induced by `h` | |
| // above. | |
| let fresh_indices = cmp::min(t, n - self.indices_history.len()); | |
| if fresh_indices == 0 { | |
| break 'optimization_loop; | |
| } | |
| let mut current_column_fresh = 0; | |
| let mut current_column_historical = fresh_indices; | |
| let mut index_iterator = self.indices.iter(); | |
| let mut all_first_t_in_history = true; | |
| // First, iterate over the first t sorted indices. | |
| for i in (&mut index_iterator).take(t) { | |
| if !self.indices_history.contains(i) { | |
| all_first_t_in_history = false; | |
| self.x_matrix[(*i, current_column_fresh)] = 1.0; | |
| current_column_fresh += 1; | |
| self.indices_history.insert(*i); | |
| } else if current_column_historical < t { | |
| self.x_matrix[(*i, current_column_historical)] = 1.0; | |
| current_column_historical += 1; | |
| } | |
| } | |
| // > if ind(1:t) is contained in ind_hist, goto (6), end | |
| if all_first_t_in_history { | |
| break 'optimization_loop; | |
| } | |
| // Iterate over the remaining indices | |
| 'fill_x: for i in index_iterator { | |
| if current_column_fresh >= t { | |
| break 'fill_x; | |
| } | |
| if !self.indices_history.contains(i) { | |
| self.x_matrix[(*i, current_column_fresh)] = 1.0; | |
| current_column_fresh += 1; | |
| self.indices_history.insert(*i); | |
| } else if current_column_historical < t { | |
| self.x_matrix[(*i, current_column_historical)] = 1.0; | |
| current_column_historical += 1; | |
| } | |
| } | |
| } | |
| } | |
| estimate | |
| } | |
| /// Estimate the 1-norm of matrix `a` using up to `itmax` iterations. | |
| pub fn normest1<S>(&mut self, a: &ArrayBase<S, Ix2>, itmax: usize) -> f64 | |
| where S: Data<Elem=f64>, | |
| { | |
| self.calculate(a, itmax) | |
| } | |
| /// Estimate the 1-norm of a marix `a` to the power `m` up to `itmax` iterations. | |
| pub fn normest1_pow<S>(&mut self, a: &ArrayBase<S, Ix2>, m: usize, itmax: usize) -> f64 | |
| where S: Data<Elem=f64>, | |
| { | |
| self.calculate(&(a, m), itmax) | |
| } | |
| /// Estimate the 1-norm of a product of matrices `a1 a2 ... an` up to `itmax` iterations. | |
| pub fn normest1_prod<S>(&mut self, aprod: &[&ArrayBase<S, Ix2>], itmax: usize) -> f64 | |
| where S: Data<Elem=f64>, | |
| { | |
| self.calculate(aprod, itmax) | |
| } | |
| } | |
| /// Estimates the 1-norm of matrix `a`. | |
| /// | |
| /// The parameter `t` is the number of vectors that have to fulfill some bound. See [Higham, | |
| /// Tisseur] for more information. `itmax` is the maximum number of sweeps permitted. | |
| /// | |
| /// **NOTE:** This function allocates on every call. If you want to repeatedly estimate the | |
| /// 1-norm on matrices of the same size, construct a [`Normest1`] first, and call its methods. | |
| /// | |
| /// [Higham, Tisseur]: http://eprints.ma.man.ac.uk/321/1/covered/MIMS_ep2006_145.pdf | |
| /// [`Normest1`]: struct.Normest1.html | |
| pub fn normest1(a_matrix: &Array2<f64>, t: usize, itmax: usize) -> f64 | |
| { | |
| // Assume the matrix is square and take the columns as n. If it's not square, the assertion in | |
| // normest.calculate will fail. | |
| let n = a_matrix.dim().1; | |
| let mut normest1 = Normest1::new(n, t); | |
| normest1.normest1(a_matrix, itmax) | |
| } | |
| /// Estimates the 1-norm of a matrix `a` to the power `m`, `a^m`. | |
| /// | |
| /// The parameter `t` is the number of vectors that have to fulfill some bound. See [Higham, | |
| /// Tisseur] for more information. `itmax` is the maximum number of sweeps permitted. | |
| /// | |
