
Noname manuscript No.
(will be inserted by the editor)

Revisiting Process versus Product Metrics: a Large
Scale Analysis

Suvodeep Majumder · Pranav Mody ·
Tim Menzies

Received: date / Accepted: date

Abstract Numerous methods can build predictive models from software data.
However, what methods and conclusions should we endorse as we move from
analytics in-the-small (dealing with a handful of projects) to analytics in-the-
large (dealing with hundreds of projects)?

To answer this question, we recheck prior small-scale results (about process
versus product metrics for defect prediction and the granularity of metrics)
using 722,471 commits from 700 Github projects. We find that some analytics
in-the-small conclusions still hold when scaling up to analytics in-the-large. For
example, like prior work, we see that process metrics are better predictors for
defects than product metrics (best process/product-based learners respectively
achieve recalls of 98%/44% and AUCs of 95%/54%, median values).

That said, we warn that it is unwise to trust metric importance results from
analytics in-the-small studies since those change dramatically when moving to
analytics in-the-large. Also, when reasoning in-the-large about hundreds of
projects, it is better to use predictions from multiple models (since single
model predictions can become confused and exhibit a high variance).

Keywords Software Engineering, Software Process, Process Metrics, Product
Metrics, Developer Metrics, Random Forest, Logistic Regression, Support
Vector Machine, HPO

S. Majumder
Department of Computer Science,
North Carolina State University, Raleigh, USA
E-mail: smajumd3@ncsu.edu

P. Mody
Department of Computer Science,
North Carolina State University, Raleigh, USA
E-mail: prmody@ncsu.edu

T. Menzies
Department of Computer Science,
North Carolina State University, Raleigh, USA
E-mail: tim@ieee.org

2 Suvodeep Majumder et al.

1 Introduction

There exist many automated software engineering techniques for building pre-
dictive models from software project data [23]. Such models are cost-effective
methods for guiding developers on where to quickly find bugs [48,62].

Given that there are so many techniques, the question naturally arises:
which one should we use? Software analytics is growing more complex and
more ambitious with time. A decade ago, a standard study in this field dealt
with just 20 projects or less1. Now we can access data on hundreds to thou-
sands of projects. How does this change software analytics? What methods and
conclusions should we endorse as we move from analytics in-the-small (which
analyzes a small number of projects individually to report their findings) to an-
alytics in-the-large (which analyzes hundreds of projects individually to report
findings that are important across all or majority of the projects analyzed)2?
So reproducing results and findings that were true for analytics in-the-small
is of utmost importance with hundreds to thousands of projects. Such an-
alytics in-the-large results will help the software engineering community to
understand and adopt appropriate methods, beliefs, and conclusions.

As part of this study, we revisited the Rahman et al. ICSE 2013 study
“How, and why, process metrics are better” [69] and Kamei et al. ICSM 2010
study “Revisiting common bug prediction findings using effort-aware mod-
els” [34]. Both papers were analytics in-the-small study that used 12 and 3
projects, respectively to see if defect predictors worked best if they used:
– Product metrics, showing what was built; e.g., see Table 1.
– Or process metrics, showing how code is changed; e.g., see Table 2;

These papers are worth revisiting since it is widely cited3 and it ad-
dresses an important issue. Herbsleb argues convincingly that how groups orga-
nize themselves can be highly beneficial/detrimental to the process of writing
code [28]. Hence, process factors can be highly informative about what parts
of a codebase are buggy. In support of the Herbsleb hypothesis, prior studies
have shown that, for defect prediction, process metrics significantly outper-
form product metrics [10, 41, 69]. Also, if we wish to learn general principles
for software engineering that hold across multiple projects, it is better to use
process metrics since:
– Process metrics are much simpler to collect and can be applied uniformly

to software written in different languages.
– Product metrics, on the other hand, can be much harder to collect. For

example, some static code analysis requires expensive licenses, which need
updating every time a new version of a language is released [71]. Also, the
collected value for these metrics may not translate between projects since
those ranges can be highly specific.Lastly, product metrics tend to be far

1 For examples of such papers, see Table 3, later in this paper.
2 Note, here, when referring to analytics in-the-small and analytics in-the-large, we are not

comparing findings from a local vs global approach. Rather we compare results and findings
summarized from analyzing small number of projects vs results and findings summarized from
analyzing large number of projects.

3 232 and 179 citations respectively in Google Scholar, as of Sept 28, 2020.

Revisiting Process versus Product Metrics: a Large Scale Analysis 3

Table 1: List of product metrics used in this study

Type Metrics Count

File

AvgCyclomatic, AvgCyclomaticModified, AvgCyclomaticStrict,
AvgEssential, AvgLine, AvgLineBlank, AvgLineCode,
AvgLineComment, CountDeclClassMethod,
CountDeclClassVariable, CountDeclInstanceMethod,
CountDeclInstanceVariable, CountDeclMethod, CountDeclMethodAll,
CountDeclMethodDefault, CountDeclMethodPrivate,
CountDeclMethodProtected, CountDeclMethodPublic,
CountLine, CountLineBlank, CountLineCode, CountLineCodeDecl,
CountLineCodeExe, CountLineComment, CountSemicolon, CountStmt,
CountStmtDecl, CountStmtExe, MaxCyclomatic,
MaxCyclomaticModified, MaxCyclomaticStrict,MaxEssential,
RatioCommentToCode, SumCyclomatic, SumCyclomaticModified,
SumCyclomaticStrict, SumEssential

37

Class

PercentLackOfCohesion,
PercentLackOfCohesionModified, MaxInheritanceTree,
CountClassDerived, CountClassCoupled, CountClassCoupledModified,
CountClassBase

7

Method MaxNesting 1

Table 2: List of process metrics used in this study

adev : Active Dev Count
age : Interval between the last and the current change

ddev : Distinct Dev Count
sctr : Distribution of modified code across each file
exp : Experience of the committer

la : Lines of code added
ld : Lines of code deleted
lt : Lines of code in a file before the change

minor : Minor Contributor Count
nadev : Neighbor’s Active Dev Count

ncomm : Neighbor’s Commit Count
nd : Number of Directories

nddev : Neighbor’s Distinct Dev Count
ns : Number of Subsystems

nuc : Number of unique changes to the modified files
own : Owner’s Contributed Lines
sexp : Developer experience on a subsystem
rexp : Recent developer experience

more verbose and hence time-consuming to collect. For example, for 722,471
commits studied in this paper, data collected required 500 days of CPU
(using five machines, 16 cores, 7days). Our process metrics, on the other
hand, were an order of magnitude faster to collect.4

Since product versus process metrics is such an important issue, we revis-
ited the Rahman et al. and Kamei et al. study. To check their conclusions, we
ran an analytics in-the-large study that looked at 722,471 commits from 700
Github projects.

All in all, this paper explores eight hypotheses using two widely used val-
idation criteria. One is release-based (where given R releases of the software,
we trained on data from release 1 to R−3, then tested on release R−2, R−1,
and R) and another is cross-validation based (where the data is randomly

4 This is because process metrics can be calculate using the change history of a file. While
calculating the product metrics, the tool needs to download the specific version of the file, then
go through the actual code to gather the necessary statistics to calculate the actual metrics.

4 Suvodeep Majumder et al.

divided into N stratified bins. Each bin, in turn, becomes the test set and a
model is trained on the remaining bins.) After comparing conclusions seen in
the prior analytics-in-the-small to the analytics-in-the-large, we find two cases
where we disagree and six where we agree. So what is the value of a paper
with 75% agreement with prior work? We assert that this paper makes several
important contributions:
– Firstly, in the two cases where we disagree, we very strongly disagree:

– We find that the use of any learner is not appropriate for analytics-in-
large. Our results suggest that any learner that generates a single model
may get confused by all the intricacies of data from multiple projects. On
the other hand, ensemble learners (that make the conclusions by polling
across many models) know how to generate good predictions from an
extensive sample.

– Also, in terms of what recommendations we would make to improve soft-
ware quality, we find that the conclusions achieved via analytics-in-the-
large are very different from those achieved via analytic-in-the-small.
Later in this paper, we compare those two sets of conclusions. We will
show that changes to software projects that make sense from analytics-
in-the-small (after looking at any five projects) can be wildly misleading
since, once we get to analytics-in-the-large, a very different set of at-
tributes is most effective

– Secondly, in the case where our conclusions are the same as prior work, we
have successfully completed a valuable step in the scientific process: i.e.,
reproduction of prior results. Current ACM guidelines5 distinguish replica-
tion and reproduction as follows: the former uses artifacts from the prior
study while the latter does not. Our work is a reproduction6 since we use
ideas from the Rahman et al. and Kamei et al. study, but none of their code
or data. We would encourage more researchers to conduct and report more
reproduction studies.

Specifically, this paper asks eight research questions

RQ 1: For predicting defects, do methods that work in-the-small, also
work in-the-large?

In a result that agrees with Rahman et al., we find that how we build
code is more indicative of what bugs are introduced than what we build (i.e.,
process metrics make best defect predictions).

RQ 2: Measured in terms of predication variability, do methods that
works well in-the-small, also work at at-scale?

Rahman et al. said that it does not matter what learner is used to build pre-
diction models. We make the exact opposite conclusion. For analytics-
in-the-large, the more data we process, the more variance in that data. Hence,

5 https://www.acm.org/publications/policies/artifact-review-and-badging-current
6 To be clear: technically speaking, this paper is a partial reproduction of Rahman et al. or

Kamei et al. When we tried their methodology, we found in some cases, our results needed a
slightly different approach (see § 3.4).

Revisiting Process versus Product Metrics: a Large Scale Analysis 5

conclusions that rely on a single model get confused and exhibit significant
variance in their predictions. To mitigate this problem, it is important to use
learners that make conclusions by averaging over multiple models (i.e., ensem-
ble Random Forests are far better for analytics than the Naive Bayes, Logistic
Regression, or Support Vector Machines used in prior work).

RQ 3: Measured in terms of granularity, do same granularity that works
well in-the-small, also work at at-scale?

Kamei et al. said in their study that although the file-level prediction is
better than package-level prediction when measured using Popt20, the differ-
ence is very little and we agree with this result. However, when measured via
other evaluation measures, the difference is significantly different. Thus for
analytics-in-the-large, when measured using other criteria, it is evident the
granularity of the metrics matter and file-level prediction shows significantly
better results than package-level prediction.

RQ 4: Measured in terms of stability, are process metrics more/less
stable than code metrics, when measured at at-scale?

When measured in terms of stability of performance across the last 3 re-
leases by using all other previous releases for training the model, our results
agree with Rahman et al. in all traditional evaluation criteria (i.e., recall, pf,
precision). We find that the performance across the last 3 releases does not
significantly differ in all evaluation criteria except for effort-aware evaluation
criteria Popt20.

RQ 5: Measured in terms of stasis, Are process metrics more/less static
than code metrics, when measured at at-scale?

In this result, we agree with Rahman et al.. We can see product metrics are
significantly more correlated than process metrics. We measure this correlation
in both release-based and JIT-based settings. Although we can see process
metrics have a significantly lower correlation than product metrics in both
release-based and JIT-based settings, the difference is lower in case of JIT-
based settings. Also, when lifting process metrics from file-level to package-
level, as explored by Kamei et al., we can see a significant increase in correlation
in case of process metrics. This can explain the drop in performance in package-
level prediction.

RQ 6: Measured in terms of stagnation, Do models built from different
sets of metrics stagnate across releases, when measured at at-scale?

Rahman et al. warn that, when reasoning over multiple releases, models
can stagnant, i.e., fixate on old conclusions and miss new ones. For example,
if a defect occurs in the same file in release one and release two, and another
defect appears in a new file in the second release, the model will catch the file
as defective, which was defective in first release, but will miss the defect in the
new file.