| /// **NOTE:** This function allocates on every call. If you want to repeatedly estimate the | |
| /// 1-norm on matrices of the same size, construct a [`Normest1`] first, and call its methods. | |
| /// | |
| /// [Higham, Tisseur]: http://eprints.ma.man.ac.uk/321/1/covered/MIMS_ep2006_145.pdf | |
| pub fn normest1_pow(a_matrix: &Array2<f64>, m: usize, t: usize, itmax: usize) -> f64 | |
| { | |
| // Assume the matrix is square and take the columns as n. If it's not square, the assertion in | |
| // normest.calculate will fail. | |
| let n = a_matrix.dim().1; | |
| let mut normest1 = Normest1::new(n, t); | |
| normest1.normest1_pow(a_matrix, m, itmax) | |
| } | |
| /// Estimates the 1-norm of a product of matrices `a1`, `a2`, ..., `an` passed in as a slice of | |
| /// references. | |
| /// | |
| /// The parameter `t` is the number of vectors that have to fulfill some bound. See [Higham, | |
| /// Tisseur] for more information. `itmax` is the maximum number of sweeps permitted. | |
| /// | |
| /// **NOTE:** This function allocates on every call. If you want to repeatedly estimate the | |
| /// 1-norm on matrices of the same size, construct a [`Normest1`] first, and call its methods. | |
| /// | |
| /// [Higham, Tisseur]: http://eprints.ma.man.ac.uk/321/1/covered/MIMS_ep2006_145.pdf | |
| pub fn normest1_prod(a_matrices: &[&Array2<f64>], t: usize, itmax: usize) -> f64 | |
| { | |
| assert!(a_matrices.len() > 0); | |
| let n = a_matrices[0].dim().1; | |
| let mut normest1 = Normest1::new(n, t); | |
| normest1.normest1_prod(a_matrices, itmax) | |
| } | |
| /// Assigns the sign of matrix `a` to matrix `b`. | |
| /// | |
| /// Panics if matrices `a` and `b` have different shape and strides, or if either underlying array is | |
| /// non-contiguous. This is to make sure that the iteration order over the matrices is the same. | |
| fn assign_signum_of_array<S1, S2, D>(a: &ArrayBase<S1, D>, b: &mut ArrayBase<S2, D>) | |
| where S1: Data<Elem=f64>, | |
| S2: DataMut<Elem=f64>, | |
| D: Dimension | |
| { | |
| assert_eq!(a.strides(), b.strides()); | |
| let (a_slice, a_layout) = as_slice_with_layout(a).expect("Matrix `a` is not contiguous."); | |
| let (b_slice, b_layout) = as_slice_with_layout_mut(b).expect("Matrix `b` is not contiguous."); | |
| assert_eq!(a_layout, b_layout); | |
| signum_of_slice(a_slice, b_slice); | |
| } | |
| fn signum_of_slice(source: &[f64], destination: &mut [f64]) { | |
| for (s, d) in source.iter().zip(destination) { | |
| *d = s.signum(); | |
| } | |
| } | |
| /// Calculate the onenorm of a vector (an `ArrayBase` with dimension `Ix1`). | |
| fn vector_onenorm<S>(a: &ArrayBase<S, Ix1>) -> f64 | |
| where S: Data<Elem=f64>, | |
| { | |
| let stride = a.strides()[0]; | |
| assert!(stride >= 0); | |
| let stride = stride as usize; | |
| let n_elements = a.len(); | |
| let a_slice = { | |
| let a = a.as_ptr(); | |
| let total_len = n_elements * stride; | |
| unsafe { slice::from_raw_parts(a, total_len) } | |
| }; | |
| unsafe { | |
| cblas::dasum(n_elements as i32, a_slice, stride as i32) | |
| } | |
| } | |
| /// Calculate the maximum norm of a vector (an `ArrayBase` with dimension `Ix1`). | |
| fn vector_maxnorm<S>(a: &ArrayBase<S, Ix1>) -> f64 | |
| where S: Data<Elem=f64> | |
| { | |
| let stride = a.strides()[0]; | |
| assert!(stride >= 0); | |
| let stride = stride as usize; | |
| let n_elements = a.len(); | |
| let a_slice = { | |
| let a = a.as_ptr(); | |
| let total_len = n_elements * stride; | |
| unsafe { slice::from_raw_parts(a, total_len) } | |
| }; | |
| let idx = unsafe { | |
| cblas::idamax( | |
| n_elements as i32, | |
| a_slice, | |
| stride as i32, | |
| ) as usize | |
| }; | |
| f64::abs(a[idx]) | |
| } | |
| // /// Calculate the onenorm of a matrix (an `ArrayBase` with dimension `Ix2`). | |
| // fn matrix_onenorm<S>(a: &ArrayBase<S, Ix2>) -> f64 | |
| // where S: Data<Elem=f64>, | |
| // { | |
| // let (n_rows, n_cols) = a.dim(); | |
| // if let Some((a_slice, layout)) = as_slice_with_layout(a) { | |
| // let layout = match layout { | |
| // cblas::Layout::RowMajor => lapacke::Layout::RowMajor, | |
| // cblas::Layout::ColumnMajor => lapacke::Layout::ColumnMajor, | |
| // }; | |
| // unsafe { | |
| // lapacke::dlange( | |
| // layout, | |
| // b'1', | |
| // n_rows as i32, | |
| // n_cols as i32, | |
| // a_slice, | |
| // n_rows as i32, | |
| // ) | |
| // } | |
| // // Fall through case for non-contiguous arrays. | |
| // } else { | |
| // a.gencolumns().into_iter() | |
| // .fold(0.0, |max, column| { | |
| // let onenorm = column.fold(0.0, |acc, element| { acc + f64::abs(*element) }); | |
| // if onenorm > max { onenorm } else { max } | |
| // }) | |
| // } | |
| // } | |
| /// Returns the one-norm of a matrix `a` together with the index of that column for | |
| /// which the norm is maximal. | |
| fn matrix_onenorm_with_index<S>(a: &ArrayBase<S, Ix2>) -> (usize, f64) | |
| where S: Data<Elem=f64>, | |
| { | |
| let mut max_norm = 0.0; | |
| let mut max_norm_index = 0; | |
| for (i, column) in a.gencolumns().into_iter().enumerate() { | |
| let norm = vector_onenorm(&column); | |
| if norm > max_norm { | |
| max_norm = norm; | |
| max_norm_index = i; | |
| } | |
| } | |
| (max_norm_index, max_norm) | |
| } | |
| /// Finds columns in the matrix `a` that are parallel to to some other column in `a`. | |
| /// | |
| /// Assumes that all entries of `a` are either +1 or -1. | |
| /// | |
| /// If column `j` of matrix `a` is parallel to some column `i`, `column_is_parallel[i]` is set to | |
| /// `true`. The matrix `c` is used as an intermediate value for the matrix product `a^t * a`. | |
| /// | |
| /// This function does not reset `column_is_parallel` to `false`. Entries that are `true` will be | |
| /// assumed to be parallel and not checked. | |
| /// | |
| /// Panics if arrays `a` and `c` don't have the same dimensions, or if the length of the slice | |
| /// `column_is_parallel` is not equal to the number of columns in `a`. | |
| fn find_parallel_columns_in<S1, S2> ( | |
| a: &ArrayBase<S1, Ix2>, | |
| c: &mut ArrayBase<S2, Ix2>, | |
| column_is_parallel: &mut [bool] | |
| ) | |
| where S1: Data<Elem=f64>, | |
| S2: DataMut<Elem=f64> | |
| { | |
| let a_dim = a.dim(); | |
| let c_dim = c.dim(); | |
| assert_eq!(a_dim, c_dim); | |
| let (n_rows, n_cols) = a_dim; | |
| assert_eq!(column_is_parallel.len(), n_cols); | |
| { | |
| let (a_slice, a_layout) = as_slice_with_layout(a).expect("Matrix `a` is not contiguous."); | |
| let (c_slice, c_layout) = as_slice_with_layout_mut(c).expect("Matrix `c` is not contiguous."); | |
| assert_eq!(a_layout, c_layout); | |
| let layout = a_layout; | |
| // NOTE: When calling the wrapped Fortran dsyrk subroutine with row major layout, | |
| // cblas::*syrk changes `'U'` to `'L'` (`Upper` to `Lower`), and `'O'` to `'N'` (`Ordinary` | |
| // to `None`). Different from `cblas::*gemm`, however, it does not automatically make sure | |
| // that the other arguments are changed to make sense in a routine expecting column major | |
| // order (in `cblas::*gemm`, this happens by flipping the matrices `a` and `b` as | |
| // arguments). | |
| // | |