6 Suvodeep Majumder et al.

Here we measure the stagnation property of the models built using the
metrics. Our results agree with Rahman et al.: we see a significantly higher
correlation between the predicted probability and learned probability in the
case of product metrics than process metrics. This signifies models built using
product metrics tend to be stagnant.

RQ 7: Do stagnant models (based on stagnant metrics) tend to predict
recurringly defective entities?

In these results, we try to evaluate if models built with product and process
metrics tend to predict recurrent defects. Our results concur with Rahman et
al. and we see models built with product metrics tend to predict recurrent
defects, while models built with process data do not suffer from this effect.

RQ 8: Measured in terms of metric importance, are metrics that seem
important in-the-small, also important when reasoning in-the-large?

Numerous prior analytics in-the-small publications offer conclusions on the
relative importance of different metrics. For example, [33], [22], [52], [38], [18]
offer such conclusions after an analysis of 1,1,3, 6,and 26 software project,
respectively. Their conclusions are far more specific than process-vs-product;
rather, these prior studies call our particular metrics are being most important
for prediction.

Based on our analysis, we must now call into question any prior analytics
in-the-small conclusions that assert that specific metrics are more important
than any other (for defect prediction). We find that the relative importance of
different metrics found via analytics in-the-small is not stable. Specif-
ically, when we move to analytics in-the-large, we find very different rankings
for metric importance.

The rest of this paper is structured as follows. Some background and related
work are discussed in section 2. Our experimental methods are described in
section 3. Data collection in section 3.1 and learners used in this study in
section 3.2. Followed by the experimental setup in section 3.4 and evaluation
criteria in section 3.5. The results and answers to the research questions are
presented in section 4. Which is followed by threats to validity in section 5.
Finally, the conclusion is provided in section 6.

Note that all the scripts and data used in this analysis are available online
at https://github.com/Suvodeep90/Revisit_process_product 7.

7 Note to reviewers: Our data is so large we cannot place it in the Github repo. Zenodo.org will
host our data. https://github.com/Suvodeep90/Revisit process product only contains a sample
of our data. We will link that repository to link to data stored at Zenodo.org.

https://github.com/Suvodeep90/Revisit_process_product

Revisiting Process versus Product Metrics: a Large Scale Analysis 7

2 Background and Related Work

2.1 Defect Prediction

This section shows that software defect prediction is a (very) widely explored
area with many application areas. Specifically, in 2020, software defect predic-
tion is now a “subroutine” that enables much other research.

A defect in software is a failure or an error represented by incorrect, un-
expected, or unintended behavior of a system caused by an action taken by a
developer. As today’s software proliferates both in size and number, software
testing for capturing those defects plays more and more crucial roles. During
software development, the testing process often has some resource limitations.
For example, the effort associated with coordinated human effort across a large
codebase can grow exponentially with the scale of the project [21].

It is common to match the quality assurance (QA) effort to the perceived
criticality and bugginess of the code for managing resources efficiently. Since
every decision is associated with a human and resource cost to the developer
team, it is impractical and inefficient to distribute equal effort to every compo-
nent in a software system [12]. Creating defect prediction models from either
product metrics (like those from Table 1) or process metrics (like those from
Table 2) is an efficient way to take a look at the incoming changes and focus
on specific modules or files based on a suggestion from defect predictor.

Recent results show that software defect predictors are also competitive
widely-used automatic methods. Rahman et al. [72] compared (a) static code
analysis tools FindBugs, Jlint, and PMD with (b) defect predictors (which
they called “statistical defect prediction”) built using logistic regression. No
significant differences in cost-effectiveness were observed. Given this equiva-
lence, it is significant to note that defect prediction can be quickly adapted to
new languages by building lightweight parsers to extract product metrics or
use common change information by mining git history to build process metrics.
The same is not true for static code analyzers - these need extensive modifica-
tion before they can be used in new languages. Because of this ease of use and
its applicability to many programming languages, defect prediction has been
extended in many ways, including:

1. Application of defect prediction methods to locate code with security vul-
nerabilities [80].

2. Understanding the factors that lead to a greater likelihood of defects such as
defect-prone software components using code metrics (e.g.,, ratio comment
to code, cyclomatic complexity) [46, 47] or process metrics (e.g.,, recent
activity).

3. Predicting the location of defects so that appropriate resources may be
allocated (e.g.,, [9])

4. Using predictors to proactively fix defects [5]
5. Studying defect prediction not only just release-level [15] but also change-

level or just-in-time [75].

8 Suvodeep Majumder et al.

6. Exploring “transfer learning” where predictors from one project are applied
to another [39,58].

7. Assessing different learning methods for building predictors [23]. This has
led to the development of hyper-parameter optimization and better data
harvesting tools [1, 2].

2.2 Process vs Product

Defect prediction models are built using various machine learning classifica-
tion methods such as Random Forest, Support Vector Machine, Naive Bayes,
Logistic Regression [24,27,30,31,39,50,59,63,78,79,83,86,92,103,104,106] etc.
All these methods input project metrics and output a model that can make
predictions. Fenton et al. [20] say that a “metric” is an attempt to measure
some internal or external characteristic and can broadly be classified into prod-
uct (specification, design, code-related) or process (constructing specification,
detailed design related). The metrics are computed either through parsing the
codes (such as modules, files, classes or methods) to extract product (code)
metrics or by inspecting the change history by parsing the revision history of
files to extract process (change) metrics.

In September 2020, we conducted the following literature review to under-
stand the current thinking on the process and product metrics. Starting with
Rahman et al. [70] and Kamei et al. [34], we used Google Scholar to trace
citations forward and backward-looking for papers that offered experiments
on the process or product metrics for defect prediction or that suggested why
certain process or product metrics are better for defect prediction. This gave
us a list of 76 papers. Following the advice of Mathew et al. [44], we examined:
– Highly cited papers, i.e., those with at least ten cites per year.
– Papers from senior SE venues, i.e., those listed at “Google Scholar Metrics

Software Systems”.
Next, using our domain expertise, we augmented that list of papers we con-
sidered important or highly influential papers that focus on the benefits of
using process or/and product metrics that were not included in the above two
criteria). This leads to the 45 papers that are listed in Table 3.

Within this set of papers, we observe that studies on product metrics are
more common than on process metrics (and very few papers experimentally
compare both product and process metrics: see Figure 1). The product metrics
community [35, 48, 50, 78, 79, 83, 91, 92, 97, 109, 110] argues that many kinds of
metrics indicate which code modules are buggy:
– For example, for lines of code, it is usually argued that large files can be

hard to comprehend and change (and thus are more likely to have bugs);
– For another example, for design complexity, it is often argued that the more

complex a design of code, the harder it is to change and improve that code
(and thus are more likely to have bugs).
On the other hand, the process metrics community [11,17,29,43,55,60,65,

68, 73, 74, 85, 93, 102] explore many process metrics, including (a) developer’s

https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems

Revisiting Process versus Product Metrics: a Large Scale Analysis 9

Paper
of

Datasets
Year Venue

A validation of object-oriented design
metrics as quality indicators

8 1996 TSE

Predicting fault incidence using software
change history

1 2000 TSE

Empirical analysis of ck metrics for object-oriented
design complexity: Implications for software defects

1 2003 TSE

Data mining static code attributes to learn defect
predictors

8 2006 TSE

Empirical analysis of object-oriented design metrics
for predicting high and low severity faults

1 2006 TSE

Is external code quality correlated with programming
experience or feelgoodfactor?

1 2006 XP

Mining metrics to predict component failures 5 2006 TSE
Predicting defects for eclipse 1 2007 ICSE
The effects of over and under sampling on fault-prone
module detection

1 2007 ESEM

Using software dependencies and churn metrics to
predict field failures: An empirical case study

1 2007 ESEM

A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction

1 2008 ICSE

Benchmarking models for defect prediction 10 2008 TSE
Do too many cooks spoil the broth? using the number
of developers to enhance defect prediction models

2 2008 EMSE

Implications of ceiling effects in defect predictors 12 2008 IPSE
An investigation of the relationships between lines
of code and defects

1 2009 ICSE

On the relative value of cross-company and
within-company data for defect prediction

6 2009 EMSE

Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process

7 2009 FSE

A systematic and comprehensive investigation of
methods to build and evaluate fault prediction model

1 2010 JSS

An analysis of developer metrics for fault prediction 1 2010 PROMISE
Change bursts as defect predictors 1 2010 ISSRE
Predicting faults in high assurance software 15 2010 HASE
Revisiting Common Bug Prediction Findings Using
Effort-Aware Models

3 2010 ICSM

Bugcache for inspections: hit or miss 5 2011 FSE
Don’t touch my code! examining the effects of
ownership on software quality

2 2011 FSE

Ownership, experience and defects: a
fine-grained study of authorship

4 2011 ICSE

Using coding-based ensemble learning to
improve software defect prediction

14 2012 SMC

Transfer learning for cross-company
software defect prediction

6 2012 IST

Recalling the “imprecision” of
cross-project defect prediction.

9 2012 FSE

Method-level bug prediction 21 2012 ESEM
How, and why, process metrics are better 12 2013 ICSE
Using class imbalance learning for software
defect prediction

10 2013 TR

Sample Size vs. Bias in Defect Prediction 12 2013 FSE
Predicting Bugs Using Antipatterns 2 2013 ICSME
Empirical study of the classification performance
of learners on imbalanced noisy software quality data

1 2014 IS

Learning to rank relevant files for bug reports
using domain knowledge

6 2014 FSE

Which process metrics can significantly improve
defect prediction models? an empirical study

11 2014 MSR

The impact of mislabelling on the performance
and interpretation of defect prediction models

5 2015 ICSE

Developer Micro Interaction Metrics for
Software Defect Prediction

6 2016 TSE

Hydra: Massively compositional model for
cross-project defect prediction

10 2016 TSE

Supervised vs Unsupervised Models: A Holistic
Look at Effort-Aware Just-in-Time Defect Prediction

6 2017 ICSME

Empirical analysis of change metrics for software
fault prediction

1 2018 CEE

CLEVER: Combining Code Metrics with Clone
Detection for Just-In-Time Fault Prevention and
Resolution in Large Industrial Projects

1 2018 MSR

Fine-grained just-in-time defect prediction 10 2019 IST
Mining defects: Should we consider affected releases? 6 2019 ICSE

Table 3: Number of data sets explored in recent papers at prominent
venues that experiment with process and/or product metrics.

10 Suvodeep Majumder et al.

experience; and (b) how many developers worked on certain file (and, it is
argued, many developers working on a single file is much more susceptible to
defects); and (c) how long it has been since the last change (and, it is argued,
a file which is changed frequently may be an indicator for bugs).

The rest of this section lists prominent results from the Figure 1 survey.
From the product metrics community, Zimmermann et al. [110], in their study
on Eclipse project using file and package-level data, showed complexity-based
product metrics are much better in predicting defective files. Zhang et al. [105],
in their experiments, showed that lines of code-related metrics are good predic-
tors of software defects using NASA datasets. In another study using product
metrics, Zhou et al. [108] analyzed a combination of ten object-oriented soft-
ware metrics related to complexity to conclude that size metrics were a much
better indicator of defects. A similar study by Zhou and Leung et al. [107]
evaluated the importance of individual metrics and indicated that while CBO,
WMC, RFC, and LCOM metrics are useful metrics for fault prediction, but
DIT is not useful using NASA datasets. Menzies et al. [48], in their study
regarding static code metrics for defect prediction, found product metrics are
very effective in finding defects. Basili et al. [8], in their work, showed object-
oriented ck metrics appeared to be useful in predicting class fault-proneness,
which was later confirmed by Subramanyam and Krishnan et al. [82]. Na-
gappan et al. [56], in their study, reached a similar conclusion as Menzies et
al. [48], but concluded, “However, there is no single set of complexity metrics
that could act as a universally best defect predictor”.