| // So while `cblas::dsyrk` changes transposition and the position of where the results are | |
| // written to, it passes the other arguments on to the Fortran routine as is. | |
| // | |
| // For example, in case matrix `a` is a 4x2 matrix in column major order, and we want to | |
| // perform the operation `a^T a` on it (resulting in a symmetric 2x2 matrix), we would pass | |
| // TRANS='T', N=2 (order of c), K=4 (number of rows because of 'T'), LDA=4 (max(1,k) | |
| // because of 'T'), LDC=2. | |
| // | |
| // But if `a` is in row major order and we want to perform the same operation, we pass | |
| // TRANS='T' (gets translated to 'N'), N=2, K=2 (number of columns, because we 'T' -> 'N'), | |
| // LDA=2 (max(1,n) because of 'N'), LDC=2. | |
| // | |
| // In other words, because of row major order, the Fortran routine actually sees our 4x2 | |
| // matrix as a 2x4 matrix, and if we want to calculate `a^T a`, `cblas::dsyrk` makes sure | |
| // `'N'` is passed. | |
| let (k, lda) = match layout { | |
| cblas::Layout::ColumnMajor => (n_cols, n_rows), | |
| cblas::Layout::RowMajor => (n_rows, n_cols), | |
| }; | |
| unsafe { | |
| cblas::dsyrk( | |
| layout, | |
| cblas::Part::Upper, | |
| cblas::Transpose::Ordinary, | |
| n_cols as i32, | |
| k as i32, | |
| 1.0, | |
| a_slice, | |
| lda as i32, | |
| 0.0, | |
| c_slice, | |
| n_cols as i32, | |
| ); | |
| } | |
| } | |
| // c is upper triangular and contains all pair-wise vector products: | |
| // | |
| // x x x x x | |
| // . x x x x | |
| // . . x x x | |
| // . . . x x | |
| // . . . . x | |
| // Don't check more rows than we have columns | |
| 'rows: for (i, row) in c.genrows().into_iter().enumerate().take(n_cols) { | |
| // Skip if the column is already found to be parallel or if we are checking | |
| // the last column | |
| if column_is_parallel[i] || i >= n_cols - 1 { continue 'rows; } | |
| for (j, element) in row.slice(s![i+1..]).iter().enumerate() { | |
| // Check if the vectors are parallel or anti-parallel | |
| if f64::abs(*element) == n_rows as f64 { | |
| column_is_parallel[i+j+1] = true; | |
| } | |
| } | |
| } | |
| } | |
| /// Checks whether any columns of the matrix `a` are parallel to any columns of `b`. | |
| /// | |
| /// Assumes that we have parallelity only if all entries of two columns `a` and `b` are either +1 | |
| /// or -1. | |
| /// | |
| /// `The matrix `c` is used as an intermediate value for the matrix product `a^t * b`. | |
| /// | |
| /// `column_is_parallel[j]` is set to `true` if column `j` of matrix `a` is parallel to some column | |
| /// `i` of the matrix `b`, | |
| /// | |
| /// This function does not reset `column_is_parallel` to `false`. Entries that are `true` will be | |
| /// assumed to be parallel and not checked. | |
| /// | |
| /// Panics if arrays `a`, `b`, and `c` don't have the same dimensions, or if the length of the slice | |
| /// `column_is_parallel` is not equal to the number of columns in `a`. | |
| fn find_parallel_columns_between<S1, S2, S3> ( | |
| a: &ArrayBase<S1, Ix2>, | |
| b: &ArrayBase<S2, Ix2>, | |
| c: &mut ArrayBase<S3, Ix2>, | |
| column_is_parallel: &mut [bool], | |
| ) | |
| where S1: Data<Elem=f64>, | |
| S2: Data<Elem=f64>, | |
| S3: DataMut<Elem=f64> | |
| { | |
| let a_dim = a.dim(); | |
| let b_dim = b.dim(); | |
| let c_dim = c.dim(); | |
| assert_eq!(a_dim, b_dim); | |
| assert_eq!(a_dim, c_dim); | |
| let (n_rows, n_cols) = a_dim; | |
| assert_eq!(column_is_parallel.len(), n_cols); | |
| // Extra scope, because c_slice needs to be dropped after the dgemm | |
| { | |