In other studies related to process metrics, Nagappan et al. [57] emphasized
the importance of change bursts as a predictor for software defects on Windows
Vista dataset. They achieved a precision and recall value at 90% in this study
and achieved a precision of 74.4% and recall at 88.0% in another study on

36 156

Process Metrics

Product Metrics

Fig. 1: Number of papers exploring the benefits of the process and
product metrics for defect prediction. The papers in the intersec-
tion are [7, 25, 26, 34, 53, 70] explore and compare both process and
product metrics. Note that prior to this EMSE paper, prior work
that looked at the process and product metrics explored analytics-
in-the-small.

Revisiting Process versus Product Metrics: a Large Scale Analysis 11

Windows Server 2003 datasets. In another study by Matsumoto et al. [45]
investigated the effect of developer-related metrics on defect prediction. They
showed improved performance using these metrics and proved module that is
revised by more developers tends to contain more faults. Similarly, Schröte
et al. [42], in their study, showed a high correlation between the number of
developers for a file and the number of defects in the respective file.

As to the six papers that compare process versus product methods:
– Four of these papers argue that process metrics are best. Rahman et al. [70]

found process metrics perform much better than product metrics in both
within-project and cross-project defect prediction settings. Their study also
showed product metrics do not evolve much over time and that they are
much more static. Hence, they say, product metrics are not good predictors
for defects. Similar conclusions (about the superiority of process metrics)
are offered by Moser et al. [53], Giger et al. [25], and Graves et al. [26].

– Only one paper argues that both process and product metrics perform sim-
ilarly. Arisholm et al. [7] found one project where both process and product
metrics perform similarly.

– Only one paper argues that the combination of process and product metrics
is better at predicting deefects. Kamei et al. [34] found 5 out of 9 versions
of 3 projects where combination of process and product metrics perform
better than just using process metrics and 9 out of 9 cases they are better
than just using product metrics.
Of these papers, Moser et al. [53], Arisholm et al. [7], Kamei et al. [34],

Rahman et al. [70], Graves et al. [26] and Giger et al. [25] based their con-
clusions on 1,1,3,12,15,21 projects (respectively). That is to say, these are all
analytics in-the-small studies. The rest of this paper checks their conclusions
using analytics in-the-large.

3 Methods

This section describes our methods for comparatively evaluating process versus
product metrics using analytics in-the-large.

3.1 Data Collection

To collect data, we search Github for Java projects from different software
development domains. Although Github stores millions of projects, many of
these are trivially very small, not maintained, or are not about -software de-
velopment projects. To filter projects, we used the standard Github “sanity
checks” recommended in the literature [4, 32,54]:
– Collaboration: refers to the number of pull requests. This is indicative of

how many other peripheral developers work on this project. We required all
projects to have at least one pull request. This will prove the repository is a
part of distributed development model where others have forked/created a

12 Suvodeep Majumder et al.

branch on this repository to make independent changes and submitted those
changes to the main repository to be merged with the main branch. We also
validated and remove any project where all pull requests are submitted by
same developers by checking unique ids of pull request submitter.

– Commits: The project must contain more than 20 commits as recommended
in the literature. Commits in a Github repository represent the amount of
activity in the project. More than 75% of the projects found in Github have
less than 20; thus 20 is a good number for this filtering criteria.

– Duration: The project must contain software development activity of at least
50 weeks. Kalliamvakou et al. show in their paper the 75% of the project
are active for less than 14 weeks; thus 50 weeks as a minimum duration for
the filtering criteria is used as suggested by other researchers.

– Issues: The project must contain more than 10 issues as recommended in
the literature.

– Releases: The project must contain at least 4 releases. This is because the
release-based validation strategy used in this study requires 3 test releases
and at least one training release.

– Personal Purpose: The project must not be used and maintained by one
person. The project must have at least eight contributors as suggested by
other researchers.

– Software Development : The project must only be a placeholder for software
development source code.

– Defective Commits: The project must have at least 10 defective commits
with defects on Java files. This is because the SMOTE algorithm that we
are using for balancing the datasets requires at least 10 examples of the
minority class.

– Forked Project : The project must not be a forked project from the original
repository.This is to remove any potential duplicity and remove any project
from the study that is not the project’s main branch. We used the Github
API to check for the “Forked” flag, and we removed any project which is
flagged as yes.

We started with 8023 Github projects from various domains collected using
Github search API. After applying the sanity checks mentioned above, we
selected 700 projects. The Data Statistics section of Table 4 shows the median
and IQR of each of the filtering criteria for the selected projects. For this
research, we collected file-level process metrics and file-level product metrics
to answer our research questions (RQ1, RQ3-RQ8) as suggested by Rahman
et al. [70]. We also followed the suggested aggregation process used by Kamei
et al. [34] in their paper to calculate the package-level metrics by lifting the
file-level metrics to the package-level to investigate and answer RQ2.

This data was extracted once and stored as pickle files in the following four
steps:

1. We collected 21 process metrics (following the definition either from com-
mit guru or from the definitions shared by Rahman et al.) for each file
in each commit by extracting the commit history of the project, then
analyzing each commit for our metrics. We used a modified version of

Revisiting Process versus Product Metrics: a Large Scale Analysis 13

Product Metrics
Metric Name Median IQR Metric Name Median IQR

AvgCyclomatic 1 1 CountLine 75.5 150
AvgCyclomaticModified 1 1 CountLineBlank 10.5 20

AvgCyclomaticStrict 1 1 CountLineCode 53 105
AvgEssential 1 0 CountLineCodeDecl 18 32

AvgLine 9 10 CountLineCodeExe 29 66
AvgLineBlank 0 1 CountLineComment 5 18
AvgLineCode 7 8 CountSemicolon 24 52

AvgLineComment 0 1 CountStmt 35 72.3
CountClassBase 1 0 CountStmtDecl 15 28

CountClassCoupled 3 4 CountStmtExe 19 43.8
CountClassCoupledModified 3 4 MaxCyclomatic 3 4

CountClassDerived 0 0 MaxCyclomaticModified 2 4
CountDeclClassMethod 0 0 MaxCyclomaticStrict 3 5
CountDeclClassVariable 0 1 MaxEssential 1 0

CountDeclInstanceMethod 4 7.5 MaxInheritanceTree 2 1
CountDeclInstanceVariable 1 4 MaxNesting 1 2

CountDeclMethod 5 9 %LackOfCohesion 33 71
CountDeclMethodAll 7 12.5 %LackOfCohesionModified 19 62

CountDeclMethodDefault 0 0 RatioCommentToCode 0.1 0.2
CountDeclMethodPrivate 0 1 SumCyclomatic 8 17

CountDeclMethodProtected 0 0 SumCyclomaticModified 8 17
CountDeclMethodPublic 3 6 SumCyclomaticStrict 9 18

SumEssential 6 11
Process Metrics Data Statistics

Metric Name Median IQR Data Property Median IQR
la 14 38.9 Defect Ratio 37.60% 20.60%
ld 7.9 12.2 Lines of Code 82K 200K
lt 92 121.8 Number of Files 171 358

age 28.8 35.1 Number of Developers 31 34
ddev 2.4 1.2 Number of PRs. 55 101
nuc 5.8 2.7 Number of Commits 217 379
own 0.9 0.1 Duration 186(W) 191(W)

minor 0.2 0.4 Number of Releases 20 32
ndev 22.6 22.1 Number of Defective Commits 77 139

ncomm 71.1 49.5 Number of Issues 46 67
adev 6.1 2.9 Number of unique PR submitter 5 6

nadev 71.1 49.5
avg nddev 2 1.8
avg nadev 7 5.2

avg ncomm 7 5.2
ns 1 0

exp 348.8 172.7
sexp 145.7 70
rexp 2.5 3.4

nd 1 0
sctr -0.2 0.1

Table 4: Statistical median and IQR values for the metrics used in
this study (IQR denotes the (75-25)th percentile range).

Commit Guru [76] code for this purpose, where instead of aggregating file-
specific metric values for a commit, we store metric values for each file. We
create objects for each new file we encounter and keep track of details (i.e.,
developer who worked on the file, LOCs added, modified, deleted by each
developer, etc.) that we need to calculate. We also keep track of files mod-
ified together to calculate co-commit-based metrics. After collecting the 21
metrics as mentioned in Table 4 for each project, it is stored as a pickle file
to be used for prediction.

14 Suvodeep Majumder et al.

2. Secondly, we use Commit Guru [76] code to identify buginducing and bug-
fixing commits. This process involves identifying bugfixing commits using
a keyword8 based search. Using these commits, the process uses the com-
mit guru’s SZZ algorithm [76,94] to find commits that were responsible for
introducing those changes and marking them as buginducing 9. This pro-
cess is performed on all commits throughout the life cycle of the project.
Note here for a buginducing, each file that is labeled as a buggy file (bug-
inducing) will have another instance of the same file, which is non-buggy
(bugfixing). If a file has been fixed multiple times throughout the project
history, it will have multiple instances in the dataset.

3. Thirdly, we used Github tag API to collect the release information for
each of the projects. We use the release number, release date information
supplied from the API to group commits into releases and thus dividing
each project into multiple releases for each of the metrics. Note here we
refer to a release number as the tags provided by the contributors of the
repository, not by Github. Thus we apply regular expressions to match the
release number to either “X.X.X.X” or “X.X.X” format. Here for a tag to
be considered as a release, it needs to be different in the section before the
third dot.

4. Finally, we used the Understand from Scitools10 to extract the 45 product
metrics used in this study. Understand has a command-line interface to
analyze project codes and generate metrics from that. We use the data
collected from the first 2 steps to generate a list of commits and their
corresponding files, along with class labels for defective and non-defective
files. Next, we download the project codes from Github, then used the git

commit information to move the git head to the corresponding commit to
match the code for that commit. Understand uses this snapshot of the code
to analyze the metrics for each file and store the data in temporary storage.
We do this for all commits throughout the project history. To ensure for
every analyzed commit, we only consider the files which were changed, and
we only keep files which was changed as part of that commit. Here we also
added the class labels to the metrics. To only mark files that were defective,
we use commit Ids along with file names to add labels. After the last step
is done, the 45 product metrics collected for each project are stored in a
separate file to answer the research questions for this study.

Note that steps one and two required 2 days (on a single 16 cores machine),
while step four required 7 days (on 5 machines with 16 cores) of computation,
respectively. The data collected in this way are summarized in Table 4.

8 The keywords used are - bug, fix, error, issue, crash, problem, fail, defect and patch. These
keywords are taken used by Rosen et al. in their commit guru [76] paper.

9 From this point onwards, we will denote the commit which has bugs in them as a “buginducing
”
10 http://www.scitools.com/

Revisiting Process versus Product Metrics: a Large Scale Analysis 15

3.2 Learners

In this section, we briefly explain the four classification methods we have used
for this study. We selected the following based on a prominent paper by Ghotra
et al.’s [24]. Also, all these learners are widely used in the software engineering
community. For all the following models, we use the implementation from
Scikit-Learn11. We applied Differential Evolution (DE) as a hyperparameter
optimization [84] to tune the models discussed here. However, as shown below,
the performance of the Random Forest model with default parameters was so
promising that we applied hyperparameter optimization on 3 of the models
except for Random Forest.

3.2.1 Support Vector Machine

This is a discriminative classifier, which tries to create a hyper-plane between
classes by projecting the data to a higher dimension using kernel tricks [13,49,
77, 88]. The model learns the separating hyper-plane from the training data
and classifies test data based on which side the example resides.

3.2.2 Naive Bayes

This is a probabilistic model, widely used in software engineering commu-
nity [50, 78, 79, 83, 92], that finds patterns in the training dataset and builds
predictive models. This learner assumes all the variables used for prediction
are not correlated, identically distributed. This classifier uses Bayes rules to
build the classifier. When predicting for test data, the model uses the distribu-
tion learned from training data to calculate the probability of the test example
belonging to each class and report the class with maximum probability.

3.2.3 Logistic Regression

This is a statistical predictive analysis method similar to linear regression
but uses a logistic function to make predictions. Given 2 classes Y=(0 or 1)
and a metric vector X = x1, x2,, xn, the learner first learns coefficients of
each metrics vector to best match the training data. When predicting for test
examples, it uses the metrics vectors of the test example and the coefficients
learned from training data to make the prediction using a logistic function.
Logistic regression is widely used in defect prediction [24,27,59,63,103].

3.2.4 Random Forest

This is a type of ensemble learning method, which consists of multiple clas-
sification decision trees built on random metrics and bootstrapped samples
selected from the training data. Test examples are classified by each decision

11 https://scikit-learn.org/stable/index.html

16 Suvodeep Majumder et al.

tree in the Random Forest and then the final classification decision is decided
using a majority voting. Random forest is widely used in software engineer-
ing domain [30, 31, 39, 86, 92, 104, 106] and has proven to be effective in defect
prediction.

Later in this paper, the following distinction will become very significant.
Of the four learners we apply, Random Forests make their conclusion via a
majority vote across multiple models while all the other learners build and
apply a single model.

3.3 Differential Evolution (DE)

In this section, we explain the hyper-parameter optimizer used in this study to
fine-tune an ML model’s parameters. There are several parameters for each ML
model, which decide how an ML model learns to discriminate between desirable
and undesirable outcomes. These parameters of the models can greatly affect
the performance of the models. In this study, we used Differential Evolution
(DE) as the hyper-parameter optimized as has been widely used in software
engineering and machine learning community [1,61,87,95]. DE is a stochastic
population-based optimization algorithm [81]. DE starts with a frontier of
randomly generated candidate solutions. For example, when exploring tuning,
each member of the frontier would be a different possible set of control settings
for (say) an Support Vector Machine.

After initializing this frontier, a new candidate solution is generated by
extrapolating by some factor f between other items on the frontier. Such ex-
trapolations are performed for all attributes at probability cf. If the candidate
is better than one item of the frontier, then the candidate replaces the frontier
item. The search then repeats for the remaining frontier items. For the defi-
nition of “better“, this study uses F1-score; i.e., “better” means maximizing
the objective score of the model-based F1 Score. This process is repeated for
lives number of repeated traversals of the frontier. For full details of DE, see
Figure 2. As per Storn’s advice [81], we use

f = 0.75, cf = 0.3, lives = 60

Out of the 4 learners, as mentioned in Section 3.2, we have tuned 3 learners
(a) Logistic Regression, (b) Naive Bayes, and (c) Support Vector Machine. We
did not include the Random Forest learner as it was already reporting near-
perfect results for most performance measures. The parameters tuned in DE
for each learner are -
– Logistic Regression: (a) penalty: Used to specify the norm used in the

penalization, (b) C: Inverse of regularization strength, (c) solver: Algorithm
to use in the optimization problem, and (d) max iter: Maximum number of
iterations taken for the solvers to converge.

– Naive Bayes: (a) var smoothing: Portion of the largest variance of all
features that are added to variances for calculation stability.

Revisiting Process versus Product Metrics: a Large Scale Analysis 17

1def DE(n=10, cf=0.3, f=0.7): # default settings
2frontier = sets of guesses (n=10)
3best = frontier.1 # any value at all
4lives = 1
5while(lives−− > 0):
6tmp = empty
7for i = 1 to |frontier|: # size of frontier
8old = frontieri
9x,y,z = any three from frontier, picked at random
10new= copy(old)
11for j = 1 to |new|: # for all attributes
12if rand() < cf # at probability cf...
13new.j = x.j + f ∗ (z.j − y.j) # ...change item j
14# end for
15new = new if better(new,old) else old
16tmpi = new
17if better(new,best) then
18best = new
19lives++ # enable one more generation
20end
21# end for
22frontier = tmp
23# end while
24return best

Fig. 2: Differential Evolution based on Storn's DE optimizer.

– Support Vector Machine: (a) C: Regularization parameter, (b) gamma:
Kernel coefficient, (c) kernel: Specifies the kernel type to be used in the
algorithm, and (d) coef0: Independent term in kernel function.

3.4 Experimental Framework

Figure 3 illustrates our experimental rig. For each of our 700 selected Java
projects, we first use the project’s revision history to collect file-level change
metrics, along with class labels (defective and non-defective commits). Then,
using information from the process metrics, we use Understand’s command-
line interface to collect and filter the product metrics. Next, we join the two
metrics to create a combined metrics set for each project.

Using the evaluation strategy mentioned above, the data is divided into
train, validation and test sets. The data is then filtered depending on metrics
we are interested in (i.e., process, product, or combined) and pre-processed
(i.e., data normalization, filtering/imputing missing values, etc.). After pre-
processing and metric filtering is completed, the data is processed using SMOTE
algorithm to handle data imbalance. As described by Chawla et al. [14],
SMOTE is useful for re-sampling training data such that a learner can find
rare target classes. For more details in SMOTE, see [3,14]. Note one technical
detail: when applying SMOTE, it is important that it is not applied to the
validation or test data since data mining models need to be tested on the kinds
of data they might actually see in practice.

Finally, we select one learner from four and it is applied to the training set
to build a model. If hyperparameter optimization is to be performed, then the
model is tuned using the validation data. Finally, the model is tested using the

18 Suvodeep Majumder et al.

Project Code

Change History

Product Metric
Extraction Code

Process Metric
Extraction Code

Product Metrics

Process Metrics

Combined Metrics

Pr
oj

ec
t A

Cross
validation

Release
validation
(thick slice)

Validation Strategy

Train Data

Test Data

Data Pre-
Processing

Learner

SMOTE

Defect
Prediction
Model

PerformanceDefect Prediction

GitHub

Commit_Guru

DE

Fig. 3: Framework for this analysis.

test data. As to how we generate our train/test sets, we report results from
two methods:

1. release-based
2. cross-validation

Both these methods are defined below. We use both methods since (a) other
software analytics papers use cross-validation while (b) release-based is the
evaluation procedure of Rahman et al. As we shall see, these two methods
offer very similar results so debates about the merits of one approach to the
other are something of a moot point. But by reporting on results from both
methods, it is more likely that other researchers will be able to compare their
results against ours.

In a cross-validation study, we select all the files collected using the process
described in Section 3.1. This includes the files that were labeled as buggy and
non-buggy (this can include multiple copies of the same file if it was committed
multiple times) throughout the project history. This data for each project is
sorted randomly M times. Then for each time, the data is divided into N
stratified bins. Each bin, in turn, becomes the test set and the remaining data
is further divided into training and validation sets. For this study, we used
M = N = 5.

An alternative to cross-validation is a release-based approach such as the
one used by Rahman et al. Here; given R releases of the software, we divide
all the data into R parts. Then we trained on data from release 1 to R − 3,
then tested on release R − 2, R − 1, and R. This temporal approach has the
advantage that the future data never appears in the training data.

3.5 Evaluation Criteria

In this section, we introduce the following 6 evaluation measures used in this
study to evaluate the performance of machine learning models. Based on the
results of the defect predictor, humans read the code in order of what the
learner says is most defective. During that process, they find true negative,

Revisiting Process versus Product Metrics: a Large Scale Analysis 19

false negative, false positive, and true positive (labeled TN, FN, FP, TP, re-
spectively) reports from the learner.

Recall: This is the proportion of inspected defective changes among all the
actual defective changes; i.e., TP/(TP+FN). Recall is used in many previous
studies [36, 89, 98–101]. When recall is maximal, we are finding all the target
class items. Hence we say that larger recalls are better.

Precision: This is the proportion of inspected defective changes among
all the inspected changes; i.e., TP/(TP+FP). When precision is maximal, all
the reports of defect modules are actually buggy (so the users waste no time
looking at results that do not matter to them). Hence we say that larger
precision is better.

Pf: This is the proportion of all suggested defective changes that are not
actual defective changes divided by everything that is not actually defective;
i.e., FP/(FP+TN). A high pf suggests developers will be inspecting code that
is not buggy. Hence we say that smaller false alarms are better.

Popt20: A good defect predictor lets programmers find the most bugs
after reading the least amount of code [6]. Popt20 models that criteria. First,
we divide the test data into (a) those that are predicted to be defective and
(b) those that are not. Second, we sorted the sets (a,b) on LOC. Third, we
returned the test in the order sorted (a) followed by sorted (b). Within that
sort, we then report the percent of actual bugs found by inspecting the first
20% of the code (measured in terms of LOC). We say that larger Popt20 values
are better.

IFA: Parnin and Orso [64] warn that developers will ignore the suggestions
of static code analysis tools if those tools offer too many false alarms before
reporting something of interest. Other researchers echo that concern [37,64,96].
IFA counts the number of initial false alarms encountered before we find the
first defect. We say that smaller IFA values are better.

AUC ROC: This is the area under the curve for receiver operating char-
acteristic. This is designated by a curve between true positive and false positive
rates and created by varying the thresholds for defects between 0 and 1. This
creates a curve between (0,0) and (1,1), where a model with random guess will
yield a value of 0.5 by connecting (0,0) and (1,1) with a straight line. A model
with better performance will yield a higher value with a more convex curve in
the upper left part. Hence we say that larger AUC values are better.

3.6 Statistical Tests

When comparing the results of different models in this study, we used a sta-
tistical significance test and an effect size test:

– Significance test is useful for detecting if two populations differ merely by
random noise.

– Effect sizes are useful for checking that two populations differ by more than
just a trivial amount.

20 Suvodeep Majumder et al.

For the significance test, we use the Scott-Knott procedure recommended at
TSE’13 [51] and ICSE’15 [24]. This technique recursively bi-clusters a sorted
set of numbers. If any two clusters are statistically indistinguishable, Scott-
Knott reports them both as belonging to the same “rank”.

To generate these ranks, Scott-Knott first looks for a break in the sequence
that maximizes the expected values in the difference in the means before and
after the break. More specifically, it splits l values into sub-lists m and n to
maximize the expected value of differences in the observed performances before
and after divisions. e.g.,, list l,m and n of size ls,ms and, ns where l = m∪n,
Scott-Knott divides the sequence at the break that maximizes:

E(∆) =
ms

ls
× abs(m.µ− l.µ)2 +

ns

ls
× abs(n.µ− l.µ)2 (1)

Scott-Knott then applies some statistical hypothesis test H to check if
m and n are significantly different. If so, Scott-Knott then recurses on each
division. For this study, our hypothesis test H was a conjunction of the A12
effect size test (endorsed by [5]) and non-parametric bootstrap sampling [19],
i.e., our Scott-Knott divided the data if both bootstrapping and an effect size
test agreed that the division was statistically significant (90% confidence) and
not a “small” effect (A12 ≥ 0.6).

4 RESULTS

RQ 1: For predicting defects, do methods that work in-the-small, also
work in-the-large?

To answer this question, we use Figure 4, Figure 5, Figure 6, and Figure 7
to compares Recall, Pf, AUC, Popt20, Precision, and IFA across four different
learners using process, product, and combined metrics. In those figures, the
metrics are marked as P (process metrics), C (product metrics), and combined
(P+C). Figure 4, Figure 5, and Figure 6 represents the cross-validation results,
while Figure 7 represent the release-based results.

For this research question, the key thing to watch in these figures is the
vertical colored box plots. The box plots were generated using results from all
700 Github projects, where each data point for a project is the (a) median
result from 5-fold cross-validation repeated 5 times for Figure 4, Figure 5,
Figure 6, and (b) median result from 3 release for Figure 7. These horizontal
lines running across their middle show the median performance of a learner
across 700 Github projects. As we said above in section 3.5, the best learners
are those that maximize recall, precision, AUC, Popt20 while minimizing IFA
and false alarms.