| let (a_slice, a_layout) = as_slice_with_layout(&a).expect("Matrix `a` not contiguous."); | |
| let (b_slice, b_layout) = as_slice_with_layout(&b).expect("Matrix `b` not contiguous."); | |
| let (c_slice, c_layout) = as_slice_with_layout_mut(c).expect("Matrix `c` not contiguous."); | |
| assert_eq!(a_layout, b_layout); | |
| assert_eq!(a_layout, c_layout); | |
| let layout = a_layout; | |
| unsafe { | |
| cblas::dgemm( | |
| layout, | |
| cblas::Transpose::Ordinary, | |
| cblas::Transpose::None, | |
| n_cols as i32, | |
| n_cols as i32, | |
| n_rows as i32, | |
| 1.0, | |
| a_slice, | |
| n_cols as i32, | |
| b_slice, | |
| n_cols as i32, | |
| 0.0, | |
| c_slice, | |
| n_cols as i32, | |
| ); | |
| } | |
| } | |
| // We are iterating over the rows because it's more memory efficient (for row-major array). In | |
| // terms of logic there is no difference: we simply check if the current column of a (that's | |
| // the outer loop) is parallel to any column of b (inner loop). By iterating via columns we would check if | |
| // any column of a is parallel to the, in that case, current column of b. | |
| // TODO: Implement for column major arrays. | |
| 'rows: for (i, row) in c.genrows().into_iter().enumerate().take(n_cols) { | |
| // Skip if the column is already found to be parallel the last column. | |
| if column_is_parallel[i] { continue 'rows; } | |
| for element in row { | |
| if f64::abs(*element) == n_rows as f64 { | |
| column_is_parallel[i] = true; | |
| continue 'rows; | |
| } | |
| } | |
| } | |
| } | |
| /// Check if every column in `a` is parallel to some column in `b`. | |
| /// | |
| /// Assumes that we have parallelity only if all entries of two columns `a` and `b` are either +1 | |
| /// or -1. | |
| fn are_all_columns_parallel_between<S1, S2> ( | |
| a: &ArrayBase<S1, Ix2>, | |
| b: &ArrayBase<S1, Ix2>, | |
| c: &mut ArrayBase<S2, Ix2>, | |
| ) -> bool | |
| where S1: Data<Elem=f64>, | |
| S2: DataMut<Elem=f64> | |
| { | |
| let a_dim = a.dim(); | |
| let b_dim = b.dim(); | |
| let c_dim = c.dim(); | |
| assert_eq!(a_dim, b_dim); | |
| assert_eq!(a_dim, c_dim); | |
| let (n_rows, n_cols) = a_dim; | |
| // Extra scope, because c_slice needs to be dropped after the dgemm | |
| { | |
| let (a_slice, a_layout) = as_slice_with_layout(&a).expect("Matrix `a` not contiguous."); | |
| let (b_slice, b_layout) = as_slice_with_layout(&b).expect("Matrix `b` not contiguous."); | |
| let (c_slice, c_layout) = as_slice_with_layout_mut(c).expect("Matrix `c` not contiguous."); | |
| assert_eq!(a_layout, b_layout); | |
| assert_eq!(a_layout, c_layout); | |
| let layout = a_layout; | |
| unsafe { | |
| cblas::dgemm( | |
| layout, | |
| cblas::Transpose::Ordinary, | |
| cblas::Transpose::None, | |
| n_cols as i32, | |
| n_cols as i32, | |
| n_rows as i32, | |
| 1.0, | |
| a_slice, | |
| n_cols as i32, | |
| b_slice, | |
| n_cols as i32, | |
| 0.0, | |
| c_slice, | |
| n_rows as i32, | |
| ); | |
| } | |
| } | |
| // We are iterating over the rows because it's more memory efficient (for row-major array). In | |
| // terms of logic there is no difference: we simply check if a specific column of a is parallel | |
| // to any column of b. By iterating via columns we would check if any column of a is parallel | |
| // to a specific column of b. | |
| 'rows: for row in c.genrows() { | |
| for element in row { | |
| // If a parallel column was found, cut to the next one. | |
| if f64::abs(*element) == n_rows as f64 { continue 'rows; } | |
| } | |
| // This return statement should only be reached if not a single column parallel to the | |
| // current one was found. | |
| return false; | |
| } | |
| true | |
| } | |
| /// Find parallel columns in matrix `a` and columns in `a` that are parallel to any columns in | |
| /// matrix `b`, and replace those with random vectors. Returns `true` if resampling has taken place. | |
| fn resample_parallel_columns<S1, S2, S3, R>( | |
| a: &mut ArrayBase<S1, Ix2>, | |
| b: &ArrayBase<S2, Ix2>, | |
| c: &mut ArrayBase<S3, Ix2>, | |
| column_is_parallel: &mut [bool], | |
| rng: &mut R, | |
| sample: &[f64], | |
| ) -> bool | |
| where S1: DataMut<Elem=f64>, | |
| S2: Data<Elem=f64>, | |
| S3: DataMut<Elem=f64>, | |
| R: Rng | |
| { | |
| column_is_parallel.iter_mut().for_each(|x| {*x = false;}); | |
| find_parallel_columns_in(a, c, column_is_parallel); | |
| find_parallel_columns_between(a, b, c, column_is_parallel); | |
| let mut has_resampled = false; | |
| for (i, is_parallel) in column_is_parallel.into_iter().enumerate() { | |
| if *is_parallel { | |
| resample_column(a, i, rng, sample); | |
| has_resampled = true; | |
| } | |
| } | |
| has_resampled | |
| } | |
| /// Resamples column `i` of matrix `a` with elements drawn from `sample` using `rng`. | |
| /// | |
| /// Panics if `i` exceeds the number of columns in `a`. | |
| fn resample_column<R, S>(a: &mut ArrayBase<S, Ix2>, i: usize, rng: &mut R, sample: &[f64]) | |
| where S: DataMut<Elem=f64>, | |
| R: Rng | |
| { | |
| assert!(i < a.dim().1, "Trying to resample column with index exceeding matrix dimensions"); | |
| assert!(sample.len() > 0); | |
| a.column_mut(i).mapv_inplace(|_| sample[rng.gen_range(0, sample.len())]); | |
| } | |
| /// Returns slice and layout underlying an array `a`. | |
| fn as_slice_with_layout<S, T, D>(a: &ArrayBase<S, D>) -> Option<(&[T], cblas::Layout)> | |
| where S: Data<Elem=T>, | |
| D: Dimension | |
| { | |
| if let Some(a_slice) = a.as_slice() { | |
| Some((a_slice, cblas::Layout::RowMajor)) | |
| } else if let Some(a_slice) = a.as_slice_memory_order() { | |
| Some((a_slice, cblas::Layout::ColumnMajor)) | |
| } else { | |
| None | |
| } | |
| } | |
| /// Returns mutable slice and layout underlying an array `a`. | |
| fn as_slice_with_layout_mut<S, T, D>(a: &mut ArrayBase<S, D>) -> Option<(&mut [T], cblas::Layout)> | |
| where S: DataMut<Elem=T>, | |
| D: Dimension | |
| { | |
| if a.as_slice_mut().is_some() { | |
| Some((a.as_slice_mut().unwrap(), cblas::Layout::RowMajor)) | |
| } else if a.as_slice_memory_order_mut().is_some() { | |
| Some((a.as_slice_memory_order_mut().unwrap(), cblas::Layout::ColumnMajor)) | |
| } else { | |
| None | |
| } | |
| // XXX: The above is a workaround for Rust not having non-lexical lifetimes yet. | |
| // More information here: | |
| // http://smallcultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-introduction/#problem-case-3-conditional-control-flow-across-functions | |
| // | |
| // if let Some(slice) = a.as_slice_mut() { | |
| // Some((slice, cblas::Layout::RowMajor)) | |
| // } else if let Some(slice) = a.as_slice_memory_order_mut() { | |
| // Some((slice, cblas::Layout::ColumnMajor)) | |
| // } else { | |
| // None | |
| // } | |
| } | |
| #[cfg(test)] | |
| mod tests { | |
| extern crate openblas_src; | |
| use ndarray::{ | |
| prelude::*, | |
| Zip, | |
| }; | |
| use ndarray_rand::RandomExt; | |
| use rand::{ | |
| SeedableRng, | |
| }; | |
| use rand::distributions::StandardNormal; | |
| use rand_xoshiro::Xoshiro256Plus; | |
| #[test] | |
| fn equality_between_methods() { | |
| let t = 2; | |
| let n = 100; | |