Reading the median line in the box plots, we say that compared to the
Rahman et al. analytics in-the-small study, this analytics in-the-large study
says some things are the same and some things are different. Like Rahman
et al., these results show clear evidence of the superiority of process metrics
since, except for Popt20 (no significant difference across process, product, and

Revisiting Process versus Product Metrics: a Large Scale Analysis 21

process+product metrics) across all learners, the median process results from
process metrics are clearly always better. That is to say, returning to our
introduction, this study strongly endorses the Hersleb hypothesis that how we
build software is a major determiner of how many bugs we inject into that
software.

As to where we differ from the prior analytics in-the-small study, Ran-
dom Forest with process metrics is statistically significantly better (achieving
different statistical rank in Scott-Knott test) than any learner in all perfor-
mance measure, other than Popt20 and IFA. In the case of Popt20 and IFA, all
learners achieve the same statistical ranking from the Scott-Knott test. With
these results we need to keep in mind, the Logistic Regression, Naive Bayes,
and Support Vector Machine were tuned using hyper-parameter optimization,
while the result for Random Forest was using default parameters. Thus the
hyper-parameter tuned Logistic Regression and Support Vector Machine mod-
els were much costlier to build (256 hours for hyper-parameter tuned Support

Support Vector MachineLogistic RegressionRandom Forest Naive Bayes

Pf
R
ec
al
l

Fig. 4: Cross-validation recall and false alarm results for Process(P),
Product(C) and, Combined (P+C) metrics. The vertical box plots
in these charts run from min to max while the thick boxes highlight
the 25,50,75th percentile. Each box plot is built using 700 Github
projects, where each data point is the(a) median result from 5-fold
cross-validation repeated 5 times.

22 Suvodeep Majumder et al.

Vector Machine for vs 10 hours for default Random Forest). So, unlike the
Rahman et al. analytics in-the-small study, we would argue that it is very im-
portant which learner is used to for analytics in-the-large. Certain learning in
widespread use such as Naive Bayes, Logistic Regression, and Support Vector
Machines may not be the best choice for reasoning from hundreds of software
projects. Rather, we would recommend the use of Random Forests.

We also performed a small experiment to see if certain metrics only capture
certain defects as part of this study. We analyzed the defects that are only
captured by process metrics vs the defects that are only captured by product
metrics. Looking into our results, we see that:
– Process metrics capture nearly all the defects; evidence: see the very high

recall scores for Random Forest process metrics in Figure 4.
– As to product metrics, they tended to miss many defects; observe how, for

all learners in Figure 4, the product metrics recall are much lower than
than the process metrics. For example. in the case of Random Forests, we
found that the product metrics missed 48% of the defects found by process
metrics,
On the other hand, there are indeed a small number of defects captured

by product metrics and not process metrics. But this case is definitely in the

Random Forest Logistic Regression Naive Bayes Support Vector Machine

A
U
C

Po
pt
20

Fig. 5: Cross-validation AUC and Popt20 results for Process(P),
Product(C), and Combined (P+C) metrics. Same format as Fig-
ure 4.

Revisiting Process versus Product Metrics: a Large Scale Analysis 23

minority (less than 1% in all our studies). Hence we say that process metrics
are superior at finding nearly all types of defects in a software system, while
product metrics are not able to do that.

Before going on, we comment on certain other aspects of these results:

– We see no evidence of any added value of combining process and product
metrics. If we compare the (P+C) results to the (P) results, there is no case
in Figure 4, Figure 5, and Figure 6 where process + product (P+C) metrics
do better than just using process (P) metrics.

– Similar to Kamei et al. in the case of effort-aware evaluation criteria process
metrics are superior to product metrics, as can be seen in Figure 6. Note in
that figure, many of our learners using process metrics have near-zero IFA
scores. This is to say that, using process metrics, programmers will not be
bombarded with numerous false alarms. But unlike Kamei et al., we do not
see any significant benefit when accessing the performance in regards to the
Popt20, which is another effort-aware evaluation criteria used by Kamei et
al. and this study.

– Figure 7 shows the Random Forest results using release-based test sets.
As stated in section 3.5 above, there is very little difference in the results
between release-based test generation and the cross-validation method o

Naive Bayes Support Vector MachineLogistic RegressionRandom Forest

Pr
ec
is
io
n

IF
A

Fig. 6: Cross-validation IFA and precision results for Process(P),
Product(C), and Combined (P+C) metrics. Same format as Fig-
ure 4.

24 Suvodeep Majumder et al.

Figure 4 and Figure 5, and Figure 6. Specifically, in both our cross-val and
release-based results, (a) process metrics do best; (b) there is no observed
benefit in adding in product metrics and, when using process metrics then
random forests have (c) very high precision and recall and AUC, (d) low
false alarms; and (e) very low IFA.

RQ 2: Measured in terms of predication variability, do methods that
works well in-the-small, also work at at-scale?

To answer this research question, we assess our learners not by their median
performance but by their variability.

Rahman et al. commented that many different learners might be used for
defect prediction since, for the most part, they often give the same results.
While that certainly holds for their analytics in-the-small case study, the sit-
uation is very different when reasoning at-scale about 700 projects. Looking
at the process metrics results for Figure 4 and Figure 5 and Figure 6, we see
that -

P C P+C
Metric Type

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

precision

P C P+C
Metric Type

recall

P C P+C
Metric Type

pf

P C P+C
Metric Type

auc

P C P+C
Metric Type

popt_20

P C P+C
Metric Type

ifa

0.2

0.0

0.6

0.8

1.0

0.4

Fig. 7: Release based results for Random Forests. Here the training
data was till t-3 th release and the rest was test release.

Revisiting Process versus Product Metrics: a Large Scale Analysis 25

1. The performance for Random Forests is statistically significantly better in
case all performance measures, other than Popt20 and IFA.

2. The box plots for Random Forests are much smaller than for other learners
in the case of precision, recall, and AUC. That is, the variance in the pre-
dictive performance is much smaller for Random Forest than for anything
else in this study.

3. These results for Random Forests are without hyper-parameter optimiza-
tion, while other learners are optimized with hyper-parameter optimization.
This makes the model building for Random Forest orders of magnitude
faster.
The size of both these effects is quite marked. Random Forest is usually

better (median) than Logistic Regression. As to the variance, the Random
Forest variance is smaller than the other learners.

Why is Random Forest doing so well? We conjecture that when reason-
ing about 700 projects that there are many spurious effects. Since Random
Forests make their conclusions by reasoning across multiple models, this kind
of learner can avoid being confused. Hence, we recommend ensemble methods
like Random Forest for analytics in-the-large.

RQ 3: Measured in terms of granularity, do same granularity that works
well in-the-small, also work at at-scale?

In this research question, we try to evaluate if the granularity of the metrics
matters when predicting for defects when measuring at scale. This is one of
the research questions asked in study by Kamei et al.. Here we try to measure
if package-level prediction better identifies defective packages than file-level
prediction. There are multiple strategies for creating package-level metrics
such as lifting file-level metrics to package-level, collecting metrics designed
for package-level, and lifting file-level prediction results for package-level as
explored by Kamei et al. in their study. We explore the first strategy that is
to lift the file-level metrics to package-level. We select this strategy as Kamei
et al. in their paper has shown the metrics designed for package-level does not
produce good results and both file and result lift ups have similar performance
and have been explored by many other researchers. To build a defect predictor
using package-level data, we use the process metrics collected for our tasks.
For each commit/release, if there are multiple files from the same package, we
aggregate them to their package-level by taking the median values.

Figure 8 shows the difference in performance between file-level prediction
results and package-level prediction results. It is evident from the results, that
file-level prediction shows statistically significant improvement than package-
level prediction, with an exception in the case of Popt20. This result agrees
with Kamei et al., and we conclude that the granularity of the metrics set does
matter and file-level level prediction has superior performance than package-
level prediction.

RQ 4: Measured in terms of stability, are process metrics more/less
stable than code metrics, when measured at at-scale?

26 Suvodeep Majumder et al.

Metric Type

Metric Type

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8: File vs package-level prediction for models built using file-
level process data and package-level process data.

To answer this research question, we first tag each commit into a release by
using the release information from Github. Using this release information, we
divide the data into train and test data using the last 3 releases as test releases
one by one and other older releases as training data. If a model build using
either process and product data significantly differ across last 3 releases, that
would imply the model built using that set of metrics will need to be rebuilt
for each subsequent release, this in-tern will create instability. To verify the
stability of the models built using metrics, we build the models using the
training data and then check each of the 3 subsequent releases in term of the
evaluation criteria used in this study. We compare both process and product
metrics across all 6 criteria mentioned in Section 3.5.

Figure 9 shows the performance of the models. The first row of the figure
represents the process metrics, while the second row represents the product
metrics. Each column represents the evaluation criteria that we are measuring
and inside each plot, each box plot represents one of the last 3 releases. We
applied Scott-Knott statistical test on the results to check for each evaluation
criteria if any of the releases are statistically significantly different than the
others. The results show no significant difference between 3 releases in all

Revisiting Process versus Product Metrics: a Large Scale Analysis 27

Recall AUCPfPrecision
Sc
or
e

Popt_20 IFA

Release Number

M
etric Type = P

M
etric Type = C

Recall AUCPfPrecision

Sc
or
e

Popt_20 IFA

Release Number

0.1

0.2

0.4

0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0.1

Fig. 9: Stability of the models across the last 3 releases built using
process (P) and product (C) metrics. Each plot shows one of the
six performance criteria used in this study for the last 3 releases.
The first row shows the results for the process metrics denoted as
Metric Type = P and the second row shows the results for product
metrics denoted as Metric Type = C.

28 Suvodeep Majumder et al.

evaluation criteria (all releases for each evaluation criteria in each metric type)
except Popt20. Popt20 is an effort-aware criterion as explained in Section 3.5,
and we see in both process-based and product-based models the Popt20 does
significantly better in the third release. Which may be because third release
have more smaller predicted defective files than two releases. If that is the
case, based on how Popt20 is calculated it can explain the increase in Popt20
score. That being said, the result shows none of the models build using process
and product metrics degrades over time, thus reducing the instability of the
models. We can also say, as over time, the performance does not degrade and
we have already seen in terms of performance process metrics performs much
better than product metrics, it is wiser to use process metrics in predicting
defects.

RQ 5: Measured in terms of stasis, Are process metrics more/less static
than code metrics, when measured at at-scale?

In this research question, we try to find the reason behind the difference
in performance in models built using process and product data. Most models
try to learn how to differentiate between two classes by learning the pattern
in the training data and tries to identify similar patterns in the test data to
predict for defects. Throughout the life cycle of a project, different parts of
the project are updated and changed as part of regular enhancements. This
results in introduction of bugs and thus bug fixes for those defective changes.
The metrics that we use to create the defect prediction models should be able
to reflect those changes, so the model is able to identify the difference between
defective and non-defective changes. This means if either process or product
metrics can capture such differences, then the metric values for a file between
release R and R + 1 would not be highly correlated, and models built with
such metrics will be able to better differentiating defective and non-defective
change.