| let itmax = 5; | |
| let mut rng = Xoshiro256Plus::seed_from_u64(1234); | |
| let distribution = StandardNormal; | |
| let mut a_matrix = Array::random_using((n, n), distribution, &mut rng); | |
| a_matrix.mapv_inplace(|x| 1.0/x); | |
| let unity = Array::eye(n); | |
| let estimate_onlymatrix = crate::normest1(&a_matrix, t, itmax); | |
| let estimate_matrixpow = crate::normest1_pow(&a_matrix, 1, t, itmax); | |
| let estimate_matrixprod = crate::normest1_prod(&[&a_matrix, &unity], t, itmax); | |
| assert_eq!(estimate_onlymatrix, estimate_matrixpow); | |
| assert_eq!(estimate_onlymatrix, estimate_matrixprod); | |
| } | |
| #[test] | |
| fn pow_2_is_prod_2() { | |
| let t = 2; | |
| let n = 100; | |
| let itmax = 5; | |
| let mut rng = Xoshiro256Plus::seed_from_u64(1234); | |
| let distribution = StandardNormal; | |
| let mut a_matrix = Array::random_using((n, n), distribution, &mut rng); | |
| a_matrix.mapv_inplace(|x| 1.0/x); | |
| let estimate_matrixpow = crate::normest1_pow(&a_matrix, 2, t, itmax); | |
| let estimate_matrixprod = crate::normest1_prod(&[&a_matrix, &a_matrix], t, itmax); | |
| assert_eq!(estimate_matrixpow, estimate_matrixprod); | |
| } | |
| #[test] | |
| /// This performs tests inspired by Table 3 of [Higham and Tisseur]. | |
| /// | |
| /// NOTE: Due to (most likely) floating point precision), the ratio `calculated/expected` (that | |
| /// is, the ratio of the estimated condition number to the explicitly calculated one) can | |
| /// exceed 1.0. However, when running the tests I have observed at most a ratio exceeding 1.0 | |
| /// by 3 bits in the significand/mantissa. In other words, the estimated condition number appears to be | |
| /// within 4 ULPS of the calculated/expected one. | |
| /// | |
| /// One can probably explain this with different ordering of summation/addition/multiplication. | |
| /// | |
| /// During tests run performed by the author(s) of this library, running the tets below with | |
| /// `nsamples = 5000` happened to always let the test pass. | |
| fn table_3_t_2() { | |
| let t = 2; | |
| let n = 100; | |
| let itmax = 5; | |
| let nsamples = 5000; | |
| let mut calculated = Vec::with_capacity(nsamples); | |
| let mut expected = Vec::with_capacity(nsamples); | |
| let mut rng = Xoshiro256Plus::seed_from_u64(1234); | |
| let distribution = StandardNormal; | |
| for _ in 0..nsamples { | |
| let mut a_matrix = Array::random_using((n, n), distribution, &mut rng); | |
| a_matrix.mapv_inplace(|x| 1.0/x); | |
| let estimate = crate::normest1(&a_matrix, t, itmax); | |
| calculated.push(estimate); | |
| expected.push({ | |
| let (a_slice, a_layout) = crate::as_slice_with_layout(&a_matrix).expect("a matrix not contiguous"); | |
| let a_layout = match a_layout { | |
| cblas::Layout::ColumnMajor => lapacke::Layout::ColumnMajor, | |
| cblas::Layout::RowMajor => lapacke::Layout::RowMajor, | |
| }; | |
| unsafe { | |
| lapacke::dlange( | |
| a_layout, | |
| b'1', | |
| n as i32, | |
| n as i32, | |
| a_slice, | |
| n as i32, | |
| )} | |
| }); | |
| } | |
| let calculated = Array1::from_vec(calculated); | |
| let expected = Array1::from_vec(expected); | |
| let mut underestimation_ratio = unsafe { Array1::<f64>::uninitialized(nsamples) }; | |
| Zip::from(&calculated) | |
| .and(&expected) | |
| .and(&mut underestimation_ratio) | |
| .apply(|c, e, u| { | |
| *u = *c / *e; | |
| }); | |
| let underestimation_mean = underestimation_ratio.mean_axis(Axis(0)).into_scalar(); | |
| assert!(0.99 < underestimation_mean); | |
| assert!(underestimation_mean < 1.0); | |
| } | |
| } |