To measure the stasis of the metrics, we used Spearman correlation for
every file between two consecutive releases (to check releases-based prediction)
and two consecutive commits where the file was changed (to check for JIT-
based predictions). Here the metrics for each file for a release are calculated
from the last time the file was changed before the release. Thus for comparing
between release R and R+1 for a file, we select the commit the file was changed
last both for release R and R + 1 and compute the Spearman correlation
between them. Figure 10 shows the Spearman correlation values for every file
between two consecutive releases/commits for all the projects explored as a
violin plot for each type of metric. A wide and short violin plot represents the
majority of the value concentrated near a certain value. In contrast, a thin and
long violin plot represents values being in a different range. Figure 10 shows the
correlation scores for process and product metrics in both release-based and
JIT-based settings. The process and product metrics in release-based settings
are denoted by P R and C R respectively, while in JIT-based setting they are
denoted by P J and C J respectively. In the figure, the P P J represents the
package-level process metrics in JIT-based setting. We can see from figure 10,

Revisiting Process versus Product Metrics: a Large Scale Analysis 29

P_R C_R P_J C_J P_P_J
Metric Types

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

S
co

re
s

Fig. 10: The plot represents the Spearman correlation of every file
between two consecutive checkpoints. Here x-axis label P R and
C R represents the process and product metrics when the correla-
tion was calculated in release level. While the P J, C J, and P P J
represent the process, product, and package-level process metrics
when calculated in JIT-based setting.

the product metrics form a wide and short violin plot and are very highly
correlated. While the process metrics form a thin and long violin plot ranging
between 0.2 to 1 for release-based setting and 0.5 to 1 for JIT-based setting. If
we compare the correlations between release-based and JIT-based metric sets,
we see the correlation value for process metrics increases in JIT-based metric
sets. The reason behind this increase in correlation value can be explained as
in JIT-based metrics, we compare between commits. Here the amount of the
change in file is less than the change when measured between two releases (here
each release contains multiple commits). Similarly, when the process metrics
has been lifted from file-level to package-level, the correlation increases.

So why process metrics outperform product metrics? We think the stasis
property of the metric set is one of the main reasons as product metrics seems
to be more static, thus changing very little with time and between defective
files and non-defective files. When models are created with such static metric
sets, it is hard for the model to learn a pattern and differentiate between

30 Suvodeep Majumder et al.

defective and non-defective changes. While process metrics change over time
and much less correlated between changes, thus making them a potentially
better metric for creating defect prediction models.

RQ 6: Measured in terms of stagnation, Do models built from different
sets of metrics stagnate across releases, when measured at at-scale?

In this research question, we try to measure the stagnation property of the
models built using the process and product metrics. As suggested by Rahman
et al., we use Spearman rank correlation between the learned probability from
the training set and predicted probability from the test set to calculate the
correlation between these two. To learn the learned probability and predicted
probability, we use the defect-proneness from the learner (Random Forest in
this research question) across all pairs of training-test releases. For each pair
of training-test releases, if a file has been committed multiple times during
a release, we consider the file instance that was changed last. Here a high
correlation between the learned and predicted probability, which will indicate
the models are probably learning to predict the same set of files defective.
It is finding the same probabilities in the test set as training set and thus,
it is not able to properly differentiate between defective and non-defective
files. Figure 11 shows a box plot of Spearman rank correlation between the
learned and predicted probability for models built using process and product
metrics on 700 projects used as part of this study. We can see that, a model
built using product data has significantly higher correlation than a model built

P C
Metric Type

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

S
co

re

Fig. 11: The plot represents the Spearman correlation between prob-
abilities of defect-proneness across all pairs of training-test releases.

Revisiting Process versus Product Metrics: a Large Scale Analysis 31

using process data. Although this value is slightly lower, both in the case of
process and product metrics than what Rahman et al. reported in their project,
the results signify the models built with product metrics are significantly more
stagnant than the models built using process metrics.

RQ 7: Do stagnant models (based on stagnant metrics) tend to predict
recurringly defective entities?

Here we try to verify the stagnation property of the metrics as seen in the
previous research question. If a model is stagnant, it will predict the same file
as defective regardless of whether the file actually contains defects or not. To
evaluate whether or not model built on process and product data is predicting
the same files as defective, we follow the same approach suggested by Rahman
et al. For each training test pairs, if there are multiple instances of the same
file in a release, we select the last instance when it was changed for both
training and test data. We then divide the test data into 3 parts (a) part
1 only contains files that are defective in both training and test set, we call
this recurrent set (b) part 2 consists of files that are defective in the training

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

recurrent train only

R
ecall

test only

P C
metric type

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

P C
metric type

P C
metric type

P
f

Fig. 12: Performance of the models build using process and product
metrics on recurrent, train only and test only test sets.

32 Suvodeep Majumder et al.

set but not in the test set, this is train only set and finally (c) part 3 only
contains files that are defective in the test and not in the training set, we call
this test only set. A model, if stagnant, will have a high recall for recurrent
set, high pf for train only set, low recall for test only set and that will show
the model is actually predicting the same set of files as defective and not able
to identify new defective files. Figure 12 shows the recall and pf of the models
build using process and product metrics on all 3 types of test sets. We can see
from the figure that models built using either process or product metrics can
identify recurrently defective files in case of recurrent set. However, we can see
a significant difference between process and product metrics, where process
metrics is doing much better in recognizing recurrently defective files. In case
of train only test set, we can see very high pf (median value ≈ 0.8) for model
build using product data, while the model built using process data has a low pf
(median value ≈ 0.0). This is a clear indication that model built using product
metrics is stagnant and identifies the same set of files as defective regardless of
whether they are actually defective or not. While the test only set shows a very
low recall for model built using product data, while high recall for model built
using process data. This indicates model built using product data is unable to
identify new defects. Thus this result bolsters the claim that process metrics
are better at identifying defects than product metrics.

RQ 8: Measured in terms of metric importance, are metrics that seem
important in-the-small, also important when reasoning in-the-large?

To answer this question, we test if what is learned from studying some
projects is the same as what might be learned from studying all 700 projects.
That is, we compare the rankings given to process metrics using all the projects
(analytics in-the-large) to the rankings that might have been learned from
analytics in-the-small projects looking at 5 projects (where those projects were
selected at random).

Figure 13 shows the metric importance of metrics in the combined (pro-
cess + product) data set. This metric importance is generated according to
what metrics are important while building and making predictions in Random
Forest. The metric importance returned by Random Forest is calculated using
a method implemented in Scikit-Learn. Specifically: how much each metric
decreases the weighted impurity in a tree. This impurity reduction is then av-
eraged across the forest and the metrics are ranked. In Figure 13 the metric im-
portance increases from left to right. That is, in terms of defect prediction, the
most important metric is the average number of developers in co-committed
files (avg nadev) and the least important metric is the number of directories
(nd).

In that figure, the process metrics are marked with two blue asterisks**.
Note that nearly all of them appear on the top. That is, in a result consistent
with Rahman et al., process metrics are far more important than process
metrics.

Figure 14 compares the process metrics rankings learned from analytics
in-the-large (i.e., from 700 projects) versus a simulation of an in-the-small

Revisiting Process versus Product Metrics: a Large Scale Analysis 33

0.00 0.05 0.10 0.15 0.20

**nd
**ns

CountDeclMethodDefault
CountClassDerived

AvgEssential
CountClassBase

CountDeclMethodProtected
MaxInheritanceTree

AvgLineBlank
CountDeclClassMethod

MaxEssential
AvgCyclomaticModified

AvgLineComment
AvgCyclomatic

CountDeclMethodPrivate
AvgCyclomaticStrict

CountDeclClassVariable
MaxNesting

MaxCyclomaticModified
MaxCyclomatic

CountDeclInstanceVariable
MaxCyclomaticStrict
CountClassCoupled

CountClassCoupledModified
PercentLackOfCohesionModified

CountDeclMethodPublic
CountDeclInstanceMethod

PercentLackOfCohesion
SumEssential
AvgLineCode

SumCyclomaticModified
CountDeclMethod

AvgLine
SumCyclomatic

SumCyclomaticStrict
CountDeclMethodAll

RatioCommentToCode
CountLineComment

CountStmtExe
CountLineBlank
CountStmtDecl

CountSemicolon
CountLineCodeExe

CountLineCodeDecl
CountStmt

CountLineCode
CountLine

**lt
**la
**ld

**sctr
**sexp
**exp

**avg_nddev
**ddev
**ndev
**own
**age
**nuc

**adev
**minor

**ncomm
**nadev

**rexp
**avg_ncomm

**avg_nadev

Fig. 13: Metric importance of process+product combined metrics
based on Random Forest. Process metrics are marked with two blue
asterisks**. Blue denotes the median importance in 700 projects
while the pink region shows the (75-25)th percentile.

study that looks at five projects selected at random. In the figure, the X-axis
ranks metrics via analytics in-the-large (using Random Forests applied to 700
projects), and Y-axis ranks process metrics using analytics in-the-small (using
Random Forests applied to randomly select 5 projects). For both x and Y-axis
rankings, the metrics were sorted by the metric importance returned by the
Random Forest Classifier.

In an ideal scenario, when the ranks are the same, this would appear in
Figure 14 as a straight line at a 45-degree angle, running through the origin. To
say the least, this not what is observed here. We would summarize Figure 14 as

34 Suvodeep Majumder et al.

ns nd lt ld
sc

tr la
av

g_
nd

de
v

dd
ev

se
xp

nd
ev

ow
n

ex
p

ag
e

nu
c

ad
ev

m
in

or
na

de
v

nc
om

m
av

g_
nc

om
m

av
g_

na
de

v
re

xp

Feature ranks for Random Forest (in-the-large)

nd
ns
lt

own
age

ddev
la

minor
ndev

avg_nddev
ld

sexp
exp
sctr

adev
nuc

avg_ncomm
avg_nadev

ncomm
nadev

rexp
Fe

at
ur

e
ra

nk
s f

or
 R

an
do

m
 F

or
es

t (
in

-th
e-

sm
al

l)

0,1
1,0

2,2

3,10

4,13

5,6

6,9

7,5

8,11

9,8

10,3

11,12

12,4

13,15
14,14

15,7

16,19
17,18

18,16
19,17

20,20

Fig. 14: X-axis ranks metrics via analytics in-the-large (using Ran-
dom Forests applied to 700 projects). Y-axis ranks process metrics
using analytics in-the-small (using Random Forests selected from
random sample of 5 projects).

follows: the importance given to metrics by a few analytics in-the-small studies
is very different from the importance learned via analytics in-the-large.

5 THREATS TO VALIDITY

As with any large scale empirical study, biases can affect the final results.
Therefore, any conclusions made from this work must be considered with the
following issues in mind:

(a) Evaluation Bias: In all research questions in this study, we have shown
the performance of models built with process, product and, process+product
metrics and compared them using statistical tests on their performance to
conclude which is better and more generalizable predictor for defects. While
those results are true, that conclusion is scoped by the evaluation metrics we
used to write this paper. It is possible that using other measurements, there
may be a difference in these different kinds of projects (e.g., G-score, harmonic
mean of recall, and false-alarm reported in [90]). This is a matter that needs
to be explored in future research.

Revisiting Process versus Product Metrics: a Large Scale Analysis 35

(b) Construct Validity : At various places in this report, we made engineer-
ing decisions about (e.g.,) choice of machine learning models, selecting metric
vectors for each project. While those decisions were made using advice from
the literature, we acknowledge that other constructs might lead to different
conclusions.

(c) External Validity : For this study, we have collected data from 700
Github Java projects. The product metrics collected for each project were done
using a commercialized tool called “Understand” and the process metrics were
collected using our own code on top of Commit Guru repository. There is a
possibility that calculation of metrics or labeling of defective vs non-defective
using other tools or methods may result in different outcomes. That said, the
“Understand” is a commercialized tool with detailed documentation about the
metrics calculations. We have shared our scripts and processes to convert the
metrics to a usable format and has described the approach to label defects.

(d) Sampling Bias: Our conclusions are based on the 700 projects collected
from Github. It is possible that different initial projects would have lead to
different conclusions. That said, this sample is very large, so we have some
confidence that this sample represents an interesting range of projects.

(e) Selection Bias: Our comparison between process, product and, pro-
cess+product metrics are based on metrics used in prior work (Rahman et
al. [70] Kamei et al. [34]). It is certainly true that other metrics might be
more important than those explored here. For future work, we strongly rec-
ommend exploring a wider range of metrics; e.g., such as those suggested by
other researchers [40,66,67].

6 CONCLUSION AND DISCUSSION

Much prior work in software analytics has focused on in-the-small studies that
used a few dozen projects or less. Here we checked what happens when we take
specific conclusions generated from analytics in-the-small, then review those
conclusions using analytics in-the-large. While some conclusions remain the
same (e.g., process metrics generate better predictors than product metrics
for defects), other conclusions change (e.g., learning methods like logistic re-
gression that work well in-the-small perform comparatively much worse when
applied in-the-large).

We find here that issues that may not seem critical in-the-small become
significant problems in-the-large. For example:
– Recalling Figure 14, we can say that what seems to be an important metric,

in-the-small, can prove to be very unimportant when we start reasoning
in-the-large.

– Further, when reasoning in-the-large, variability in predictions becomes a
concern.

Thus when researchers or industry practitioners attempt to:
– Generate guidelines or best practices to either train new researchers or de-

velopers;

36 Suvodeep Majumder et al.

– Create tools for quality measurements, guide developers to follow best prac-
tices or helping developers or researchers in other ways;

– Study data to find general defect-related trends/properties of open-source
projects;

then it is better to use findings from in-the-large analysis. The reason being,
if the lessons learned change from project to project, it will be very hard to
generate guidelines or create tools that are stable enough for an organization.
This is an issue since:
– If the guidelines or tools are not stable, then developers or researchers will

lose trust in those tools.
– Also, when trying to find general trends in software projects, trends found

from an in-the-small study might change when the selected projects are
changed and thus, those will not be general trends but project specific
trends.

– We found that certain systems issues seem unimportant in-the-small. How-
ever, when scaling up to in-the-large, it becomes a critical issue that product
metrics are an order of magnitude to harder to manage. We listed one case
study above where the systems requirements needed for product metrics
meant that, very nearly, we almost did not deliver scientific research in a
timely manner.

Based on this experience, we say:
– Industrial practitioners should make use of in-the-large findings or re-validate

in-the-small findings with in-the-large analysis before applying them to or-
ganizational level either to create guidelines or to make tools.

– Analysts performing analytics in-the-large should use process metrics and
ensemble methods like random forests since they can better handle the kind
of large scale spurious singles seen while reasoning effectively over hundreds
of projects.

– SE researchers must now:
– Revisit many of the conclusions previously obtained via analytics in-the-

small to find if those findings still hold true for in-the-large analysis.
– Perform in-the-large analysis when trying to find general trends in soft-

ware projects in their research.
More generally, what is this work saying about the notions/need/bene-

fits of quantitative versus qualitative in defect-related research in-the-large?
Quantitative studies can scale to a very large number of projects (as shown by
this study), while qualitative studies can find specific, nuanced features that
are specific to that small set of projects (evidence, see Figure 14). However, it
would be wrong to use this study to say (e.g.,) “stop qualitative studies” since,
in our experience, more can be achieved by combining the two approaches
(than just mono-focusing on just qualitative or quantitative).

For example, previously, with Chen and Stolee et al. [16], we have argued
for a marriage of qualitative and quantitative methods to effectively reduce the
effort associated with the partial replication and enhancement of qualitative
studies. In the case study of that paper [16], a qualitative study explored
factors influencing the fate of GitHub pull requests using extensive qualitative

Revisiting Process versus Product Metrics: a Large Scale Analysis 37

analysis of 20 pull requests. Guided by their findings, we mapped some of
their qualitative insights onto quantitative questions. To determine how well
their findings generalize, we collected much more data (ten times as many
additional pull requests from hundreds of GitHub projects). This combined
approach resulted in a new predictor for whether code would be merged. That
predictor was far more accurate than one built from the study’s qualitative
factors (F1=90 vs 68%), illustrating the value of a mixed-methods approach
and replication to improve prior results. We conjecture that that case study is
representative of an underlying methodology for scaling and extending primary
qualitative studies that require expert opinions.

Hence, we argue that one future direction for this research could be to
encourage more studies that replicate parts of primary qualitative studies us-
ing quantitative methods (since these scale to a large number of projects).
Further, we should not stop there. The insights gained from this combined
qualitative/quantitative approach could be used to design insightful subse-
quent studies.

7 Acknowledgments

This work was partially funded by NSF Grant #1908762.

References

1. A. Agrawal and T. Menzies. Is better data better than better data miners?: on the
benefits of tuning smote for defect prediction. In IST. ACM, 2018.

2. Amritanshu Agrawal, Wei Fu, and Tim Menzies. What is wrong with topic modeling?
and how to fix it using search-based software engineering. Information and Software
Technology, 98:74–88, 2018.

3. Amritanshu Agrawal and Tim Menzies. ”better data” is better than ”better data
miners” (benefits of tuning SMOTE for defect prediction). CoRR, abs/1705.03697,
2017.

4. Amritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran, and Tim
Menzies. We don’t need another hero? the impact of” heroes” on software development.
In Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 245–253, 2018.

5. Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to assess
randomized algorithms in software engineering. In Software Engineering (ICSE), 2011
33rd International Conference on, pages 1–10. IEEE, 2011.

6. E. Arisholm and L. C Briand. Predicting fault-prone components in a java legacy
system. In ESEM. ACM, 2006.

7. Erik Arisholm, Lionel C Briand, and Eivind B Johannessen. A systematic and compre-
hensive investigation of methods to build and evaluate fault prediction models. Journal
of Systems and Software, 83(1):2–17, 2010.

8. Victor R Basili, Lionel C Briand, and Walcélio L Melo. A validation of object-oriented
design metrics as quality indicators. Software Engineering, IEEE Transactions on,
22(10):751–761, 1996.

9. C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu. Putting it all together:
Using socio-technical networks to predict failures. In ISSRE, 2009.

38 Suvodeep Majumder et al.

10. Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald Gall, and Bren-
dan Murphy. Does distributed development affect software quality? an empirical case
study of windows vista. In 2009 IEEE 31st International Conference on Software
Engineering, pages 518–528. IEEE, 2009.

11. Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and Premku-
mar Devanbu. Don’t touch my code! examining the effects of ownership on software
quality. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pages 4–14, 2011.

12. Lionel C Briand, VR Brasili, and Christopher J Hetmanski. Developing interpretable
models with optimized set reduction for identifying high-risk software components.
IEEE Transactions on Software Engineering, 19(11):1028–1044, 1993.

13. Yang Cao, Zhiming Ding, Fei Xue, and Xiaotao Rong. An improved twin support
vector machine based on multi-objective cuckoo search for software defect prediction.
International Journal of Bio-Inspired Computation, 11(4):282–291, 2018.

14. Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

15. Di Chen, Wei Fu, Rahul Krishna, and Tim Menzies. Applications of psychological
science for actionable analytics. FSE’19, 2018.

16. Di Chen, Kathryn T. Stolee, and Tim Menzies. Replication can improve prior results:
A github study of pull request acceptance. In Proceedings of the 27th International
Conference on Program Comprehension, ICPC ’19, page 179–190. IEEE Press, 2019.

17. Garvit Rajesh Choudhary, Sandeep Kumar, Kuldeep Kumar, Alok Mishra, and Ca-
gatay Catal. Empirical analysis of change metrics for software fault prediction. Com-
puters & Electrical Engineering, 67:15–24, 2018.

18. Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive comparison of
bug prediction approaches. In 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), pages 31–41. IEEE, 2010.

19. Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. Mono. Stat.
Appl. Probab. London, 1994.

20. Norman E Fenton and Martin Neil. Software metrics: roadmap. In Proceedings of the
Conference on the Future of Software Engineering, pages 357–370, 2000.

21. Wei Fu, Tim Menzies, and Xipeng Shen. Tuning for software analytics: Is it really
necessary? Information and Software Technology, 76:135–146, 2016.

22. Kehan Gao, Taghi M. Khoshgoftaar, Huanjing Wang, and Naeem Seliya. Choosing
software metrics for defect prediction: an investigation on feature selection techniques.
Software: Practice and Experience, 41(5):579–606, 2011.

23. B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of classification
techniques on the performance of defect prediction models. In 2015 37th ICSE, 2015.

24. Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. Revisiting the impact of
classification techniques on the performance of defect prediction models. In 37th ICSE-
Volume 1, pages 789–800. IEEE Press, 2015.

25. Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C Gall. Method-level
bug prediction. In Proceedings of the 2012 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, pages 171–180. IEEE, 2012.

26. T. L Graves, A. F Karr, J. S Marron, and H. Siy. Predicting fault incidence using
software change history. TSE, 2000.

27. Zhimin He, Fengdi Shu, Ye Yang, Mingshu Li, and Qing Wang. An investigation on
the feasibility of cross-project defect prediction. Automated Software Engineering,
19(2):167–199, 2012.

28. James Herbsleb. Socio-technical coordination (keynote). In Companion Proceedings of
the 36th International Conference on Software Engineering, ICSE Companion 2014,
page 1, New York, NY, USA, 2014. Association for Computing Machinery.

29. Qiao Huang, Xin Xia, and David Lo. Supervised vs unsupervised models: A holis-
tic look at effort-aware just-in-time defect prediction. In Software Maintenance and
Evolution (ICSME), 2017 IEEE International Conference on, pages 159–170. IEEE,
2017.

Revisiting Process versus Product Metrics: a Large Scale Analysis 39

30. Dyana Rashid Ibrahim, Rawan Ghnemat, and Amjad Hudaib. Software defect pre-
diction using feature selection and random forest algorithm. In 2017 International
Conference on New Trends in Computing Sciences (ICTCS), pages 252–257. IEEE,
2017.

31. Shomona Gracia Jacob et al. Improved random forest algorithm for software defect
prediction through data mining techniques. International Journal of Computer Ap-
plications, 117(23), 2015.

32. Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German,
and Daniela Damian. The promises and perils of mining github. In Proceedings of the
11th Working Conference on Mining Software Repositories, MSR 2014, pages 92–101,
New York, NY, USA, 2014. ACM.

33. Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams, and A. E. Hassan.
Revisiting common bug prediction findings using effort-aware models. In 2010 IEEE
International Conference on Software Maintenance, pages 1–10, 2010.

34. Yasutaka Kamei, Shinsuke Matsumoto, Akito Monden, Ken-ichi Matsumoto, Bram
Adams, and Ahmed E Hassan. Revisiting common bug prediction findings using effort-
aware models. In 2010 IEEE International Conference on Software Maintenance,
pages 1–10. IEEE, 2010.

35. Yasutaka Kamei, Akito Monden, Shinsuke Matsumoto, Takeshi Kakimoto, and Ken-
ichi Matsumoto. The effects of over and under sampling on fault-prone module de-
tection. In First International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), pages 196–204. IEEE, 2007.

36. Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical study of just-in-time
quality assurance. IEEE Transactions on Software Engineering, 39(6):757–773, 2012.

37. Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. Practitioners’ expecta-
tions on automated fault localization. In Proceedings of the 25th International Sym-
posium on Software Testing and Analysis, pages 165–176. ACM, 2016.

38. Masanari Kondo, Daniel M German, Osamu Mizuno, and Eun-Hye Choi. The impact
of context metrics on just-in-time defect prediction. Empirical Software Engineering,
25(1):890–939, 2020.

39. Rahul Krishna and Tim Menzies. Bellwethers: A baseline method for transfer learning.
IEEE Transactions on Software Engineering, 2018.

40. Zhiqiang Li, Xiao-Yuan Jing, and Xiaoke Zhu. Progress on approaches to software
defect prediction. IET Software, 12(3):161–175, 2018.

41. Markus Lumpe, Rajesh Vasa, Tim Menzies, Rebecca Rush, and Burak Turhan. Learn-
ing better inspection optimization policies. International Journal of Software Engi-
neering and Knowledge Engineering, 22(5):621–644, 8 2012.

42. Lech Madeyski. Is external code quality correlated with programming experience or
feelgood factor? In International Conference on Extreme Programming and Agile
Processes in Software Engineering, pages 65–74. Springer, 2006.

43. Lech Madeyski and Marian Jureczko. Which process metrics can significantly improve
defect prediction models? an empirical study. Software Quality Journal, 23(3):393–422,
2015.

44. George Mathew, Amritanshu Agrawal, and Tim Menzies. Trends in topics at se con-
ferences (1993-2013). In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pages 397–398. IEEE, 2017.

45. S. Matsumoto, Y. Kamei, A. Monden, K. Matsumoto, and M. Nakamura. An analysis
of developer metrics for fault prediction. In 6th PROMISE, 2010.

46. T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn
defect predictors. TSE, 2007.

47. T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect prediction
from static code features: Current results, limitations, new approaches. ASE, 2010.

48. Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to
learn defect predictors. IEEE transactions on software engineering, 33(1):2–13, 2006.

49. Tim Menzies, Suvodeep Majumder, Nikhila Balaji, Katie Brey, and Wei Fu. 500+
times faster than deep learning:(a case study exploring faster methods for text min-
ing stackoverflow). In 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR), pages 554–563. IEEE, 2018.

40 Suvodeep Majumder et al.

50. Tim Menzies, Burak Turhan, Ayse Bener, Gregory Gay, Bojan Cukic, and Yue Jiang.
Implications of ceiling effects in defect predictors. In Proceedings of the 4th inter-
national workshop on Predictor models in software engineering, pages 47–54. ACM,
2008.

51. Nikolaos Mittas and Lefteris Angelis. Ranking and clustering software cost estimation
models through a multiple comparisons algorithm. IEEE Transactions on software
engineering, 39(4):537–551, 2013.

52. Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of
the efficiency of change metrics and static code attributes for defect prediction. In
Proceedings of the 30th International Conference on Software Engineering, ICSE ’08,
page 181–190, New York, NY, USA, 2008. Association for Computing Machinery.

53. Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of
the efficiency of change metrics and static code attributes for defect prediction. In
Proceedings of the 30th International Conference on Software Engineering, pages 181–
190. ACM, 2008.

54. Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating
github for engineered software projects. Empirical Software Engineering, 22(6):3219–
3253, Dec 2017.

55. Nachiappan Nagappan and Thomas Ball. Using software dependencies and churn met-
rics to predict field failures: An empirical case study. In First International Symposium
on Empirical Software Engineering and Measurement (ESEM 2007), pages 364–373.
IEEE, 2007.

56. Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to predict
component failures. In Proceedings of the 28th International Conference on Software
Engineering, pages 452–461. ACM, 2006.

57. Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim Herzig, and Bren-
dan Murphy. Change bursts as defect predictors. In 2010 IEEE 21st International
Symposium on Software Reliability Engineering, pages 309–318. IEEE, 2010.

58. J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan. Heterogeneous defect prediction.
IEEE TSE, 2018.

59. Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. Transfer defect learning. In
Software Engineering (ICSE), 2013 35th International Conference on, pages 382–391.
IEEE, 2013.

60. Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. Clever: combining code metrics
with clone detection for just-in-time fault prevention and resolution in large industrial
projects. In Proceedings of the 15th International Conference on Mining Software
Repositories, pages 153–164, 2018.

61. Aytuğ Onan, Serdar Korukoğlu, and Hasan Bulut. A multiobjective weighted voting
ensemble classifier based on differential evolution algorithm for text sentiment classi-
fication. Expert Systems with Applications, 62:1–16, 2016.

62. Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Where the bugs are.
In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis, pages 86–96, New York, NY, USA, 2004. ACM.

63. Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation
via transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–
210, 2010.

64. Chris Parnin and Alessandro Orso. Are automated debugging techniques actually
helping programmers? In Proceedings of the 2011 international symposium on software
testing and analysis, pages 199–209. ACM, 2011.

65. Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. Fine-grained just-in-time
defect prediction. Journal of Systems and Software, 150:22–36, 2019.

66. Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. On the performance of
method-level bug prediction: A negative result. Journal of Systems and Software,
161:110493, 2020.

67. Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Software
fault prediction metrics: A systematic literature review. Information and software
technology, 55(8):1397–1418, 2013.

Revisiting Process versus Product Metrics: a Large Scale Analysis 41

68. Foyzur Rahman and Premkumar Devanbu. Ownership, experience and defects: a fine-
grained study of authorship. In Proceedings of the 33rd International Conference on
Software Engineering, pages 491–500, 2011.

69. Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics are better.
In Proceedings of the 2013 International Conference on Software Engineering, pages
432–441. IEEE Press, 2013.

70. Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics are better.
In Software Engineering (ICSE), 2013 35th International Conference on, pages 432–
441. IEEE, 2013.

71. Foyzur Rahman, Sameer Khatri, Earl T. Barr, and Premkumar Devanbu. Comparing
static bug finders and statistical prediction. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, page 424–434, New York, NY, USA,
2014. Association for Computing Machinery.

72. Foyzur Rahman, Sameer Khatri, Earl T Barr, and Premkumar Devanbu. Comparing
static bug finders and statistical prediction. In Proceedings of the 36th International
Conference on Software Engineering, pages 424–434. ACM, 2014.

73. Foyzur Rahman, Daryl Posnett, Israel Herraiz, and Premkumar Devanbu. Sample
size vs. bias in defect prediction. In Proceedings of the 2013 9th joint meeting on
foundations of software engineering, pages 147–157, 2013.

74. Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premkumar Devanbu.
Bugcache for inspections: hit or miss? In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering,
pages 322–331, 2011.

75. C. Rosen, B. Grawi, and E. Shihab. Commit guru: Analytics and risk prediction of
software commits. ESEC/FSE 2015, 2015.

76. Christoffer Rosen, Ben Grawi, and Emad Shihab. Commit guru: analytics and risk
prediction of software commits. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 966–969. ACM, 2015.

77. Duksan Ryu, Okjoo Choi, and Jongmoon Baik. Value-cognitive boosting with a sup-
port vector machine for cross-project defect prediction. Empirical Software Engineer-
ing, 21(1):43–71, 2016.

78. Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Andres Folleco. An em-
pirical study of the classification performance of learners on imbalanced and noisy
software quality data. Information Sciences, 259:571–595, 2014.

79. Naeem Seliya, Taghi M Khoshgoftaar, and Jason Van Hulse. Predicting faults in high
assurance software. In 2010 IEEE 12th International Symposium on High Assurance
Systems Engineering, pages 26–34. IEEE, 2010.

80. Y. Shin and L. Williams. Can traditional fault prediction models be used for vulner-
ability prediction? EMSE, 2013.

81. R. Storn and K. Price. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11(4):341–359,
1997.

82. Ramanath Subramanyam and Mayuram S. Krishnan. Empirical analysis of ck met-
rics for object-oriented design complexity: Implications for software defects. IEEE
Transactions on software engineering, 29(4):297–310, 2003.

83. Zhongbin Sun, Qinbao Song, and Xiaoyan Zhu. Using coding-based ensemble learning
to improve software defect prediction. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(6):1806–1817, 2012.

84. C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. The impact of
automated parameter optimization on defect prediction models. IEEE Transactions
on Software Engineering, pages 1–1, 2018.

85. Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, Akinori Ihara, and
Kenichi Matsumoto. The impact of mislabelling on the performance and interpretation
of defect prediction models. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 812–823. IEEE, 2015.

86. Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi Mat-
sumoto. Automated parameter optimization of classification techniques for defect
prediction models. In ICSE 2016, pages 321–332. ACM, 2016.

42 Suvodeep Majumder et al.

87. Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi Mat-
sumoto. The impact of automated parameter optimization on defect prediction models.
IEEE Transactions on Software Engineering, 45(7):683–711, 2018.

88. Divya Tomar and Sonali Agarwal. A comparison on multi-class classification meth-
ods based on least squares twin support vector machine. Knowledge-Based Systems,
81:131–147, 2015.

89. Huy Tu and Vivek Nair. While tuning is good, no tuner is best. In FSE SWAN, 2018.

90. Huy Tu, Zhe Yu, and Tim Menzies. Better data labelling with emblem (and how that
impacts defect prediction). IEEE Transactions on Software Engineering, 2020.

91. Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. On the relative
value of cross-company and within-company data for defect prediction. Empirical
Software Engineering, 14(5):540–578, 2009.

92. Shuo Wang and Xin Yao. Using class imbalance learning for software defect prediction.
IEEE Transactions on Reliability, 62(2):434–443, 2013.

93. Elaine J Weyuker, Thomas J Ostrand, and Robert M Bell. Do too many cooks spoil the
broth? using the number of developers to enhance defect prediction models. Empirical
Software Engineering, 13(5):539–559, 2008.

94. Chadd Williams and Jaime Spacco. Szz revisited: verifying when changes induce fixes.
In Proceedings of the 2008 workshop on Defects in large software systems, pages 32–36.
ACM, 2008.

95. Tianpei Xia, Rahul Krishna, Jianfeng Chen, George Mathew, Xipeng Shen, and
Tim Menzies. Hyperparameter optimization for effort estimation. arXiv preprint
arXiv:1805.00336, 2018.

96. Xin Xia, Lingfeng Bao, David Lo, and Shanping Li. “automated debugging considered
harmful” considered harmful: A user study revisiting the usefulness of spectra-based
fault localization techniques with professionals using real bugs from large systems. In
2016 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), pages 267–278. IEEE, 2016.

97. Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu Wang. Hydra:
Massively compositional model for cross-project defect prediction. IEEE Transactions
on software Engineering, 42(10):977–998, 2016.

98. Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. Collective personalized change clas-
sification with multiobjective search. IEEE Transactions on Reliability, 65(4):1810–
1829, 2016.

99. Xinli Yang, David Lo, Xin Xia, and Jianling Sun. Tlel: A two-layer ensemble learning
approach for just-in-time defect prediction. Information and Software Technology,
87:206–220, 2017.

100. Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning for just-in-
time defect prediction. In 2015 IEEE International Conference on Software Quality,
Reliability and Security, pages 17–26. IEEE, 2015.

101. Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu, Baowen
Xu, and Hareton Leung. Effort-aware just-in-time defect prediction: simple unsuper-
vised models could be better than supervised models. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 157–168. ACM, 2016.

102. Xin Ye, Razvan Bunescu, and Chang Liu. Learning to rank relevant files for bug reports
using domain knowledge. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 689–699, 2014.

103. Feng Zhang, Iman Keivanloo, and Ying Zou. Data transformation in cross-project
defect prediction. Empirical Software Engineering, 22(6):3186–3218, 2017.

104. Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. Cross-project defect
prediction using a connectivity-based unsupervised classifier. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), pages 309–320. IEEE,
2016.

105. Hongyu Zhang. An investigation of the relationships between lines of code and defects.
In 2009 IEEE International Conference on Software Maintenance, pages 274–283.
IEEE, 2009.

Revisiting Process versus Product Metrics: a Large Scale Analysis 43

106. Hongyu Zhang, Xiuzhen Zhang, and Ming Gu. Predicting defective software compo-
nents from code complexity measures. In 13th Pacific Rim International Symposium
on Dependable Computing (PRDC 2007), pages 93–96. IEEE, 2007.

107. Yuming Zhou and Hareton Leung. Empirical analysis of object-oriented design metrics
for predicting high and low severity faults. IEEE Transactions on software engineering,
32(10):771–789, 2006.

108. Yuming Zhou, Baowen Xu, and Hareton Leung. On the ability of complexity metrics
to predict fault-prone classes in object-oriented systems. Journal of Systems and
Software, 83(4):660–674, 2010.

109. Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and Bren-
dan Murphy. Cross-project defect prediction: a large scale experiment on data vs. do-
main vs. process. In Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 91–100. ACM, 2009.

110. Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for
eclipse. In Proceedings of the Third International Workshop on Predictor Models in
Software Engineering, page 9. IEEE Computer Society, 2007.

	Introduction
	Background and Related Work
	Methods
	RESULTS
	THREATS TO VALIDITY
	CONCLUSION AND DISCUSSION
	Acknowledgments

